Repeated colonisation of alpine habitats by Arabidopsis arenosa involved parallel adjustments of leaf cuticle traits

. 2025 May ; 246 (4) : 1597-1608. [epub] 20250317

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40095319

Grantová podpora
101062703-CONstrainCONverge HORIZON EUROPE Marie Sklodowska-Curie Actions
22-29078K Grantová Agentura České Republiky
10.55776/P31027 Austrian Science Fund
10.55776/P34717 Austrian Science Fund

Cuticle function can be pivotal to plant success in different environments. Yet, the occurrence of intraspecific adjustments in cuticle traits resulting from acclimation or adaptation to different habitats remains poorly understood. Here, we used genetically well-characterised populations of Arabidopsis arenosa to investigate whether cuticle traits were adjusted as part of the parallel evolution from a foothill to an alpine ecotype. Six alpine and six foothill populations, representing at least three independent evolutionary origins of an alpine ecotype, were used in reciprocal transplantation experiments, to investigate cuticle traits at the eco-physiological, biochemical and structural levels. The genetic basis behind these traits was assessed by combining selection scans and differential gene expression analysis. Overall, alpine populations showed reduced cuticular transpiration in conjunction with consistently altered cuticular wax composition, with higher accumulation of two fatty alcohols and two iso-alkanes. Genomic analysis unravelled nine genes associated with cuticular wax metabolism showing allelic differentiation in alpine compared to lowland populations. In silico gene expression analysis revealed differences between ecotypes for several genes related to cuticle metabolism. Repeated ecotypic differentiation in cuticle traits together with the genetic architecture of the alpine ecotype points at an adaptive value of cuticle adjustments for the colonisation of alpine habitats.

Zobrazit více v PubMed

Aryal B, Neuner G. 2010. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162: 1–9. PubMed

Asadyar L, de Felippes FF, Bally J, Blackman CJ, An J, Sussmilch FC, Moghaddam L, Williams B, Blanksby SJ, Brodribb TJ et al. 2024. Evidence for within‐species transition between drought response strategies in Nicotiana benthamiana . New Phytologist 244: 464–476. PubMed

Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR. 1996. The influence of UV‐B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L) leaf surfaces. Journal of Experimental Botany 47: 99–109.

Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1–8.

Becker B. 2013. Snow ball earth and the split of Streptophyta and Chlorophyta. Trends in Plant Science 18: 180–183. PubMed

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B: Statistical Methodology 57: 289–300.

Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very‐long‐chain alkane synthesis complex. Plant Cell 24: 3106–3118. PubMed PMC

Bernard A, Joubes J. 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research 52: 110–129. PubMed

Bertel C, Kaplenig D, Ralser M, Arc E, Kolář F, Wos G, Hülber K, Holzinger A, Kranner I, Neuner G. 2022. Parallel differentiation and plastic adjustment of leaf anatomy in alpine Arabidopsis arenosa ecotypes. Plants 11: 2626. PubMed PMC

Bertel C, Rešetnik I, Frajman B, Erschbamer B, Hülber K, Schönswetter P. 2018. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127: 1355–1367.

Bohutínská M, Petříková E, Booker TR, Vives Cobo C, Vlček J, Šrámková G, Poštulková A, Hojka J, Marhold K, Yant L et al. 2023. Mosaic haplotypes underlie repeated adaptation to whole genome duplication in Arabidopsis lyrata and Arabidopsis arenosa. bioRxiv . doi: 10.1101/2023.01.11.523565. DOI

Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, Slotte T, Kolář F. 2021. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proceedings of the National Academy of Sciences, USA 118: e2022713118. PubMed PMC

Bolnick DI, Barrett RDH, Oke KB, Rennison DJ, Stuart YE. 2018. (Non)Parallel evolution. Annual Review of Ecology, Evolution, and Systematics 49: 303–330.

Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA et al. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very‐long‐chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology 156: 29–45. PubMed PMC

Bourgault R, Matschi S, Vasquez M, Qiao P, Sonntag A, Charlebois C, Mohammadi M, Scanlon MJ, Smith LG, Molina I. 2020. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Annals of Botany 125: 79–91. PubMed PMC

Brewer CA, Smith WK. 1995. Leaf surface wetness and gas exchange in the pond lily Nuphar polysepalum (Nymphaeaceae). American Journal of Botany 82: 1271–1277.

Brewer CA, Smith WK, Vogelmann TC. 1991. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment 14: 955–962.

Burghardt M, Riederer M. 2006. Cuticular transpiration. In: Riederer M, Müller C, eds. Biology of the plant cuticle. Annual Plant Reviews, vol. 23. Oxford, UK: Blackwell Publishing, 292–311.

Busta L, Jetter R. 2017. Structure and biosynthesis of branched wax compounds on wild type and wax biosynthesis mutants of Arabidopsis thaliana . Plant and Cell Physiology 58: 1059–1074. PubMed

Cape J, Percy K. 1996. The interpretation of leaf‐drying curves. Plant, Cell & Environment 19: 356–361.

Cape JN. 1996. Surface wetness and pollutant deposition. In: Kerstiens G, ed. Plant cuticles: an integrated functional approach. Oxford, UK; Herndon, VA, USA: BIOS Scientific Publishers, 238–300.

Chacón MG, Fournier AE, Tran F, Dittrich‐Domergue F, Pulsifer IP, Domergue F, Rowland O. 2013. Identification of amino acids conferring chain length substrate specificities on fatty alcohol‐forming reductases FAR5 and FAR8 from Arabidopsis thaliana . Journal of Biological Chemistry 288: 30345–30355. PubMed PMC

DeWitt TJ, Sih A, Wilson DS. 1998. Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution 13: 77–81. PubMed

Domergue F, Vishwanath SJ, Joubes J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R et al. 2010. Three Arabidopsis fatty acyl‐coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiology 153: 1539–1554. PubMed PMC

Duursma RA, Blackman CJ, Lopez R, Martin‐StPaul NK, Cochard H, Medlyn BE. 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221: 693–705. PubMed

Ellenberg H. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Göttingen, Germany: Goltze.

Evans K, Nyquist W, Latin R. 1992. A model based on temperature and leaf wetness duration for establishment of Alternaria leaf blight of muskmelon. Phytopathology 82: 890–895.

Fernández V, Bahamonde HA, Javier Peguero‐Pina J, Gil‐Pelegrín E, Sancho‐Knapik D, Gil L, Goldbach HE, Eichert T. 2017. Physico‐chemical properties of plant cuticles and their functional and ecological significance. Journal of Experimental Botany 68: 5293–5306. PubMed

Goldsmith GR, Bentley LP, Shenkin A, Salinas N, Blonder B, Martin RE, Castro‐Ccossco R, Chambi‐Porroa P, Diaz S, Enquist BJ et al. 2017. Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist 214: 989–1001. PubMed PMC

González‐Valenzuela L, Renard J, Depège‐Fargeix N, Ingram G. 2023. The plant cuticle. Current Biology 33: R210–R214. PubMed

Grncarevic M, Radler F. 1967. The effect of wax components on cuticular transpiration‐model experiments. Planta 75: 23–27. PubMed

Hasanuzzaman M, Davies NW, Shabala L, Zhou MX, Brodribb TJ, Shabala S. 2017. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biology 17: 107. PubMed PMC

Ishibashi M, Terashima I. 1995. Effects of continuous leaf wetness on photosynthesis: adverse aspects of rainfall. Plant, Cell & Environment 18: 431–438.

