Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles

. 2021 Aug 17 ; 12 (1) : 4979. [epub] 20210817

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34404804
Odkazy

PubMed 34404804
PubMed Central PMC8370997
DOI 10.1038/s41467-021-25256-5
PII: 10.1038/s41467-021-25256-5
Knihovny.cz E-zdroje

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.

Zobrazit více v PubMed

Stern DL. The genetic causes of convergent evolution. Nat. Rev. Genet. 2013;14:751–764. doi: 10.1038/nrg3483. PubMed DOI

Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI

Wood TE, et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA. 2009;106:13875–13879. doi: 10.1073/pnas.0811575106. PubMed DOI PMC

Soltis DE, Visger CJ, Soltis PS. The polyploidy revolution then…and now: Stebbins revisited. Am. J. Bot. 2014;101:1057–1078. doi: 10.3732/ajb.1400178. PubMed DOI

Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. doi: 10.1038/nrg.2017.26. PubMed DOI

Otto SP, Whitton J. Polyploid incidence and evolution. Annu. Rev. Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI

Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–462. doi: 10.1016/j.cell.2007.10.022. PubMed DOI

Monnahan P, et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 2019;3:457. doi: 10.1038/s41559-019-0807-4. PubMed DOI

Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. 2020;33:11–26. doi: 10.1093/plcell/koaa015. PubMed DOI PMC

Bardil A, Tayalé A, Parisod C. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. Plant J. 2015;82:621–631. doi: 10.1111/tpj.12837. PubMed DOI

Baduel, P., Quadrana, L., Hunter, B., Bomblies, K. & Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 5818 (2019). PubMed PMC

Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl Acad. Sci. USA. 2011;108:7096–7101. doi: 10.1073/pnas.1016631108. PubMed DOI PMC

Chao D, et al. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science. 2013;341:658–659. doi: 10.1126/science.1240561. PubMed DOI PMC

Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc. R. Soc. B Biol. Sci. 2020;287:20202154. doi: 10.1098/rspb.2020.2154. PubMed DOI PMC

Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl Acad. Sci. USA. 2000;97:7051–7057. doi: 10.1073/pnas.97.13.7051. PubMed DOI PMC

Haldane, J. B. S. The Causes of Evolution (Princeton University Press, 1932).

Selmecki AM, et al. Polyploidy can drive rapid adaptation in yeast. Nature. 2015;519:349–351. doi: 10.1038/nature14187. PubMed DOI PMC

Gerstein AC, Otto SP. Ploidy and the causes of genomic evolution. J. Hered. 2009;100:571–581. doi: 10.1093/jhered/esp057. PubMed DOI

Monnahan P, Brandvain Y. The effect of autopolyploidy on population genetic signals of hard sweeps. Biol. Lett. 2020;16:20190796. doi: 10.1098/rsbl.2019.0796. PubMed DOI PMC

Yao Y, Carretero-Paulet L, Van de Peer Y. Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS ONE. 2019;14:e0220257. doi: 10.1371/journal.pone.0220257. PubMed DOI PMC

Brochmann C, et al. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004;82:521–536. doi: 10.1111/j.1095-8312.2004.00337.x. DOI

Rice A, et al. The global biogeography of polyploid plants. Nat. Ecol. Evol. 2019;3:265–273. doi: 10.1038/s41559-018-0787-9. PubMed DOI

Parisod C, Besnard G. Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae) Mol. Ecol. 2007;16:2755–2767. doi: 10.1111/j.1365-294X.2007.03315.x. PubMed DOI

Martin SL, Husband BC. Adaptation of diploid and tetraploid Chamerion angustifolium to elevation but not local environment. Evolution. 2013;67:1780–1791. doi: 10.1111/evo.12065. PubMed DOI

Wei N, Cronn R, Liston A, Ashman TL. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. N. Phytol. 2019;221:2286–2297. doi: 10.1111/nph.15508. PubMed DOI PMC

O’Dell, R. E. & Rajakaruna, N. in Serpentine: Evolution and Ecology in a Model System (eds Harrison, S. & Rajakaruna, N.) 97–137 (University of California Press, 2011).

Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Curr. Opin. Plant Biol. 2017;36:9–14. doi: 10.1016/j.pbi.2016.11.018. PubMed DOI

Molina-Henao YF, Hopkins R. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. Am. J. Bot. 2019;106:61–70. doi: 10.1002/ajb2.1212. PubMed DOI

Arnold BJ, et al. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl Acad. Sci. USA. 2016;113:8320–8325. doi: 10.1073/pnas.1600405113. PubMed DOI PMC

Baduel P, Hunter B, Yeola S, Bomblies K. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genet. 2018;14:1–26. doi: 10.1371/journal.pgen.1007510. PubMed DOI PMC

Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K. Habitat-associated life history and stress-tolerance variation in Arabidopsis arenosa. Plant Physiol. 2016;171:437–451. doi: 10.1104/pp.15.01875. PubMed DOI PMC

Przedpełska E, Wierzbicka M. Arabidopsis arenosa (Brassicaceae) from a lead-zinc waste heap in southern Poland - a plant with high tolerance to heavy metals. Plant Soil. 2007;299:43–53. doi: 10.1007/s11104-007-9359-5. DOI

Preite V, et al. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B. 2019;374:20180243. doi: 10.1098/rstb.2018.0243. PubMed DOI PMC

Brady KU, Kruckeberg AR, Bradshaw HD., Jr Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 2005;36:243–266. doi: 10.1146/annurev.ecolsys.35.021103.105730. DOI

Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev. 2008;83:495–508. PubMed

Konečná V, Yant L, Kolář F. The evolutionary genomics of serpentine adaptation. Front. Plant Sci. 2020;11:574616. doi: 10.3389/fpls.2020.574616. PubMed DOI PMC

Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat. Rev. Genet. 2009;10:639–650. doi: 10.1038/nrg2611. PubMed DOI PMC

Takuno S, et al. Independent molecular basis of convergent highland adaptation in maize. Genetics. 2015;200:1297–1312. doi: 10.1534/genetics.115.178327. PubMed DOI PMC

Lai YT, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA. 2019;116:2152–2157. doi: 10.1073/pnas.1813597116. PubMed DOI PMC

Bohutínská M, et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc. Natl Acad. Sci. USA. 2021;118:e2022713118. doi: 10.1073/pnas.2022713118. PubMed DOI PMC

Caye K, Jumentier B, Lepeule J, François O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 2019;36:852–860. doi: 10.1093/molbev/msz008. PubMed DOI PMC

Remans T, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 2006;140:909–921. doi: 10.1104/pp.105.075721. PubMed DOI PMC

Little DY, et al. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl Acad. Sci. USA. 2005;102:13693–13698. doi: 10.1073/pnas.0504219102. PubMed DOI PMC

Liu J, et al. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell. 2008;20:1538–1554. doi: 10.1105/tpc.108.059741. PubMed DOI PMC

Stone SL, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 2005;137:13–30. doi: 10.1104/pp.104.052423. PubMed DOI PMC

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl Acad. Sci. USA. 2014;111:6497–6502. doi: 10.1073/pnas.1319955111. PubMed DOI PMC

Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 2010;42:260–263. doi: 10.1038/ng.515. PubMed DOI

Sobczyk MK, Smith JAC, Pollard AJ, Filatov DA. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity. 2017;118:31–41. doi: 10.1038/hdy.2016.93. PubMed DOI PMC

Selby, J. P. The Genetic Basis of Local Adaptation to Serpentine Soils in Mimulus guttatus. Doctoral dissertation, Duke University (2014).

Rogivue A, et al. Genome-wide variation in nucleotides and retrotransposons in alpine populations of Arabis alpina (Brassicaceae) Mol. Ecol. Resour. 2019;19:773–787. doi: 10.1111/1755-0998.12991. PubMed DOI

Wos G, Choudhury RR, Kolář F, Parisod C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA. 2021;12:1–13. doi: 10.1186/s13100-021-00236-0. PubMed DOI PMC

Grandbastien M-A, et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 2005;110:229–241. doi: 10.1159/000084957. PubMed DOI

Stuart T, et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife. 2016;5:1–27. doi: 10.7554/eLife.20777. PubMed DOI PMC

Lee KM, Coop G. Distinguishing among modes of convergent adaptation using population genomic data. Genetics. 2017;207:1591–1619. doi: 10.1534/genetics.117.300417. PubMed DOI PMC

Kintzer AF, Stroud RM. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature. 2016;531:258–262. doi: 10.1038/nature17194. PubMed DOI PMC

Guo J, Zeng W, Jiang Y. Tuning the ion selectivity of two-pore channels. Proc. Natl Acad. Sci. USA. 2017;114:1009–1014. doi: 10.1073/pnas.1616191114. PubMed DOI PMC

Guo J, et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. 2016;531:196–201. doi: 10.1038/nature16446. PubMed DOI PMC

Kintzer AF, et al. Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc. Natl Acad. Sci. USA. 2018;115:9095–9104. doi: 10.1073/pnas.1805651115. PubMed DOI PMC

Griswold CK, Williamson MW. A two-locus model of selection in autotetraploids: chromosomal gametic disequilibrium and selection for an adaptive epistatic gene combination. Heredity. 2017;119:314–327. doi: 10.1038/hdy.2017.44. PubMed DOI PMC

Mostafaee N, Griswold CK. Two-locus local adaptation by additive or epistatic gene combinations in autotetraploids versus diploids. J. Hered. 2019;110:866–879. doi: 10.1093/jhered/esz063. PubMed DOI

Burgess KS, Etterson JR, Galloway LF. Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb. Heredity. 2007;99:641–648. doi: 10.1038/sj.hdy.6801043. PubMed DOI

Morales, H. E. et al. Genomic architecture of parallel ecological divergence: beyond a single environmental contrast. Sci. Adv. 5, eaav9963 (2019). PubMed PMC

Ravinet M, et al. Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Mol. Ecol. 2016;25:287–305. doi: 10.1111/mec.13332. PubMed DOI

Jones FC, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61. doi: 10.1038/nature10944. PubMed DOI PMC

Colosimo PF, et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science. 2005;307:1928–1933. doi: 10.1126/science.1107239. PubMed DOI

Pardo-Diaz C, et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 2012;8:e1002752. doi: 10.1371/journal.pgen.1002752. PubMed DOI PMC

Van Etten M, Lee KM, Chang SM, Baucom RS. Parallel and nonparallel genomic responses contribute to herbicide resistance in Ipomoea purpurea, a common agricultural weed. PLoS Genet. 2020;16:e1008593. doi: 10.1371/journal.pgen.1008593. PubMed DOI PMC

Ji Y, et al. Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Sci. Adv. 2020;6:eabd3590. doi: 10.1126/sciadv.abd3590. PubMed DOI PMC

Zong S-B, Li Y-L, Liu J-X. Genomic architecture of rapid parallel adaptation to fresh water in a wild fish. Mol. Biol. Evol. 2020;38:1317–1329. doi: 10.1093/molbev/msaa290. PubMed DOI PMC

Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The ‘Polyploid Hop’: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018;6:1–19. doi: 10.3389/fevo.2018.00117. DOI

Oziolor EM, et al. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science. 2019;364:455–457. doi: 10.1126/science.aav4155. PubMed DOI

Reid NM, et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 2016;354:1305–1308. doi: 10.1126/science.aah4993. PubMed DOI PMC

Kreiner JM, et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc. Natl Acad. Sci. USA. 2019;116:21076–21084. doi: 10.1073/pnas.1900870116. PubMed DOI PMC

Przeworski M, Coop G, Wall JD. The signature of positive selection on standing genetic variation. Evolution. 2005;59:2312. doi: 10.1554/05-273.1. PubMed DOI

Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–2352. doi: 10.1534/genetics.104.036947. PubMed DOI PMC

Chan YF, et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a pitxl enhancer. Science. 2010;327:302–305. doi: 10.1126/science.1182213. PubMed DOI PMC

Tishkoff SA, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007;39:31–40. doi: 10.1038/ng1946. PubMed DOI PMC

Xie KT, et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science. 2019;84:81–84. doi: 10.1126/science.aan1425. PubMed DOI PMC

Justin C. Über bemerkenswerte vorkommen ausgewählter pflanzensippen auf serpentinstandorten Österreichs, Sloweniens sowie der Tschechischen Republik. Linzer Biol. Beiträge. 1993;25:1033–1091.

Punz W, Aigner B, Sieghardt H, Justin C, Zechmeister HG. Serpentinophyten im Burgenland. Verhandlungen Zool. Ges. Österreich. 2010;147:83–92.

Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE. 2013;8:e56329. doi: 10.1371/journal.pone.0056329. PubMed DOI PMC

Horton MW, et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 2014;5:1–7. doi: 10.1038/ncomms6320. PubMed DOI PMC

Qvit-Raz N, Jurkevitch E, Belkin S. Drop-size soda lakes: transient microbial habitats on a salt-secreting desert tree. Genetics. 2008;178:1615–1622. doi: 10.1534/genetics.107.082164. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Hu TT, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 2011;43:476–481. doi: 10.1038/ng.807. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Mckenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Hollister JD, et al. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012;8:e1003093. doi: 10.1371/journal.pgen.1003093. PubMed DOI PMC

Keightley PD, Jackson BC. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics. 2018;209:897–906. doi: 10.1534/genetics.118.301120. PubMed DOI PMC

Raj A, Stephens M, Pritchard JK. FastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197:573–589. doi: 10.1534/genetics.114.164350. PubMed DOI PMC

Stift M, Kolář F, Meirmans PG. Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity. 2019;123:429–441. doi: 10.1038/s41437-019-0247-6. PubMed DOI PMC

Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e100296 (2012). PubMed PMC

Arnold B, Kim ST, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol. Biol. Evol. 2015;32:1382–1395. doi: 10.1093/molbev/msv089. PubMed DOI

Excoffier L, Foll M. fastsimcoal: A continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011;27:1332–1334. doi: 10.1093/bioinformatics/btr124. PubMed DOI

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed

Beissinger TM, Rosa GJ, Kaeppler SM, Gianola D, De Leon N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 2015;47:1–9. doi: 10.1186/s12711-015-0105-9. PubMed DOI PMC

Rawat V, et al. Improving the annotation of Arabidopsis lyrata using RNA-Seq data. PLoS ONE. 2015;10:1–12. doi: 10.1371/journal.pone.0137391. PubMed DOI PMC

Wang M, Zhao Y, Zhang B. Efficient test and visualization of multi-set intersections. Sci. Rep. 2015;5:1–12. PubMed PMC

Hämälä T, Savolainen O. Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol. Biol. Evol. 2019;36:2557–2571. doi: 10.1093/molbev/msz149. PubMed DOI

Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.20.0 (2020).

Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Legrand S, et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA. 2019;10:1–17. doi: 10.1186/s13100-019-0171-6. PubMed DOI PMC

Hollister JD, et al. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl Acad. Sci. USA. 2011;108:2322–2327. doi: 10.1073/pnas.1018222108. PubMed DOI PMC

Alexa, A. Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.44.0 (2021).

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009;4:1184. doi: 10.1038/nprot.2009.97. PubMed DOI PMC

Grossmann S, Bauer S, Robinson PN, Vingron M. Improved detection of overrepresentation of Gene-Ontology annotations with parent-child analysis. Bioinformatics. 2007;23:3024–3031. doi: 10.1093/bioinformatics/btm440. PubMed DOI

Novikova PY, et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 2016;48:1077–1082. doi: 10.1038/ng.3617. PubMed DOI

Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol. Ecol. 2017;26:3484–3496. doi: 10.1111/mec.14135. PubMed DOI

Mattila TM, Tyrmi J, Pyhäjärvi T, Savolainen O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol. Biol. Evol. 2017;34:2665–2677. doi: 10.1093/molbev/msx193. PubMed DOI

Guggisberg A, et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 2018;27:5088–5103. doi: 10.1111/mec.14930. PubMed DOI

Hämälä T, Mattila TM, Savolainen O. Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution. 2018;72:1373–1386. doi: 10.1111/evo.13502. PubMed DOI

Marburger S, et al. Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-13159-5. PubMed DOI PMC

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). PubMed PMC

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC

Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins Struct. Funct. Bioinformatics. 1995;23:318–326. doi: 10.1002/prot.340230306. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...