Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae)

. 2012 ; 7 (7) : e39988. [epub] 20120705

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22792207

Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research.

Zobrazit více v PubMed

Brady KU, Kruckeberg AR, Bradshaw HD., Jr Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst. 2005;36:243–266.

Kazakou E, Dimitrakopoulos PG, Baker AJ, Reeves RD, Troumbis AY. Hypotheses, mechanisms and trade–offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev Camb Philos Soc. 2008;83:495–508. PubMed

Proctor J. Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol. 1999;14:334–335.

Kruckeberg AR. California Serpentines: Flora, Vegetation, Geology, Soils and Management Problems. Berkeley: University of California Press. 1984.

Kruckeberg AR. An essay: The stimulus of unusual geologies for plant speciation. Syst Bot. 1986;11:455–463.

Kruckeberg AR. An essay: Geoedaphics and island biogeography for vascular plants. Aliso. 1991;13:225–238.

Macnair MR, Gardner M. Howard DJ, Berlocher SH, editors. The evolution of edaphic endemics. 1998. pp. 157–171. Endless forms: Species and speciation. New York: Oxford University Press.

Kruckeberg AR. Intraspecific variability in response of certain native plant species to serpentine soil. Am J Bot. 1951;38:408–419.

Kruckeberg AR. Ecotypic response to ultramafic soils by some plant species of north–western United States. Brittonia. 1967;19:133–151.

Rajakaruna N, Siddiqi MY, Whitton J, Bohm BA, Glass ADM. Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica complex (Asteraceae): a case for parallel evolution of physiological traits. New Phytol. 2003;157:93–103. PubMed

Rajakaruna N. The edaphic factor in the origin of plant species. Int Geol Rev. 2004;46:471–478.

Mayer MS, Soltis PS. The evolution of serpentine endemics: a cpDNA phylogeny of Streptanthus glandulosus complex (Cruciferae). Syst Bot. 1994;19:557–574.

Novák FA. Fylogenese serpentinových typů. [Phylogeny of serpentine types.] Preslia. 1960;32:1–8.

Mayer MS, Soltis PS, Soltis DE. The evolution of the Streptanthus glandulosus complex (Cruciferae): genetic divergence and gene flow in serpentine endemics. Am J Bot. 1994;81:1288–1299.

Forde MB, Faris DG. Effect of introgression on the serpentine endemism of Quercus durata. Evolution. 1962;16:338–347.

Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since Plant Speciation. New Phytol. 2003;161:173–191.

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–348. PubMed

Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. PubMed

Ehrendorfer F. Cytotaxonomische Beiträge zur Genese der mitteleuropäischen Flora und Vegetation. Ber Deutsch Bot Ges. 1962;75:137–152.

Ehrendorfer F. Lewis WH, editor. Polyploidy and distribution. 1980. pp. 45–60. editor. Polyploidy – Biological Relevance. New York: Plenum Press. PubMed

Lumaret R, Guillerm JL, Delay J, Ait Lhaj Loutfi A, Izco J, et al. Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia. 1987;73:436–446. PubMed

Ma JX, Li YN, Vogl C, Ehrendorfer F, Guo YP. Allopolyploid speciation and ongoing backcrossing between diploid progenitor and tetraploid progeny lineages in the Achillea millefolium species complex: analyses of single-copy nuclear genes and genomic AFLP. BMC Evol Biol. 2010;10:100. PubMed PMC

Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytol. 2010;186:5–17. PubMed

Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol. 1999;14:348–352. PubMed

Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, et al. Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon. 2007;56:13–30.

Coulaud J, Barghi N, Lefèbvre C, Siljak-Yakovlev S. Cytogenetic variation in populations of Armeria maritima (Mill.) Willd. in relation to geographical distribution and soil stress tolerances. Canad J Bot. 1999;77:673–686.

Krahulcová A, Štěpánková J. Serpentine and polyploid differentiation within Galium pumilum agg. (Rubiaceae) in Eastern Central Europe. Folia Geobot. 1998;33:87–102.

Ehrendorfer F. Beiträge zur Phylogenie der Gattung Knautia (Dipsacaceae), I. Cytologische Grundlagen und allgemeine Hinweise. Österr Bot Zeit. 1962;109:276–343.

Ehrendorfer F. Knautia L. In: Tutin T, editor. Flora Europaea. vol 4. Cambridge: Cambridge University Press. 1976. pp. 60–67.

Breton Sintés S. Etude biosystematique du genre Knautia (Dipsacaceae) dans le Massif Central français. II. Analyse morphologique et cytogenetique dhybrides experimentaux. Ann Sci Nat, ser. Bot. 1974;12:277–320.

Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, et al. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot. 2009;103:963–974. PubMed PMC

Breton Sintés S. Contribution cytogenetique a ĺetude des Knautia (Dipsacaceae) du Plateau Central Francais. Annee Biol. 1975;14:45–67.

Štěpánek J. Knautia L. – chrastavec. In Slavík B, editor. Květena České republiky, Vol. 6. [Flora of the Czech Republic, Vol. 6.]. Praha: Academia. 1997. pp. 543–554.

Kaplan Z. Relict serpentine populations of Knautia arvensis s. l. (Dipsacaceae) in the Czech Republic and an adjacent area of Germany. Preslia. 1998;70:21–31.

Štěpánek J. Die Chromosomenzahlen von tschechoslowakischen Arten der Gattung Knautia L. (Dipsacaceae). Folia Geobot Phytotax. 1982;17:359–386.

Štěpánek J. Chrastavec rolní krkonošský – Knautia arvensis (L.) Coulter subsp. pseudolongifolia (Szabó) O. Schwarz. In Slavík B, editor. Vybrané ohrožené druhy flóry ČSR, Studie ČSAV. [Selected endangered species of the ČSR flora] Praha: Academia. 1989. pp. 25–36.

Ložek V. Příroda ve čtvrtohorách. [Nature in the Quaternary]. Praha: Academia. 1973.

Krahulec F. Species of vascular plants endemic to the Krkonoše Mts. (Western Sudetes). Preslia. 2006;78:503–516.

Soják J. Potentilla crantzii, nový relikt v české květeně. [Potentilla crantzii, a new relict taxon in the Czech flora] Preslia. 1960;32:369–388.

Štěpánek J. Eine neue Art der Gattung Knautia (Dipsacaceae) aus Westkarpaten. Preslia. 1983;55:1–8.

Moravec J. Přehled vegetace České republiky. Jehličnaté lesy. [Vegetation survey of the Czech Republic. Coniferous forests]. Praha: Academia. 2002.

Rejzková E, Fér T, Vojta J, Marhold K. Phylogeography of the forest herb Carex pilosa (Cyperaceae). Bot J Linn Soc. 2008;158:115–130.

Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, et al. How to track and assess genotyping errors in population genetics studies. Mol Ecol. 2004;13:3261–3273. PubMed

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, et al. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot. 2005;92:142–166. PubMed

Nei M. Genetic distance between populations. Am Nat. 1972;106:283–292.

Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press. 1987.

Ehrich D. AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes. 2006;6:603–604.

Schönswetter P, Tribsch A. Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon. 2005;54:725–732.

Paun O, Schönswetter P, Winkler M, Intrabiodiv C, Tribsch A. Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol Ecol. 2008;17:4263–4275. PubMed PMC

Hartigan JA, Wong MA. A K-means clustering algorithm. Appl Stat. 1979;28:100–108.

Arrigo N, Felber F, Parisod C, Buerki S, Alvarez N, et al. Origin and expansion of the allotetraploid Aegilops geniculata, a wild relative of wheat. New Phytol. 2010;187:1170–1180. PubMed

Burnier J, Buerki S, Arrigo N, Kuepfer P, Alvarez N. Genetic structure and evolution of Alpine polyploid complexes: Ranunculus kuepferi (Ranunculaceae) as a case study. Mol Ecol. 2009;18:3730–3744. PubMed

Pritchard JK, Stephens M, Donelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7:574–578. PubMed PMC

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. PubMed

Chessel D, Dufour AB, Thioulouse J. The ade4 package I: One-table methods. R News. 2004;4:5–10.

Excoffier L, Laval G, Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online. 2005;1:47–50. PubMed PMC

Katoh K, Toh J. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinf. 2008;9:286–298. PubMed

Clement M, Posada D, Crandall K. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1660. PubMed

Kron P, Suda J, Husband BC. Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst. 2007;38:847–876.

Slovák M, Vít P, Urfus T, Suda J. Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr. 2009;36:372–384.

Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M. Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia. 2010;82:127–148.

Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, et al. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia. 2010;82:3–21.