James ME, Brodribb T, Wright IJ, Rieseberg LH, Ortiz‐Barrientos D. 2023. Replicated evolution in plants. Annual Review of Plant Biology 74: 697–725. PubMed

Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. 1995. Leaf epicuticular waxes of the Eceriferum mutants in Arabidopsis . Plant Physiology 108: 369–377. PubMed PMC

Jetter R, Riederer M. 2016. Localization of the transpiration barrier in the epi‐ and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiology 170: 921–934. PubMed PMC

Kaplenig D, Bertel C, Arc E, Villscheider R, Ralser M, Kolář F, Wos G, Hülber K, Kranner I, Neuner G. 2022. Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. Plant Biology 24: 939–949. PubMed PMC

Kerstiens G. 2006. Water transport in plant cuticles: an update. Journal of Experimental Botany 57: 2493–2499. PubMed

Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA‐seq profiling. The Plant Journal 88: 1058–1070. PubMed

Knotek A, Konečná V, Wos G, Požárová D, Šrámková G, Bohutínská M, Zeisek V, Marhold K, Kolář F. 2020. Parallel alpine differentiation in Arabidopsis arenosa . Frontiers in Plant Science 11: 561526. PubMed PMC

Konečná V, Bray S, Vlček J, Bohutínská M, Požárová D, Choudhury RR, Bollmann‐Giolai A, Flis P, Salt DE, Parisod C et al. 2021. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nature Communications 12: 4979. PubMed PMC

Kong LY, Liu YN, Zhi PF, Wang XY, Xu B, Gong ZZ, Chang C. 2020. Origins and evolution of cuticle biosynthetic machinery in land plants. Plant Physiology 184: 1998–2010. PubMed PMC

Körner C. 2021. Alpine plant life: functional plant ecology of high mountain ecosystems. Cham, Switzerland: Springer International Publishing.

Körner C, Allison A, Hilscher H. 1983. Altitudinal variation of leaf diffusive conductance and leaf anatomy in heliophytes of montane New Guinea and their interrelation with microclimate. Flora 174: 91–135.

Körner C, Mayr R. 1981. Stomatal behaviour in alpine plant communities between 600 and 2600 metres above sea level. In: Grace J, Ford ED, Jarvis PG, eds. Plants and their atmospheric environment. Oxford, UK: Blackwell Scientific Publications, 205–218.

Kuznetsova A, Brockhoff PB, Christensen RH. 2017. lmertest package: tests in linear mixed effects models. Journal of Statistical Software 82: 1–26.

Larcher W. 2001. Ökophysiologie der Pflanzen. Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. Stuttgart, Germany: Ulmer.

Lee SB, Suh MC. 2015. Cuticular wax biosynthesis is up‐regulated by the MYB94 transcription factor in Arabidopsis. Plant and Cell Physiology 56: 48–60. PubMed

Leyva‐Gutierrez FMA, Wang T. 2021. Crystallinity and water vapor permeability of n‐alkane, alcohol, aldehyde, and fatty acid constituents of natural waxes. Industrial & Engineering Chemistry Research 60: 14651–14663.

Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. 2008. Identification of the wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiology 148: 97–107. PubMed PMC

Lowry DB. 2012. Ecotypes and the controversy over stages in the formation of new species. Biological Journal of the Linnean Society 106: 241–257.

Mallick S, Gnerre S, Muller P, Reich D. 2009. The difficulty of avoiding false positives in genome scans for natural selection. Genome Research 19: 922–933. PubMed PMC

Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G et al. 2019. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa . Nature Ecology & Evolution 3: 457–468. PubMed

Neuner G. 2014. Frost resistance in alpine woody plants. Frontiers in Plant Science 5: 654. PubMed PMC

Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, Guggisberg A, Paape T, Schmid K, Fedorenko OM et al. 2016. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans‐specific polymorphism. Nature Genetics 48: 1077–1082. PubMed

Pascal S, Bernard A, Deslous P, Gronnier J, Fournier‐Goss A, Domergue F, Rowland O, Joubes J. 2019. Arabidopsis CER1‐LIKE1 functions in a cuticular very‐long‐chain alkane‐forming complex. Plant Physiology 179: 415–432. PubMed PMC

Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen‐Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dormann P. 2019. Surface wax esters contribute to drought tolerance in Arabidopsis. The Plant Journal 98: 727–744. PubMed

Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domozych DS, Rose JKC. 2020. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology 55: 11–20. PubMed

Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Kramer U, Yant L. 2019. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philosophical Transactions of the Royal Society, B: Biological Sciences 374: 20180243. PubMed PMC

R Core Team . 2024. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rawat V, Abdelsamad A, Pietzenuk B, Seymour DK, Koenig D, Weigel D, Pecinka A, Schneeberger K. 2015. Improving the annotation of Arabidopsis lyrata using RNA‐Seq data. PLoS ONE 10: e0137391. PubMed PMC

Riederer M. 2006. Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. Journal of Experimental Botany 52: 2937–2942. PubMed

Riederer M, Schreiber L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany 52: 2023–2032. PubMed

Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. 2006. CER4 encodes an alcohol‐forming fatty acyl‐coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiology 142: 866–877. PubMed PMC

Schulze E‐D, Beck E, Scheibe R, Ziegler P. 1985. Carbon dioxide assimilation and stomatal response of afroalpine giant rosette plants. Oecologia 65: 207–213. PubMed

Schuster AC, Burghardt M, Riederer M. 2017. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany 68: 5271–5279. PubMed

Serrano M, Coluccia F, Torres M, L'Haridon F, Métraux J‐P. 2014. The cuticle and plant defense to pathogens. Frontiers in Plant Science 5: 274. PubMed PMC

Seufert P, Staiger S, Arand K, Bueno A, Burghardt M, Riederer M. 2022. Building a barrier: the influence of different wax fractions on the water transpiration barrier of leaf cuticles. Frontiers in Plant Science 12: 766602. PubMed PMC

Smith W, Geller G. 1979. Plant transpiration at high elevations: theory, field measurements, and comparisons with desert plants. Oecologia 41: 109–122. PubMed

Stuart YE, Veen T, Weber JN, Hanson D, Ravinet M, Lohman BK, Thompson CJ, Tasneem T, Doggett A, Izen R et al. 2017. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nature Ecology & Evolution 1: 5210. PubMed

Szukala A, Lovegrove‐Walsh J, Luqman H, Fior S, Wolfe TM, Frajman B, Schönswetter P, Paun O. 2022. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae). Molecular Ecology 32: 1832–1847. PubMed PMC

Thompson KA, Osmond MM, Schluter D. 2019. Parallel genetic evolution and speciation from standing variation. Evolution Letters 3: 129–141. PubMed PMC

von Willert DJ, Matyssek R, Herppich WB. 1995. Experimentelle Pflanzenökologie: Grundlagen und Anwendungen. Stuttgart, Germany: Thieme.

Wisniewski M, Glenn DM, Fuller MP. 2002. Use of a hydrophobic particle film as a barrier to extrinsic ice nucleation in tomato plants. Journal of the American Society for Horticultural Science 127: 358–364.

Wos G, Arc E, Hülber K, Konečná V, Knotek A, Požárová D, Bertel C, Kaplenig D, Mandáková T, Neuner G et al. 2022. Parallel local adaptation to an alpine environment in Arabidopsis arenosa . Journal of Ecology 110: 2448–2461.

Wos G, Bohutínská M, Nosková J, Mandáková T, Kolář F. 2021. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa . The Plant Journal 105: 1211–1224. PubMed

Xue D, Zhang X, Lu X, Chen G, Chen ZH. 2017. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science 8: 621. PubMed PMC

Yant L, Bomblies K. 2017. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinion in Plant Biology 36: 9–14. PubMed

Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163: 5–20. PubMed PMC

Yumoto G, Sasaki‐Sekimoto Y, Aryal B, Ohta H, Kudoh H. 2021. Altitudinal differentiation in the leaf wax‐mediated flowering bud protection against frost in a perennial Arabidopsis. Oecologia 195: 677–687. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...