TP73 is a member of the TP53 gene family and produces N- and C-terminal protein isoforms through alternative promoters, alternative translation initiation and alternative splicing. Most notably, p73 protein isoforms may either contain a p53-like transactivation domain (TAp73 isoforms) or lack this domain (ΔTAp73 isoforms) and these variants have opposing or independent functions. To date, there is a lack of well-characterised isoform-specific p73 antibodies. Here, we produced polyclonal and monoclonal antibodies to N-terminal p73 variants and the C-terminal p73α isoform, the most common variant in human tissues. These reagents show that TAp73 is a marker of multiciliated epithelial cells, while ΔTAp73 is a marker of non-proliferative basal/reserve cells in squamous epithelium. We were unable to detect ΔNp73 variant proteins, in keeping with recent data that this is a minor form in human tissues. Most cervical squamous cell carcinomas (79%) express p73α, and the distribution of staining in basal cells correlated with lower tumour grade. TAp73 was found in 17% of these tumours, with a random distribution and no association with clinicopathological features. These data indicate roles for ΔTAp73 in maintaining a non-proliferative state of undifferentiated squamous epithelial cells and for TAp73 in the production of differentiated multiciliated cells.
- MeSH
- epitelové buňky metabolismus MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku metabolismus patologie genetika MeSH
- nádory metabolismus patologie genetika MeSH
- protein - isoformy * metabolismus genetika MeSH
- protein p73 * metabolismus genetika MeSH
- spinocelulární karcinom metabolismus patologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
- MeSH
- karcinogeneze * patologie genetika MeSH
- kur domácí MeSH
- kuřecí embryo MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- nádory patologie genetika MeSH
- ptáci MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite significant improvement in the survival of pediatric patients with cancer, treatment outcomes for high-risk, relapsed, and refractory cancers remain unsatisfactory. Moreover, prolonged survival is frequently associated with long-term adverse effects due to intensive multimodal treatments. Accelerating the progress of pediatric oncology requires both therapeutic advances and strategies to mitigate the long-term cytotoxic side effects, potentially through targeting specific molecular drivers of pediatric malignancies. In this report, we present the results of integrative genomic and transcriptomic profiling of 230 patients with malignant solid tumors (the "primary cohort") and 18 patients with recurrent or otherwise difficult-to-treat nonmalignant conditions (the "secondary cohort"). The integrative workflow for the primary cohort enabled the identification of clinically significant single nucleotide variants, small insertions/deletions, and fusion genes, which were found in 55% and 28% of patients, respectively. For 38% of patients, molecularly informed treatment recommendations were made. In the secondary cohort, known or potentially driving alteration was detected in 89% of cases, including a suspected novel causal gene for patients with inclusion body infantile digital fibromatosis. Furthermore, 47% of findings also brought therapeutic implications for subsequent management. Across both cohorts, changes or refinements to the original histopathological diagnoses were achieved in 4% of cases. Our study demonstrates the efficacy of integrating advanced genomic and transcriptomic analyses to identify therapeutic targets, refine diagnoses, and optimize treatment strategies for challenging pediatric and young adult malignancies and underscores the need for broad implementation of precision oncology in clinical settings.
- MeSH
- dítě MeSH
- genomika * metody MeSH
- individualizovaná medicína * metody MeSH
- kohortové studie MeSH
- kojenec MeSH
- lékařská onkologie metody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory * genetika terapie MeSH
- předškolní dítě MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
- MeSH
- 3' nepřekládaná oblast * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * genetika MeSH
- polyadenylace * MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Somatic and germline genetic alterations are significant drivers of cancer. Increasing integration of new technologies which profile these alterations requires timely, equitable and high-quality genetic counselling to facilitate accurate diagnoses and informed decision-making by patients and their families in preventive and clinical settings. This article aims to provide an overview of genetic counselling legislation and practice across European Union (EU) Member States to serve as a foundation for future European recommendations and action. METHODS: National legislative databases of all 27 Member States were searched using terms relevant to genetic counselling, translated as appropriate. Interviews with relevant experts from each Member State were conducted to validate legislative search results and provide detailed insights into genetic counselling practice in each country. RESULTS: Genetic counselling is included in national legislative documents of 22 of 27 Member States, with substantial variation in legal mechanisms and prescribed details (i.e. the 'who, what, when and where' of counselling). Practice is similarly varied. Workforce capacity (25 of 27 Member States) and genetic literacy (all Member States) were common reported barriers. Recognition and/or better integration of genetic counsellors and updated legislation and were most commonly noted as the 'most important change' which would improve practice. CONCLUSIONS: This review highlights substantial variability in genetic counselling across EU Member States, as well as common barriers notwithstanding this variation. Future recommendations and action should focus on addressing literacy and capacity challenges through legislative, regulatory and/or strategic approaches at EU, national, regional and/or local levels.
- MeSH
- Evropská unie * MeSH
- genetické poradenství * zákonodárství a právo MeSH
- genetické testování zákonodárství a právo MeSH
- lidé MeSH
- nádory * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Armadillo repeat-containing proteins (ARMCs) are a large family found throughout eukaryotes, which play prominent roles in cell adhesion, signaling and cytoskeletal regulation. The ARMC6 protein is highly conserved in primates, including humans, but to date does not have a clear function beyond initial hints of a link to cancer and telomerase activity. We report here in vitro experiments showing ARMC6 binding to DNA promoter sequences from several cancer-related genes (e.g., EGFR, VEGF and c-MYC), and also to the telomeric RNA repeat (TERRA). ARMC6 binding activity appears to recognize G-quadruplex motifs, which are being increasingly implicated as structure-based protein binding sites in chromosome maintenance and repair. In vivo investigation of ARMC6 function revealed that when this protein is overexpressed in human cell lines, there is different expression of genes connected with oncogenic pathways and those implicated in downstream non-canonical telomerase pathways (e.g., VEGF, hTERT, c-MYC, ESM1, MMP3). ARMC6 is already known to interact with human shelterin protein TRF2 and telomerase. The protein binds G-quadruplex structures and does so preferentially to RNA over DNA. As such, this protein may be an example of how a non-canonical nucleic acid structural motif allows mediation between gene regulation and telomeric chromatin rearrangement pathways.
