Bats are the natural reservoirs for a variety of emerging and re-emerging viruses. Among them, rabies virus (genus Lyssavirus, family Rhabdoviridae) is one of the first and most emblematic described in these animals. Since its first description, several new bat lyssaviruses have been regularly identified. In addition to lyssaviruses, other bat rhabdoviruses have also been discovered, including members of the genera Vesiculovirus, Ledantevirus and, more recently, Alphanemrhavirus and Tupavirus. However, the family Rhabdoviridae is one of the most abundant and diverse viral families, with 434 officially recognized species, divided into 5 subfamilies and 56 different genera. The number of rhabdoviruses associated with bats is therefore probably higher than that currently available. In this study, we first developed and validated a combined nested RT-qPCR technique (pan-rhabdo RT-nqPCR) dedicated to the broad detection of animal rhabdoviruses. After validation, this technique was used for a large retrospective screening of archival bat samples (n = 1962), including blood (n = 816), brain (n = 723) and oral swab (n = 423). These samples were collected from various bat species over a 12-year period (2007-2019) in 9 different countries in Europe and Africa. A total of 23 samples (1.2%) from bat species Miniopterus schreibersii, Rhinolophus euryale and Rhinolophus ferrumequinum tested positive for rhabdovirus infection, including 17 (2.1%) blood and 6 (1.4%) oral swab samples, all collected from bats originating from the Mediterranean region. Complete virus genome sequences were obtained by next-generation sequencing for most of the positive samples. Molecular and phylogenetic analysis of these sequences demonstrated that the virus isolates, named Mediterranean bat virus (MBV), were closely related and represented a new species, Mediterranean vesiculovirus, within the genus Vesiculovirus. MBV was more specifically related to other bat vesiculoviruses previously described from China and North America, together clustering into a distinct group of bat viruses within this genus. Interestingly, our results suggest that MBV is widespread, at least in the western part of the Mediterranean region, where it circulates in the blood of several bat species. These results expand the host range and viral diversity of bat vesiculoviruses, and pave the way for further studies to determine the transmission route and dissemination dynamics of these viruses in bat colonies, as well as to assess their potential threat to public health.
- MeSH
- Chiroptera * virologie MeSH
- fylogeneze MeSH
- genom virový MeSH
- infekce viry z čeledi Rhabdoviridae * veterinární epidemiologie virologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- Vesiculovirus * genetika izolace a purifikace klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Středomoří MeSH
- MeSH
- Chiroptera růst a vývoj MeSH
- dezinformace MeSH
- infodemie * MeSH
- izolace pacientů metody MeSH
- lidé MeSH
- mRNA vakcíny * farmakologie terapeutické užití MeSH
- virové zoonózy epidemiologie komplikace mortalita prevence a kontrola MeSH
- virus Nipah * genetika patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Asie MeSH
In the family of fruit bats, Pteropodidae Gray, 1821, as in the third most diverse group of bats (Chiroptera), the bacterium of the genus Bartonella was detected in several species as well as in a few species of their insect ectoparasites in some tropical and sub-tropical regions of the Old World. The Egyptian fruit bat, Rousettus aegyptiacus (Geoffroy, 1810), is one of the most widespread fruit bats, occurring between South Africa, Senegal, and Pakistan. In this bat species, Candidatus Bartonella rousetti has been detected in three African populations in Nigeria, Kenya, and Zambia. This fruit bat, however, also occurs in the Palaearctic, an area isolating the species geographically and phylogenetically from the Afrotropical part of its distribution range. We screened the blood-sucking bat flies (family Nycteribiidae) from R. aegyptiacus for the presence of the Bartonella bacteria. A rich material of bat fly Eucampsipoda aegyptia (Macquart, 1850), a monoxenous ectoparasite of the Egyptian fruit bats, was collected at 26 localities in seven countries (Egypt, Iran, Jordan, Lebanon, Oman, United Arab Emirates, and Yemen) of the Middle East in 2007-2013. The DNA isolates from the bat flies were subjected to a three-marker (gltA, ssrA, and intergenic spacer region, ITS) multilocus sequence analysis. Based on the amplification of the fragment of ssrA gene by a real-time PCR, 65 E. aegyptia samples from 19 localities in all seven countries were positive for the bacteria. One to five Bartonella-positive individuals of E. aegyptia were collected per one individual of R. aegyptiacus. An analysis of the ITS and gltA genes indicated the presence of an uncultured Bartonella sp., belonging to the Cand. B. rousetti genogroup, identified from populations of the Egyptian fruit bat in Africa. These results support the hypothesis that Bartonella's diversity corresponds to its host's diversity (and phylogenetic structure). Specific lineages of pathogens are present in specific phylogenetic groups of bats.
