Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34001609
PubMed Central
PMC8166048
DOI
10.1073/pnas.2022713118
PII: 2022713118
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, alpine adaptation, evolution, genomics, parallelism,
- MeSH
- anotace sekvence MeSH
- Arabidopsis klasifikace genetika metabolismus účinky záření MeSH
- biologická evoluce * MeSH
- býložravci fyziologie MeSH
- fyziologická adaptace genetika MeSH
- fyziologický stres MeSH
- genetická variace * MeSH
- genetický drift MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- genová ontologie MeSH
- ionizující záření MeSH
- modely genetické MeSH
- nízká teplota MeSH
- rostlinné proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
Biology Centre Czech Academy of Sciences 370 05 České Budějovice Czech Republic
Center for Population Biology University of California Davis CA 95616
Department of Botany Faculty of Science Charles University 128 01 Prague Czech Republic
Department of Botany Faculty of Science Charles University 128 01 Prague Czech Republic;
Institute of Botany Czech Academy of Sciences 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Blount Z. D., Lenski R. E., Losos J. B., Contingency and determinism in evolution: Replaying life’s tape. Science 362, eaam5979 (2018). PubMed
Gould S. J., Wonderful Life : The Burgess Shale and the Nature of History (Norton, 1989).
Agrawal A. A., Toward a predictive framework for convergent evolution: Integrating natural history, genetic mechanisms, and consequences for the diversity of Life. Am. Nat. 190 (S1), S1–S12 (2017). PubMed
Stern D. L., Orgogozo V., Is genetic evolution predictable? Science 323, 746–751 (2009). PubMed PMC
Farhat M. R., et al. ., Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183–1189 (2013). PubMed PMC
Marvig R. L., Sommer L. M., Molin S., Johansen H. K., Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015). PubMed
Palmer A. C., Kishony R., Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013). PubMed PMC
Rinkevich F. D., Du Y., Dong K., Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol. 106, 93–100 (2013). PubMed PMC
Tabashnik B. E., Brévault T., Carrière Y., Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013). PubMed
Preite V., et al. ., Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180243 (2019). PubMed PMC
Reid N. M., et al. ., The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016). PubMed PMC
Lamichhaney S., et al. ., Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180248 (2019). PubMed PMC
Martin A., Orgogozo V., The loci of repeated evolution: A catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013). PubMed
Conte G. L., Arnegard M. E., Peichel C. L., Schluter D., The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012). PubMed PMC
Gompel N., Prud’homme B., The causes of repeated genetic evolution. Dev. Biol. 332, 36–47 (2009). PubMed
Kopp A., Metamodels and phylogenetic replication: A systematic approach to the evolution of developmental pathways. Evolution 63, 2771–2789 (2009). PubMed
Stern D. L., The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013). PubMed
Yeaman S., Gerstein A. C., Hodgins K. A., Whitlock M. C., Quantifying how constraints limit the diversity of viable routes to adaptation. PLoS Genet. 14, e1007717 (2018). PubMed PMC
Zou Z., Zhang J., No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol. 32, 1237–1241 (2015). PubMed PMC
Birkeland S., et al. ., Multiple genetic trajectories to extreme abiotic stress adaptation in Arctic Brassicaceae. Mol. Biol. Evol. 37, 2052–2068 (2020). PubMed PMC
Cooper K. L., et al. ., Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature 511, 41–45 (2014). PubMed PMC
Foote A. D., et al. ., Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015). PubMed PMC
Takuno S., et al. ., Independent molecular basis of convergent highland adaptation in maize. Genetics 200, 1297–1312 (2015). PubMed PMC