Tribsch A, Schönswetter P, Stuessy TF. Saponaria pumila (Caryophyllaceae) and the ice–age in the Eastern Alps. Am J Bot. 2002;89:2024–2033. PubMed

Ehrendorfer F. Neue Beiträge zur Karyosystematik und Evolution der Gattung Knautia (Dipsacaceae) in den Balkanländern. Bot Jahrb Syst Pflanzengeschichte Pflanzengeographie. 1981;162:225–238.

Segraves KA, Thompson JN, Soltis PS, Soltis DE. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol Ecol. 1999;8:253–262.

Brochmann C, Soltis PS, Soltis DE. Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: electrophoretic and morphological evidence. Nordic J Bot. 1992;12:257–272.

Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, et al. Recent and recurrent polyploidy in Tragopogon (Asteraceae): genetic, genomic, and cytogenetic comparisons. Biol J Linn Soc. 2004;82:485–501.

Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst. 1998;29:467–501.

Ramsey J. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity. 2007;98:143–150. PubMed

Petit C, Bretagnolle F, Felber F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol Evol. 1999;14:306–311. PubMed

Weiss H, Dobeš C, Schneeweiss GM, Greimler J. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytol. 2002;156:85–94.

Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S. Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot. 2009;104:965–973. PubMed PMC

Stuessy TF, Weiss-Schneeweiss H, Keil DJ. Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae). Am J Bot. 2004;91:889–898. PubMed

Jankovská V. Palaogeobotanische Rekonstruktion der Vegetationsentwicklung im Becken Třeboňská pánev während des Spätglazials und Holozäns. Vegetace ČSSR. Praha: Academia. 1980.

Hahne J. Untersuchungen zur spät- und post-glazialen Vegetationsgeschichte im nördlichen Bayern. Flora. 1991;185:17–32.

Dvořáková M. Minuartia smejkalii, eine neue Art aus der Minuartia gerardii-Gruppe (Caryophyllaceae). Preslia. 1988;60:1–9.

Westerbergh A, Saura A. The effect of serpentine on the population structure of Silene dioica (Caryophyllaceae). Evolution. 1992;46:1537–1548. PubMed

Kruckeberg AR. The ecology of serpentine soils: A symposium. III. Plant species in relation to serpentine soils. Ecology. 1954;35:267–74.

Maceira NO, Jacquard P, Lumaret R. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 1993;124:321–328. PubMed

Levin DA. The Role of Chromosomal Change in Plant Evolution. New York: Oxford University Press. 2002.

Ehrendorfer F. Baker HG, Stebbins GL, editors. Dispersal mechanisms, genetic systems, and colonizing abilities in some flowering plant families. 1965. pp. 331–352. The Genetics of Colonizing Species. New York: Academic Press.

Mayer MS, Soltis PS. Intraspecific phylogeny analysis using ITS sequences: insights from studies of the Streptanthus glandulosus complex (Cruciferae). Syst Bot. 1998;24:47–61.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microsatellite Markers: A Tool to Assess the Genetic Diversity of Yellow Mustard (Sinapis alba L.)

. 2023 Nov 29 ; 12 (23) : . [epub] 20231129

Morphological and environmental differentiation as prezygotic reproductive barriers between parapatric and allopatric Campanula rotundifolia agg. cytotypes

. 2023 Feb 07 ; 131 (1) : 71-86.

The Evolutionary Genomics of Serpentine Adaptation

. 2020 ; 11 () : 574616. [epub] 20201216

STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations

. 2019 Oct ; 123 (4) : 429-441. [epub] 20190708

Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe

. 2016 Jan ; 117 (1) : 107-20. [epub] 20151014

Does hybridization with a widespread congener threaten the long-term persistence of the Eastern Alpine rare local endemic Knautia carinthiaca?

. 2015 Oct ; 5 (19) : 4263-76. [epub] 20150909

Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae)

. 2014 ; 9 (9) : e105997. [epub] 20140911

DNA content variation and its significance in the evolution of the genus Micrasterias (Desmidiales, Streptophyta)

. 2014 ; 9 (1) : e86247. [epub] 20140121

Diversity and endemism in deglaciated areas: ploidy, relative genome size and niche differentiation in the Galium pusillum complex (Rubiaceae) in Northern and Central Europe

. 2013 Jun ; 111 (6) : 1095-108. [epub] 20130414

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...