The Evolutionary Genomics of Serpentine Adaptation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33391295
PubMed Central
PMC7772150
DOI
10.3389/fpls.2020.574616
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, edaphic extremes, ionomics, population genomics, serpentine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Serpentine barrens are among the most challenging settings for plant life. Representing a perfect storm of hazards, serpentines consist of broadly skewed elemental profiles, including abundant toxic metals and low nutrient contents on drought-prone, patchily distributed substrates. Accordingly, plants that can tolerate the challenges of serpentine have fascinated biologists for decades, yielding important insights into adaptation to novel ecologies through physiological change. Here we highlight recent progress from studies which demonstrate the power of serpentine as a model for the genomics of adaptation. Given the moderate - but still tractable - complexity presented by the mix of hazards on serpentine, these venues are well-suited for the experimental inquiry of adaptation both in natural and manipulated conditions. Moreover, the island-like distribution of serpentines across landscapes provides abundant natural replicates, offering power to evolutionary genomic inference. Exciting recent insights into the genomic basis of serpentine adaptation point to a partly shared basis that involves sampling from common allele pools available from retained ancestral polymorphism or via gene flow. However, a lack of integrated studies deconstructing complex adaptations and linking candidate alleles with fitness consequences leaves room for much deeper exploration. Thus, we still seek the crucial direct link between the phenotypic effect of candidate alleles and their measured adaptive value - a prize that is exceedingly rare to achieve in any study of adaptation. We expect that closing this gap is not far off using the promising model systems described here.
Department of Botany Faculty of Science Charles University Prague Czechia
Future Food Beacon and School of Life Sciences University of Nottingham Nottingham United Kingdom
Institute of Botany The Czech Academy of Sciences Pru˚honice Czechia
Zobrazit více v PubMed
Aeschbacher S., Selby J. P., Willis J. H., Coop G. (2017). Population-genomic inference of the strength and timing of selection against gene flow. Proc. Natl. Acad. Sci. U. S. A. 114, 7061–7066. 10.1073/pnas.1616755114, PMID: PubMed DOI PMC
Agrawal B., Lakshmanan V., Kaushik S., Bais H. P. (2012). Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of nickel (Ni) tolerance. Planta 236, 477–489. 10.1007/s00425-012-1621-2, PMID: PubMed DOI
Anacker B. L. (2014). The nature of serpentine endemism. Am. J. Bot. 101, 219–224. 10.3732/ajb.1300349, PMID: PubMed DOI
Arnold B. J., Lahner B., DaCosta J. M., Weisman C. M., Hollister J. D., Salt D. E., et al. . (2016). Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci. U. S. A. 113, 8320–8325. 10.1073/pnas.1600405113, PMID: PubMed DOI PMC
Assunção A. G. L., Bookum W. M., Nelissen H. J. M., Vooijs R., Schat H., Ernst W. H. O. (2003). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 159, 411–419. 10.1046/j.1469-8137.2003.00819.x PubMed DOI
Berglund A. N., Dahlgren S., Westerbergh A. (2004). Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol. 161, 199–209. 10.1046/j.1469-8137.2003.00934.x DOI
Boyd R. S., Wall M. A., Santos S. R., Davis M. A. (2009). Variation of morphology and elemental concentrations in the California nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Northeast. Nat. 16, 21–38. 10.1656/045.016.0503 DOI
Bradshaw H. D. (2005). Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytol. 167, 81–88. 10.1111/j.1469-8137.2005.01408.x, PMID: PubMed DOI
Brady K. U., Kruckeberg A. R., Bradshaw Jr. H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266. 10.1146/annurev.ecolsys.35.021103.105730 DOI
Bratteler M., Baltisberger M., Widmer A. (2006). QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Ann. Bot. 98, 411–419. 10.1093/aob/mcl113, PMID: PubMed DOI PMC
Burrell M. A., Hawkins A. K., Pepper A. E. (2012). Genetic analyses of nickel tolerance in a north American serpentine endemic plant, Caulanthus amplexicaulis var. barbarae (Brassicaceae). Am. J. Bot. 99, 1875–1883. 10.3732/ajb.1200382, PMID: PubMed DOI
Busoms S., Paajanen P., Marburger S., Bray S., Huang X. Y., Poschenrieder C., et al. . (2018). Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 115, E12443–E12452. 10.1073/pnas.1816964115, PMID: PubMed DOI PMC
Cecchi L., Selvi F. (2009). Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circummediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58, 700–714. 10.1002/tax.583002 DOI
Čertner M., Sudová R., Weiser M., Suda J., Kolář F. (2018). Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae). New Phytol. 221, 1117–1127. 10.1111/nph.15426 PubMed DOI
Courbot M., Willems G., Motte P., Arvidsson S., Roosens N., Saumitou-laprade P., et al. . (2007). A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase 1 [OA]. Plant Physiol. 144, 1052–1065. 10.1104/pp.106.095133, PMID: PubMed DOI PMC
Davoodian N., Bosworth J., Rajakaruna N. (2012). Mycorrhizal colonization of Hypericum perforatum L. (Hypericaceae) from serpentine and granite outcrops on the deer isles, Maine. Northeast. Nat. 19, 517–526. 10.1656/045.019.0312 DOI
Deniau A. X., Pieper B., Ten Bookum W. M., Lindhout P., Aarts M. G. M., Schat H. (2006). QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor. Appl. Genet. 113, 907–920. 10.1007/s00122-006-0350-y, PMID: PubMed DOI
Dittmar E. L., Oakley C. G., Conner J. K., Gould B. A., Schemske D. W. (2016). Factors influencing the effect size distribution of adaptive substitutions. Proc. R. Soc. B Biol. Sci. 283:20153065. 10.1098/rspb.2015.3065 PubMed DOI PMC
Doubková P., Suda J., Sudová R. (2012). The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol. Biochem. 44, 56–64. 10.1016/j.soilbio.2011.09.011 DOI
Eggler J. (1955). Ein Beitrag zur Serpentinvegetation in der Gulsen bei Kraubath in Obersteiermark. Mitt Naturw Ver Steiermark 85, 27–72.
Gabbrielli R., Pandolfini T. (1984). Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiol. Plant. 62, 540–544. 10.1111/j.1399-3054.1984.tb02796.x DOI
Galardi F., Corrales I., Mengoni A., Pucci S., Barletti L., Barzanti R., et al. (2007). Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ. Exp. Bot. 60, 377–384. 10.1016/j.envexpbot.2006.12.011 DOI
Galey M. L., van der Ent A., Iqbal M. C. M., Rajakaruna N. (2017). Ultramafic geoecology of south and Southeast Asia. Bot. Stud. 5818. 10.1186/s40529-017-0167-9, PMID: PubMed DOI PMC
Gilbert K. J., Whitlock M. C. (2017). The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602. 10.1111/jeb.13029, PMID: PubMed DOI
Hämälä T., Mattila T. M., Savolainen O. (2018). Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution 72, 1373–1386. 10.1111/evo.13502 PubMed DOI
Hämälä T., Savolainen O. (2019). Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol. Biol. Evol. 36, 2557–2571. 10.1093/molbev/msz149 PubMed DOI
Harrison S., Rajakaruna N. (2011). Serpentine: The evolution and ecology of a model system. University of California Press.
Holliday J. A., Zhou L., Bawa R., Zhang M., Oubida R. W. (2016). Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 209, 1240–1251. 10.1111/nph.13643, PMID: PubMed DOI
Huang X. Y., Salt D. E. E. (2016). Plant ionomics: from elemental profiling to environmental adaptation. Mol. Plant 9, 787–797. 10.1016/j.molp.2016.05.003, PMID: PubMed DOI
Jain S. K., Bradshaw A. D. (1966). Evolutionary divergence among adjacent plant populations I. the evidence and its theoretical analysis. Heredity 21, 407–441. 10.1038/hdy.1966.42 DOI
Jenny H. (1980). The soil resource. Origin of behaviour. New York: Springer.
Kazakou E., Dimitrakopoulos P. G., Baker A. J. M., Reeves R. D., Troumbis A. Y. (2008). Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev. Camb. Philos. Soc. 83, 495–508. 10.1111/j.1469-185X.2008.00051.x, PMID: PubMed DOI
Kolář F., Dortová M., Lepš J., Pouzar M., Krejčová A. (2014). Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di‐ and tetraploid serpentine populations of. Plant Soil 374, 435–447. 10.1007/s11104-013-1813-y DOI
Kolář F., Fér T., Štech M., Trávníček P., Dušková E., Schönswetter P., et al. . (2012). Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988. 10.1371/journal.pone.0039988, PMID: PubMed DOI PMC
Kruckeberg A. R. (1950). An experimental inquiry into the nature of endemism on serpentine soils. Berkeley: University of California.
Kruckeberg A. R. (1951). Intraspecific variability in the response of certain native plant species to serpentine soil. Am. J. Bot. 38, 408–419. 10.1002/j.1537-2197.1951.tb14842.x DOI
Kruckeberg A. R. (1954). The ecology of serpentine soils: a symposium. III. Plant species in relation to serpentine soils. Ecology 35, 267–274.
Kruckeberg A. R. (1967). Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brittonia 19, 133–151. 10.2307/2805271 DOI
Kruckeberg A. R. (1984). California serpentines: Flora, vegetation, geology, soils and management problems. University of California Press.
Lämmermayr L. (1927). Materialien zur Systematik und Ökologie der Serpentinflora. II. Das Problem der, Serpentinpflanzen “–Eine kritische ökologische Studie, Sitzungsber. Akad. Wiss. Wien, math.-naturw. Kl., Abt., 25–69.
Lee K. M., Coop G. (2019). Population genomics perspectives on convergent adaptation. Philos. Trans. R Soc. Lond. B Biol. Sci. 374, 1–19. 10.1098/rstb.2018.0236, PMID: PubMed DOI PMC
Leigh Broadhurst C., Tappero R. V., Maugel T. K., Erbe E. F., Sparks D. L., Chaney R. L. (2009). Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314, 35–48. 10.1007/s11104-008-9703-4 DOI
Losos J. B. (2011). Convergence, adaptation, and constraint. Evolution 65, 1827–1840. 10.1111/j.1558-5646.2011.01289.x, PMID: PubMed DOI
Mayer M., Soltis P. S. (1994). The evolution of serpentine endemics : a chloroplast DNA phylogeny of the Streptanthus glandulosus complex (Cruciferae). Syst. Bot. 19, 557–574. 10.2307/2419777 DOI
Mengoni A., Baker A. J. M., Bazzicalupo M., Reeves R. D., Adigüzel N., Chianni E., et al. (2003). Evolutionary dynamics of nickel hyperaccumulation in alyssum revealed by ITS nrDNA analysis. New Phytol. 159, 691–699. 10.1046/j.1469-8137.2003.00837.x PubMed DOI
Mengoni A., Barzanti R., Gonnelli C., Gabbrielli R., Bazzicalupo M. (2001). Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ. Microbiol. 3, 691–698. 10.1046/j.1462-2920.2001.00243.x, PMID: PubMed DOI
Moyle L. C., Levine M., Stanton M. L., Wright J. W. (2012). Hybrid sterility over tens of meters between ecotypes adapted to serpentine and non-serpentine soils. Evol. Biol. 39, 207–218. 10.1007/s11692-012-9180-9 DOI
Nosil P., Funk D. J., Ortiz-Barrientos D. (2009). Divergent selection and heterogeneous genomic divergence. Mol. Ecol. 18, 375–402. 10.1111/j.1365-294X.2008.03946.x, PMID: PubMed DOI
Novák F. A. (1928). Ekologické úvahy o hadcových rasách a hadcové vegetaci. Věda přírodní 9.
Nunvářová Kabátová K., Kolář F., Jarolímová V., Krak K., Chrtek J. (2019). Does geography, evolutionary history or ecology drive ploidy and genome size variation in the Minuartia verna group (Caryophyllaceae) across Europe? Plant Syst. Evol. 305, 1019–1040. 10.1007/s00606-019-01621-2 DOI
O’Dell R. E., Claassen V. P. (2006). Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil 279, 253–269. 10.1007/s11104-005-2360-y DOI
O’Dell R. E., Rajakaruna N. (2011). “Intraspecific variation, adaptation, and evolution” in Serpentine: Evolution and ecology in a model system. eds. Harrison S., Rajakaruna N. (University of California Press; ), 97–137.
Oline D. K. (2006). Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl. Environ. Microbiol. 72, 6965–6971. 10.1128/AEM.00690-06, PMID: PubMed DOI PMC
Ostevik K. L., Moyers B. T., Owens G. L., Rieseberg L. H. (2012). Parallel ecological speciation in plants? Int. J. Ecol. 2012, 1–17. 10.1155/2012/939862 DOI
Pal A., Paul A. K. (2004). Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol. Res. 159, 347–354. 10.1016/j.micres.2004.08.001, PMID: PubMed DOI
Palm E., Brady K., Van Volkenburgh E. (2012). Serpentine tolerance in Mimulus guttatus does not rely on exclusion of magnesium. Funct. Plant Biol. 39, 679–688. 10.1071/FP12059, PMID: PubMed DOI
Palm E. R., Van Volkenburgh E. (2014). “Physiological adaptation of plants to serpentine soil” in Plant ecology and evolution in harsh environments. eds. Rajakaruna N., Boyd R. S., Harris T. B. (New York: Nova Science Publishers; ), 129–148.
Pančić J. (1859). Die Flora der Serpentinberge in Mittel-Serbien. Verhandl. Zool.-Bot. Gesell. Wien 9, 139–150.
Peer W. A., Mahmoudian M., Freeman J. L., Lahner B., Richards E. L., Reeves R. D., et al. . (2006). Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol. 172, 248–260. 10.1111/j.1469-8137.2006.01820.x, PMID: PubMed DOI
Preite V., Sailer C., Syllwasschy L., Bray S., Kraemer U., Yant L. (2019). Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B 374:20180243. 10.1098/rstb.2018.0243, PMID: PubMed DOI PMC
Proctor J. (1971). The plant ecology of serpentine: II. J. Ecol. 59, 397–410. 10.2307/2258320 DOI
Proctor J., Woodell S. R. (1975). The ecology of serpentine soils. Adv. Ecol. Res. 9, 255–366.
Rajakaruna N. (2018). Lessons on evolution from the study of edaphic specialization. Bot. Rev. 84, 39–78. 10.1007/s12229-017-9193-2 DOI
Rajakaruna N., Baldwin B. G., Chan R., Desrochers A. M., Bohm B. A., Whitton J. (2003a). Edaphic races and phylogenetic taxa in the Lasthenia californica complex (Asteraceae: Heliantheae): an hypothesis of parallel evolution. Mol. Ecol. 12, 1675–1679. 10.1046/j.1365-294x.2003.01843.x, PMID: PubMed DOI
Rajakaruna N., Bradfield G. E., Bohm B. A., Whitton J. (2003b). Adaptive differentiation in response to water stress by edaphic races of Lasthenia californica (Asteraceae). Int. J. Plant Sci. 164, 371–376. 10.1086/368395 DOI
Rajakaruna N., Siddiqi M. Y., Whitton J., Bohm B. A., Glass A. D. M. (2003c). Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: a case for parallel evolution of physiological traits. New Phytol. 157, 93–103. 10.1046/j.1469-8137.2003.00648.x PubMed DOI
Rajakaruna N., Whitton J. (2004). “Trends in the evolution of edaphic specialists with an example of parallel evolution in the Lasthenia californica complex” in Plant adaptation: Molecular genetics and ecology. NRC Research Press, 103–110.
Reeves R. D., Baker A. J. M. (1984). Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Hálácsy (Crycuferae). New Phytol. 98, 191–204. 10.1111/j.1469-8137.1984.tb06108.x, PMID: PubMed DOI
Rellstab C., Gugerli F., Eckert A. J., Hancock A. M., Holderegger R. (2015). A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370. 10.1111/mec.13322, PMID: PubMed DOI
Roberts B. A., Proctor J. (1992). The ecology of areas with Serpentinized rocks. A World View. Dordrecht: Kluwer Academic Press.
Rockman M. V. (2012). The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17. 10.1111/j.1558-5646.2011.01486.x, PMID: PubMed DOI PMC
Rundle H. D., Nosil P. (2005). Ecological speciation. Ecol. Lett. 8, 336–352. 10.1111/j.1461-0248.2004.00715.x DOI
Rune O. (1953). Plant life on serpentines and related rocks in the north of Sweden. Sv. växtgeografiska sällsk.
Sakaguchi S., Horie K., Ishikawa N., Nagano A. J., Yasugi M., Kudoh H., et al. . (2017). Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. New Phytol. 216, 1268–1280. 10.1111/nph.14744, PMID: PubMed DOI
Sakaguchi S., Horie K., Ishikawa N., Nishio S., Worth J. R. P., Fukushima K., et al. (2019). Maintenance of soil ecotypes of Solidago virgaurea in close parapatry via divergent flowering time and selection against immigrants. J. Ecol. 107, 418–435. 10.1111/1365-2745.13034 DOI
Sakaguchi S., Horie K., Kimura T., Nagano A. J., Isagi Y., Ito M. (2018). Phylogeographic testing of alternative histories of single-origin versus parallel evolution of early flowering serpentine populations of Picris hieracioides L. (Asteraceae) in Japan. Ecol. Res. 33, 537–547. 10.1007/s11284-017-1536-2 DOI
Salehi Eskandari B., Ghaderian S. M., Schat H. (2017). The role of nickel (Ni) and drought in serpentine adaptation: contrasting effects of Ni on osmoprotectants and oxidative stress markers in the serpentine endemic, Cleome heratensis, and the related non-serpentinophyte, Cleome foliolosa. Plant Soil 417, 183–195. 10.1007/s11104-017-3250-9 DOI
Salehi-Eskandari B., Ghaderian S. M., Schat H. (2018). Differential interactive effects of the Ca/Mg quotient and PEG-simulated drought in Alyssum inflatum and Fortuynia garcinii. Plant Soil 428, 213–222. 10.1007/s11104-018-3649-y DOI
Salt D. E., Baxter I., Lahner B. (2008). Ionomics and the study of the plant Ionome. Annu. Rev. Plant Biol. 59, 709–733. 10.1146/annurev.arplant.59.032607.092942, PMID: PubMed DOI
Sambatti J. B. M., Rice K. J. (2006). Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution 60, 696–710. 10.1111/j.0014-3820.2006.tb01149.x, PMID: PubMed DOI
Savolainen O., Lascoux M., Merilä J. (2013). Ecological genomics: genes in ecology and ecology in genes. Nat. Rev. Genet. 14, 807–820. 10.1038/nrg3522, PMID: PubMed DOI
Schechter S., Branco S. (2014). “The ecology and evolution of mycorrhizal fungi in extreme soils” in Plant ecology and evolution in harsh environments. eds. Rajakaruna N., Boyd R. S., Harris T. B. (New York: Nova Science Publishers; ), 33–52.
Schechter S. P., Bruns T. D. (2008). Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol. Ecol. 17, 3198–3210. 10.1111/j.1365-294X.2008.03828.x, PMID: PubMed DOI
Selby J. P. (2014). The genetic basis of local adaptation to serpentine soils in Mimulus guttatus. Dissertation, Duke University.
Selby J. P., Jeong A. L., Toll K., Wright K. M., Lowry D. B. (2014). “Methods and discoveries in the pursuit of understanding the genetic basis of adaptation to harsh environments in Mimulus” in Plant ecology and evolution in harsh environments. eds. Rajakaruna N., Boyd R. S., Harris T. B. (New York: Nova Science Publishers; ), 243–266.
Selby J. P., Willis J. H. (2018). Major QTL controls adaptation to serpentine soils in Mimulus guttatus. Mol. Ecol. 27, 5073–5087. 10.1111/mec.14922, PMID: PubMed DOI
Sobczyk M. K., Smith J. A. C., Pollard A. J., Filatov D. A. (2017). Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity 118, 31–41. 10.1038/hdy.2016.93, PMID: PubMed DOI PMC
Sork V. L., Aitken S. N., Dyer R. J., Eckert A. J., Legendre P., Neale D. B. (2013). Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911. 10.1007/s11295-013-0596-x DOI
Southworth D., Tackaberry L. E., Massicotte H. B. (2014). Mycorrhizal ecology on serpentine soils. Plant Ecol. Diversity 7, 445–455. 10.1080/17550874.2013.848950 DOI
Stein R. J., Höreth S., de Melo J. R. F., Syllwasschy L., Lee G., Garbin M. L., et al. . (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol. 213, 1274–1286. 10.1111/nph.14219, PMID: PubMed DOI PMC
Stern D. L. (2013). The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764. 10.1038/nrg3483, PMID: PubMed DOI
Taylor S. I., Levy F. (2002). Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol. 155, 437–447. 10.1046/j.1469-8137.2002.00478.x PubMed DOI
Teptina A., Paukov A., Rajakaruna N. (2018). Ultramafic vegetation and soils in the circumboreal region of the northern hemisphere. Ecol. Res. 33, 609–628. 10.1007/s11284-018-1577-1 DOI
Turner T. L., Bourne E. C., Von Wettberg E. J., Hu T. T., Nuzhdin S. V. (2010). Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 42, 260–263. 10.1038/ng.515, PMID: PubMed DOI
Turner T. L., von Wettberg E. J., Nuzhdin S. V. (2008). Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One 3:e3183. 10.1371/journal.pone.0003183, PMID: PubMed DOI PMC
Veatch-Blohm M. E., Roche B. M., Campbell M. J. (2013). Evidence for cross-tolerance to nutrient deficiency in three disjunct populations of Arabidopsis lyrata ssp. lyrata in response to substrate calcium to magnesium ratio. PLoS One 8:e63117. 10.1371/journal.pone.0063117, PMID: PubMed DOI PMC
Veatch-Blohm M. E., Roche B. M., Dahl E. E. (2017). Serpentine populations of Arabidopsis lyrata ssp. lyrata show evidence for local adaptation in response to nickel exposure at germination and during juvenile growth. Environ. Exp. Bot. 138, 1–9. 10.1016/j.envexpbot.2017.02.017 DOI
Vlamis J. (1949). Growth of lettuce and barley as influenced by degree of calcium-saturation of soil. Soil Sci. 67:453–466. 10.1097/00010694-194906000-00005 DOI
Vlamis J., Jenny H. (1948). Calcium deficiency in serpentine soils as revealed by adsorbent technique. Science 107:549. 10.1126/science.107.2786.549, PMID: PubMed DOI
von Wettberg E. J. B., Ray-Mukherjee J., D’Adesky N., Nesbeth D., Sistla S. (2014). “The Evoltionary ecology and genetics of stress resistance syndrome (SRS) traits: revisiting chapin, autumn and pugnaire (1993)” in Plant ecology and evolution in harsh environments. eds. Rajakaruna N., Boyd R. S., Harris T. B. (New York: Nova Science Publishers; ), 201–226.
Walker R. B., Walker H. M., Ashworth P. (1955). Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 30, 214–221. 10.1104/pp.30.3.214, PMID: PubMed DOI PMC
Westerbergh A. (1994). Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167, 297–303. 10.1007/BF00007956 DOI
Whittaker R. H. (1954). The ecology of serpentine soils. Ecology 35, 258–288. 10.2307/1931126 DOI
Willems G., Dräger D. B., Courbot M., Godé C. (2007). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176, 659–674. 10.1534/genetics.106.064485, PMID: PubMed DOI PMC
Wright K. M., Lloyd D., Lowry D. B., Macnair M. R., Willis J. H. (2013). Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLoS Biol. 11:e1001497. 10.1371/journal.pbio.1001497, PMID: PubMed DOI PMC
Wright J. W., Stanton M. L., Scherson R. (2006). Local adaptations to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol. Ecol. Res. 8, 1–21.
Wright J. W., Von Wettberg E. (2009). ‘Serpentinomics’ ‐ an emerging new field of study. Northeast. Nat. 16, 285–296. 10.1656/045.016.0521 DOI
Yeaman S., Whitlock M. C. (2011). The genetic architecture of adaptation under migration-selection balance. Evolution 65, 1897–1911. 10.1111/j.1558-5646.2011.01269.x, PMID: PubMed DOI