Bohutínská M., et al. ., Novelty and convergence in adaptation to whole genome duplication. Mol. Biol. Evol., 10.1093/molbev/msab096 (2021). PubMed DOI PMC
Lim M. C. W., Witt C. C., Graham C. H., Dávalos L. M., Parallel molecular evolution in pathways, genes, and sites in high-elevation hummingbirds revealed by comparative transcriptomics. Genome Biol. Evol. 11, 1552–1572 (2019). PubMed PMC
Manceau M., Domingues V. S., Linnen C. R., Rosenblum E. B., Hoekstra H. E., Convergence in pigmentation at multiple levels: Mutations, genes and function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2439–2450 (2010). PubMed PMC
Morales H. E., et al. ., Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Sci. Adv. 5, eaav9963 (2019). PubMed PMC
Ord T. J., Summers T. C., Repeated evolution and the impact of evolutionary history on adaptation. BMC Evol. Biol. 15, 137 (2015). PubMed PMC
Alves J. M., et al. ., Parallel adaptation of rabbit populations to myxoma virus. Science 363, 1319–1326 (2019). PubMed PMC
Haenel Q., Roesti M., Moser D., MacColl A. D. C., Berner D., Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evol. Lett. 3, 28–42 (2019). PubMed PMC
Lai Y.-T., et al. ., Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl. Acad. Sci. U.S.A. 116, 2152–2157 (2019). PubMed PMC
Oziolor E. M., et al. ., Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364, 455–457 (2019). PubMed
Goldstein R. A., Pollard S. T., Shah S. D., Pollock D. D., Nonadaptive amino acid convergence rates decrease over time. Mol. Biol. Evol. 32, 1373–1381 (2015). PubMed PMC
Mendes F. K., Hahn Y., Hahn M. W., Gene tree discordance can generate patterns of diminishing convergence over time. Mol. Biol. Evol. 33, 3299–3307 (2016). PubMed
Hudson R. R., Coyne J. A., Mathematical consequences of the genealogical species concept. Evolution 56, 1557–1565 (2002). PubMed
Bradburd G. S., Ralph P. L., Spatial population genetics: It’s about time. Annu. Rev. Ecol. Evol. Syst. 50, 427–449 (2019).
Graham C. H., Storch D., Machac A., Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).
Kubota S., et al. ., A genome scan for genes underlying microgeographic-scale local adaptation in a wild Arabidopsis species. PLoS Genet. 11, e1005361 (2015). PubMed PMC
Rellstab C., et al. ., Local adaptation (mostly) remains local: Reassessing environmental associations of climate-related candidate SNPs in Arabidopsis halleri. Heredity 118, 193–201 (2017). PubMed PMC
Hämälä T., Savolainen O., Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol. Biol. Evol. 32, 2557–2571 (2019). PubMed
Zhang J., et al. ., Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the central Andes. Mol. Plant 9, 1066–1077 (2016). PubMed
Zhang T., et al. ., Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc. Natl. Acad. Sci. U.S.A. 116, 7137–7146 (2019). PubMed PMC
Günther T., Lampei C., Barilar I., Schmid K. J., Genomic and phenotypic differentiation of Arabidopsis thaliana along altitudinal gradients in the North Italian Alps. Mol. Ecol. 25, 3574–3592 (2016). PubMed
Šrámková-Fuxová G., et al. ., Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): Glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Bot. J. Linn. Soc. 185, 321–342 (2017).
Knotek A., et al. ., Parallel alpine differentiation in Arabidopsis arenosa. Front Plant Sci 11, 561526 (2020). PubMed PMC
Wos G., Bohutínská M., Nosková J., Mandáková T., Kolář F., Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. Plant J. 105, 1211–1224 (2021). PubMed
Wos G., et al. ., Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Ann. Bot. 124, 255–268 (2019). PubMed PMC
Tajima F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989). PubMed PMC
Lee K. M., Coop G., Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207, 1591–1619 (2017). PubMed PMC
Körner C., Alpine Plant Life (Springer Berlin Heidelberg, 2003).
Hohmann N., Wolf E. M., Lysak M. A., Koch M. A., A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27, 2770–2784 (2015). PubMed PMC
Novikova P. Y., et al. ., Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077–1082 (2016). PubMed
Arnold B. J., et al. ., Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci. U.S.A. 113, 8320–8325 (2016). PubMed PMC
Guggisberg A., et al. ., The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 27, 5088–5103 (2018). PubMed
Marburger S., et al. ., Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 10, 5218 (2019). PubMed PMC
Barrett R. D. H., Schluter D., Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008). PubMed
Ralph P. L., Coop G., The role of standing variation in geographic convergent adaptation. Am. Nat. 186 (suppl. 1), S5–S23 (2015). PubMed PMC
Thompson K. A., Osmond M. M., Schluter D., Parallel genetic evolution and speciation from standing variation. Evol. Lett. 3, 129–141 (2019). PubMed PMC
Charlesworth B., Charlesworth D., Barton N. H., The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34, 99–125 (2003).
Albers P. K., McVean G., Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS Biol. 18, e3000586 (2020). PubMed PMC
Rellstab C., et al. ., Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species. Mol. Ecol. 29, 4350–4365 (2020). PubMed PMC
Zou Z., Zhang J., Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations? Mol. Biol. Evol. 32, 2085–2096 (2015). PubMed PMC
Ramachandran S., et al. ., Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. U.S.A. 102, 15942–15947 (2005). PubMed PMC
Spor A., et al. ., Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast. Evolution 68, 772–790 (2014). PubMed PMC
Liu S., Ferchaud A.-L., Grønkjaer P., Nygaard R., Hansen M. M., Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol. Ecol. 27, 4725–4743 (2018). PubMed
Vogwill T., Phillips R. L., Gifford D. R., MacLean R. C., Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc. Biol. Sci. 283, 20160749 (2016). PubMed PMC
Kolář F., et al. ., Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 25, 3929–3949 (2016). PubMed
Monnahan P., et al. ., Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 3, 457–468 (2019). PubMed
Kolář F., et al. ., Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biol. J. Linn. Soc. Lond. 119, 673–688 (2016).
Hudson R. R., Slatkin M., Maddison W. P., Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589 (1992). PubMed PMC
Bohutínská M., et al. ., De-novo mutation and rapid protein (co-)evolution during meiotic adaptation in Arabidopsis arenosa. Mol. Biol. Evol., 10.1093/molbev/msab001 (2021). PubMed DOI PMC
Pickrell J. K., Pritchard J. K., Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012). PubMed PMC
Jombart T., adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008). PubMed
Excoffier L., Foll M., fastsimcoal: A continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011). PubMed
Weir B. S., Cockerham C. C., Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984). PubMed
Yant L., Bomblies K., Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Curr. Opin. Plant Biol. 36, 9–14 (2017). PubMed
Gautier M., Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201, 1555–1579 (2015). PubMed PMC
Cingolani P., et al. ., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). PubMed PMC
Rawat V., et al. ., Improving the annotation of Arabidopsis lyrata using RNA-seq data. PLoS One 10, e0137391 (2015). PubMed PMC
Alexa A., Rahnenführer J., Gene set enrichment analysis with topGO, 10.18129/B9.bioc.topGO (2018). Accessed 8 November 2018. DOI
Durinck S., Spellman P. T., Birney E., Huber W., Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009). PubMed PMC
Wang M., Zhao Y., Zhang B., Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015). PubMed PMC
Ossowski S., et al. ., The rate and molecular spectrum of spontaneous mutations in arabidopsis thaliana. Science 327, 92–94 (2010). PubMed PMC
R Core Team , R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/. Accessed 28 October 2020.
Goslee S. C., Urban D. L., The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Lichstein J. W., Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).
McDowell S. C., López-Marqués R. L., Poulsen L. R., Palmgren M. G., Harper J. F., Loss of the Arabidopsis thaliana P4-ATPase ALA3 reduces Adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. PLoS One 8, e62577 (2013). PubMed
Kami C., et al. ., Nuclear phytochrome A signaling promotes phototropism in Arabidopsis. Plant Cell 24, 566–576 (2012). PubMed PMC
Novelty and Convergence in Adaptation to Whole Genome Duplication
Parallel Alpine Differentiation in Arabidopsis arenosa