In this review, I take the first-person perspective of a neuroscientist interested in Toxoplasma gondii (Nicolle et Manceaux, 1908). I reflect on the value of behavioural manipulation as a perturbation tool to understand the organisation of behaviour within the brain. Toxoplasma gondii infection reduces the aversion of rats to the olfactory cues of cat presence. This change in behaviour is one of the often-discussed exemplars of host-parasite coevolution, culminating in the manipulation of the host behaviour for the benefit of the parasite. Such coevolution also means that we can use host-parasite systems as tools to derive fundamental insights about the host brain itself.
- MeSH
- Behavior, Animal * physiology MeSH
- Host-Parasite Interactions * MeSH
- Rats MeSH
- Humans MeSH
- Toxoplasma * physiology MeSH
- Toxoplasmosis, Animal parasitology MeSH
- Toxoplasmosis parasitology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The evolution of whole-body endothermy occurred independently in dinosaurs and mammals and was associated with some of the most significant neurocognitive shifts in life's history. These included a 20-fold increase in neurons and the evolution of new brain structures, supporting similar functions in both lineages. We propose the endothermic brain hypothesis, which holds that elaborations in endotherm brains were geared towards increasing caloric intake through efficient foraging. The hypothesis is grounded in the intrinsic coupling of cognition and organismic self-maintenance. We argue that coevolution of increased metabolism and new forms of cognition should be jointly investigated in comparative studies of behaviors and brain anatomy, along with studies of fossil species. We suggest avenues for such research and highlight critical open questions.
- MeSH
- Biological Evolution * MeSH
- Cognition * physiology MeSH
- Humans MeSH
- Brain * physiology MeSH
- Food MeSH
- Feeding Behavior physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- MeSH
- Chiroptera * physiology MeSH
- Hibernation * MeSH
- Lyssavirus * MeSH
- Transcriptome MeSH
- Viruses * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53-MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53-MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto's Paradox.
- MeSH
- Genes, p53 MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- Neoplasms * genetics MeSH
- Protein Isoforms genetics metabolism MeSH
- Proto-Oncogene Proteins c-mdm2 genetics metabolism MeSH
- Elephants * genetics metabolism MeSH
- Ubiquitination MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.
- MeSH
- Amino Acids * chemistry MeSH
- Prebiotics * MeSH
- Proteins chemistry MeSH
- Protein Folding MeSH
- Publication type
- Journal Article MeSH
Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.
- MeSH
- Biological Evolution * MeSH
- Diet * MeSH
- Isoptera genetics metabolism MeSH
- Mandible MeSH
- Body Size * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
- MeSH
- Leishmania virology MeSH
- Leishmaniasis virology MeSH
- Humans MeSH
- RNA, Viral analysis MeSH
- RNA-Dependent RNA Polymerase genetics MeSH
- RNA Viruses genetics MeSH
- Capsid Proteins genetics MeSH
- Viral Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The importance of gene expression regulation in viruses based upon G-quadruplex may point to its potential utilization in therapeutic targeting. Here, we present analyses as to the occurrence of putative G-quadruplex-forming sequences (PQS) in all reference viral dsDNA genomes and evaluate their dependence on PQS occurrence in host organisms using the G4Hunter tool. PQS frequencies differ across host taxa without regard to GC content. The overlay of PQS with annotated regions reveals the localization of PQS in specific regions. While abundance in some, such as repeat regions, is shared by all groups, others are unique. There is abundance within introns of Eukaryota-infecting viruses, but depletion of PQS in introns of bacteria-infecting viruses. We reveal a significant positive correlation between PQS frequencies in dsDNA viruses and corresponding hosts from archaea, bacteria, and eukaryotes. A strong relationship between PQS in a virus and its host indicates their close coevolution and evolutionarily reciprocal mimicking of genome organization.
- MeSH
- Archaea virology MeSH
- Bacteria virology MeSH
- DNA genetics MeSH
- G-Quadruplexes * MeSH
- Genome, Viral * MeSH
- Genome MeSH
- Humans MeSH
- Gene Expression Regulation MeSH
- Viral Proteins genetics MeSH
- Viruses genetics MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.
- MeSH
- Gene Duplication MeSH
- Genetic Linkage MeSH
- Genes, MHC Class I * MeSH
- Evolution, Molecular * MeSH
- Antigen Presentation genetics MeSH
- Amphibian Proteins chemistry classification genetics MeSH
- Caudata genetics immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.