- MeSH
- Bartonella * genetika MeSH
- Chiroptera * MeSH
- fylogeneze MeSH
- intergenová DNA MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Keňa MeSH
- Střední východ MeSH
Rearing common bed bugs (Cimex lectularius L.) and other hematophagous insects is essential for basic, medical, and pest-control research. Logistically, acquiring fresh blood can be a challenge, while biologically, the eventual effects of different rearing and blood preparation protocols on bed bug genotype and phenotype pose a risk of biased research results. Using bed bug populations that are either bat- (BL) or human-related (HL), we tested the short- and long-term effects of rearing bugs on live bats or human volunteers, or artificially on CPDA (citrate phosphate dextrose, adenine)-treated blood, measuring meal size, body size, and fertility. We found that artificial feeding did not affect meal size compared with feeding on natural hosts. Long-term rearing across many generations of HL on CPDA-preserved blood led to reduced body size and fertility compared with populations reared on human volunteers. Blood preservatives increased the proportion of sterile eggs even after a single feed. Finally, our results indicated that laboratory reared bed bugs were smaller, regardless of the blood source, than wild bugs. Similar effects of artificial feeding or laboratory rearing alone should be considered in future studies using bed bug cultures to choose an appropriate rearing protocol. With regard to switching between bat and human hosts, HL took smaller meals and BL had lower fertility when fed on bats than when fed on humans. We attribute these results to methodological constrains, specifically the inconsistency of bat feeding, rather than to host specialization. Nevertheless, BL can be easily reared using human blood and artificial feeding systems.
- MeSH
- Chiroptera * MeSH
- fertilita MeSH
- Heteroptera * MeSH
- lidé MeSH
- štěnice * MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. METHODS: In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. RESULTS AND DISCUSSION: Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
- MeSH
- Chiroptera * MeSH
- kožní nemoci * MeSH
- mykózy * epidemiologie veterinární MeSH
- séroepidemiologické studie MeSH
- syndrom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- MeSH
- Chiroptera * fyziologie MeSH
- hibernace * MeSH
- Lyssavirus * MeSH
- transkriptom MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
- MeSH
- angiotensin-konvertující enzym 2 genetika MeSH
- Chiroptera * virologie MeSH
- druhová specificita MeSH
- glykoprotein S, koronavirus metabolismus MeSH
- lidé MeSH
- replikace viru * MeSH
- SARS-CoV-2 * fyziologie MeSH
- virové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.
- MeSH
- biodiverzita MeSH
- Chiroptera * MeSH
- databáze faktografické MeSH
- ekosystém MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
PURPOSE: Even though the taxonomy of bat-infesting chiggers has been studied extensively, information about the distribution and morphological variability of many species is still lacking. In fact, the only available distribution records for several species are their type localities. The purpose of this paper is to broaden the knowledge of the Indonesian group. METHODS: Hosts and chiggers were captured from April 2018 to March 2020 in Bali and Nusa Penida Islands in Indonesia by using standard bat-capturing and parasite-collecting methods. A list of bat-infesting chiggers in Indonesia was compiled by searching the public databases using specific keywords. RESULTS: When compared with already published data on type specimens, the physical measurements and morphology of Whartonia diosi, W. maai and Grandjeana sinensis revealed only minor differences that fell within intraspecific variability of the mentioned species. Two species (W. diosi and G. sinensis) are recorded here for the first time outside of their type localities (Panay Island in the Philippines and China) and, in both cases, represent the first records for Indonesia. The checklist summarizes all 16 species in 9 genera of bat-infesting chiggers collected from 12 bat species belonging to 5 families all collected on 8 Indonesian islands. CONCLUSION: Indonesia comprises more than 17,000 islands, is home to over 200 bat species, and harbors hundreds of still undiscovered caves. With such a huge potential for chigger diversity and endemism, it is likely that our results document only a fraction of the actual diversity.
- MeSH
- Chiroptera * MeSH
- infestace roztoči * MeSH
- lidé MeSH
- Trombiculidae * anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Čína MeSH
- Indonésie MeSH