- MeSH
- DNA vazebné proteiny MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory genetika metabolismus MeSH
- promotorové oblasti (genetika) * MeSH
- proteiny s doménou armadillo * metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- RNA metabolismus genetika MeSH
- telomerasa metabolismus genetika MeSH
- telomery * metabolismus MeSH
- transkripční faktory MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Genová terapie (GT) se postupně stává běžným způsobem léčby. Již není výsadou velkých univerzitních pracovišť, jejichž laboratoře zvládají analytické postupy zaměřené na nukleové kyseliny a jejichž klinické týmy zvládají aplikaci. Původně byla určena pro dědičné choroby, které vzhledem ke svému řídkému výskytu byly označovány jako vzácná onemocnění a GT se dosud uplatňovala jen u dětí, aby působila ještě před rozvojem onemocnění. Nové způsoby léčby začaly být používány i u chorob běžných, jakými jsou např. metabolické poruchy (diabetes), a dokonce u takových, které nás sužují stále častěji, jako nejrůznější malignity a nemoci centrální nervové soustavy (např. Alzheimerova choroba). Cílem genové terapie jsou geny, jejichž změny v podobě patogenních variant (dříve mutací) vyvolávají poruchy fenotypu. Naší snahou je buď jejich vyřazení z funkce (např. u hemoglobinopatií), nebo jejich nahrazení geny s normální funkcí. Ty lze do genomu vnést pomocí některého z vhodných přenašečů (tzv. vektorů), jakými jsou např. viry nebo lipozomy. Proces GT může probíhat přímo v těle pacienta (in vivo), nebo mimo něj na jeho izolovaných buňkách (ex vivo), kterými jsou obvykle indukované pluripotentní kmenové buňky (iPSC – induced pluripotent stem cell). Po úpravě se tyto buňky vracejí do pacientova těla, aby tak naplnily svůj „úděl“. V širším slova smyslu může být GT namířena i na produkt genové transkripce, kterým je messenger RNA (mRNA), nebo konečný produkt realizace genové funkce, jakým jsou funkční bílkoviny (např. u cystické fibrózy). U různých chorob se úspěšně používají uvedené přístupy v závislosti na jejich dostupnosti, která je mimo jiné dána i náklady s GT spojenými nebo přístupností cílové tkáně. Nejen ověřování účinnosti a bezpečnosti GT, ale i ekonomické důvody rozhodují o tom, proč se GT rozvíjí jen pozvolna a proč se jí ujímají většinou jen velké a bohaté instituce. Rozhodující je také to, že celý proces vývoje od výchozích experimentálních prací přes klinické zkoušky až ke konečnému přípravku běžně trvá i dekádu či déle.
Gene therapy is gradually becoming a mainstream treatment modality and is no longer the preserve of large university departments whose laboratories master nucleic acid analytical procedures and whose clinical teams manage its administration. It was originally designed for genetic diseases that, because of their prevalence, were a group known as rare diseases. Gene therapy has so far been applied in children to act before the disease development. These new treatments have also begun to be applied for common diseases such as metabolic disorders (e. g. diabetes) and even for those that are increasingly affecting us, such as various malignancies and diseases of the central nervous system (e. g. Alzheimer’s disease). The targets targeted by GT are genes, where pathogenic alterations in the form of pathogenic variants (formerly mutations) induce phenotypic disorders, and our aim is either to knock them out of function (e. g. haemoglobinopathies) or to replace them with genes with normal function, which we introduce into the genome using one of the appropriate vectors, such as viruses or liposomes. The process of GT can take place directly inside the patient's body (in vivo) or outside the body on isolated cells (ex vivo), which are usually stem cells (iPSCs, induced pluripotent stem cell). After treatment, these cells are returned to the patient's body to fulfil their "destiny". In a broader sense, GT can target the product of gene transcription, which is the messenger RNA, or the end product of gene function, such as functional proteins (eg. cystic fibrosis). Any of these approaches have been used successfully in various diseases, depending on their availability, which is determined, among other things, by the costs associated with GT or the accessibility of the target tissue. Ultimately, it is not only the validation of the efficacy and safety of GT, but also economic reasons that determine why GT has been slow to develop and is mostly undertaken only by large and wealthy institutions. Another decisive factor is that from initial experimental work through clinical trials, the whole process of its development normally takes up to a decade.
- MeSH
- cystická fibróza genetika terapie MeSH
- deficit alfa1-antitrypsinu genetika terapie MeSH
- Duchennova muskulární dystrofie genetika terapie MeSH
- genetická terapie * metody MeSH
- Huntingtonova nemoc genetika terapie MeSH
- krevní nemoci genetika terapie MeSH
- lidé MeSH
- myotonická dystrofie genetika terapie MeSH
- nádory genetika terapie MeSH
- retinopathia pigmentosa genetika terapie MeSH
- spinální svalová atrofie genetika terapie MeSH
- vzácné nemoci * genetika terapie MeSH
- Check Tag
- lidé MeSH
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
- MeSH
- DNA vazebné proteiny genetika MeSH
- enzymy opravy DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- homologní protein MRE11 * genetika MeSH
- hydrolasy působící na anhydridy kyselin * genetika MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- nádory * genetika MeSH
- proteiny buněčného cyklu * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH