DNA content variation and its significance in the evolution of the genus Micrasterias (Desmidiales, Streptophyta)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24465986
PubMed Central
PMC3897674
DOI
10.1371/journal.pone.0086247
PII: PONE-D-13-43201
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- chromozomy rostlin genetika MeSH
- délka genomu genetika MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- Micrasterias genetika MeSH
- mikrořasy genetika MeSH
- Streptophyta genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
It is now clear that whole genome duplications have occurred in all eukaryotic evolutionary lineages, and that the vast majority of flowering plants have experienced polyploidisation in their evolutionary history. However, study of genome size variation in microalgae lags behind that of higher plants and seaweeds. In this study, we have addressed the question whether microalgal phylogeny is associated with DNA content variation in order to evaluate the evolutionary significance of polyploidy in the model genus Micrasterias. We applied flow-cytometric techniques of DNA quantification to microalgae and mapped the estimated DNA content along the phylogenetic tree. Correlations between DNA content and cell morphometric parameters were also tested using geometric morphometrics. In total, DNA content was successfully determined for 34 strains of the genus Micrasterias. The estimated absolute 2C nuclear DNA amount ranged from 2.1 to 64.7 pg; intraspecific variation being 17.4-30.7 pg in M. truncata and 32.0-64.7 pg in M. rotata. There were significant differences between DNA contents of related species. We found strong correlation between the absolute nuclear DNA content and chromosome numbers and significant positive correlation between the DNA content and both cell size and number of terminal lobes. Moreover, the results showed the importance of cell/life cycle studies for interpretation of DNA content measurements in microalgae.
Department of Botany Charles University Prague Prague Czech Republic
Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czech Republic
PLoS One. 2014;9(3):e92399 PubMed Poulíèková, Aloisie [corrected to Poulíčková, Aloisie];Neustupa, Jiøí [corrected to Neustupa, Jiří]
Zobrazit více v PubMed
McCourt RM, Delwiche CHF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19 (12): 661–666. PubMed
Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103: 999–1004. PubMed PMC
Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, et al. (2011) Origin of land plants: Do conjugating green algae hold the key? BMC Evol Biol 11: 104. PubMed PMC
Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: Phylogenetic considerations. Ann Bot 95: 7–44. PubMed PMC
Brook AJ (1981) The biology of desmids. Botanical monographs, vol. 16. Berkeley and Los Angeles: University of California Press. 276 p.
Hamada J (1987) Diploidy in DNA content in vegetative cells of Closterium ehrenbergii (Chlorophyta). J Phycol 23: 541–546.
Blackburn SI, Tyler PA (1981) Sexual reproduction in desmids with special reference to Micrasterias thomasiana var. notata (Nordst.) Grönblad. Br Phycol J 16: 217–229.
Handke K (1996) Zygosporen saccodermer und placodermer Desmidiaceen (Conjugatophyceae, Chlorophyta) in Aufsammlungen der Jahre 1971–1995 aus Europa, Asien und Amerika. Mitt Inst Allg Bot Hamb 26: 5–129.
Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, et al. (2010) Neocentrics and holokinetics (Holocentrics): Chromosomes out of the centromeric rules. Cytogenet Genome Res 129: 82–96. PubMed
Rotreklová O, Bureš P, Řepka R, Grulich V, Šmarda P, et al. (2011) Chromosome numbers of Carex . Preslia 83: 25–58.
King GC (1953) Chromosome numbers in the desmids. Nature 172: 592. PubMed
King GC (1960) The cytology of the desmids: the chromosomes. New Phytol 59: 65–72.
Brandham PE (1964) Cytology, sexuality and mating type in culture of certain desmids. PhD Thesis, University of London, United Kingdom.
Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42: 225–249. PubMed
Soltis DE, Albert VA, Leebens-Mack J, Bell ChD, Paterson AH, et al. (2009) Polyploidy and angiosperm diversification. Am J Bot 96: 336–348. PubMed
Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438. PubMed
Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101: 9903–9908. PubMed PMC
Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, et al. (2012) Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99: 372–382. PubMed
Schnable JC, Freeling M, Lyons E (2012) Genome-wide analysis of syntenic gene deletion in the grasses. Genome Biol Evol 4: 265–277. PubMed PMC
Hoshaw RW, McCourt RM (1988) The Zygnemataceae (Chlorophyta): a twenty-year update of research. Phycologia 27: 511–548.
Waris H, Kallio P (1957) Morphogenesis effects of chemical agents and micro-cytoplasmic relations in Micrasterias . Ann Acad Sci Fenn A 37: 1–20.
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2: 2233–2244. PubMed
Duchoslav M, Šafářová L, Krahulec F (2010) Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105: 719–735. PubMed PMC
Sonnleitner M, Flatscher R, García PE, Rauchová J, Suda J, et al. (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot 106: 967–977. PubMed PMC
Herben T, Suda J, Klimešová J, Mihulka S, Říha P, et al. (2012) Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Ann Bot 110: 1357–1367. PubMed PMC
Kolář F, Fér T, Štech M, Trávníček P, Dušková E, et al. (2012) Bringing together evolution on serpentine and polyploidy: Spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). Plos One 7: e39988 doi:10.1371/journal.pone.0039988. Available: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0039988. Accessed 20 June 2013. PubMed DOI PMC
Le Gall Y, Brown S, Marie D, Mejjad M, Kloareg B (1993) Quantification of nuclear DNA and G-C content in marine macroalgae by flow cytometry of isolated nuclei. Protoplasma 173: 123–132.
Simon N, Barlow RG, Marie D, Partensky F, Vaulot D (1994) Characterization of oceanic photosynthetic picoeucaryotes by flow cytometry. J Phycol 30: 922–935.
Veldhuis MJ, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33: 527–541.
Kapraun DF (2007) Nuclear DNA content estimates in green algal lineages: Chlorophyta and Streptophyta. Ann Bot 99: 677–701. PubMed PMC
Mazalová P, Šarhanová P, Ondřej V, Poulíčková A (2011) Quantification of DNA content in freshwater microalgae using flow cytometry: a modified protocol for selected green microalgae. Fottea 11 (2): 317–328.
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, et al. (2007) Cryptic species as a window on diversity and conservation. Trends Ecol and Evol 22: 148–155. PubMed
Poulíčková A, Veselá J, Neustupa J, Škaloud P (2010) Pseudocryptic diversity versus cosmopolitanism in diatoms: A case study on Navicula cryptocephala Kütz. (Bacillariophyceae) and morphologically similar taxa. Protist 161: 353–369. PubMed
Denboh T, Hendrayanti D, Ichimura T (2001) Monophyly of the genus Closterium and the order desmidiales (Charophyceae, Chlorophyta) inferred from nuclear small subunit rDNA data. J Phycol 37: 1063–1072.
Gontcharov AA, Marin B, Melkonian M (2003) Molecular phylogeny of conjugating green algae (Zygnematophyceae, Streptophyta) inferred from SSU rDNA sequence comparisons. J Mol Evol 56: 89–104. PubMed
Gontcharov AA, Melkonian M (2008) In search of monophyletic taxa in the family Desmidiaceae (Zygnematophyceae, Viridiplantae): The genus Cosmarium . Am J Bot 95: 1079–1095. PubMed
Neustupa J, Škaloud P, Šťastný J (2010) The molecular phylogenetic and geometric morphometric evaluation of Micrasterias crux-melitensis/M. radians species complex. J Phycol 46: 703–714.
Neustupa J, Šťastný J, Nemjová K, Mazalová P, Goodyer E, et al. (2011) A novel, combined approach to assessing species delimitation and biogeography within the well-known desmid species Micrasterias fimbriata and M. rotata (Desmidiales, Steptophyta). Hydrobiologia 667: 223–239.
Nemjová K, Neustupa J, Šťastný J, Škaloud P, Veselá J (2011) Species concept and morphological differentiation of strains traditionally assigned to Micrasterias truncata . Phycological Res 59: 208–220.
Škaloud P, Nemjová K, Veselá J, Černá K, Neustupa J (2011) A multilocus phylogeny of the desmid genus Micrasterias (Streptophyta): Evidence for the accelerated rate of morphological evolution in protists. Mol Phylogenet Evol 61: 933–943. PubMed
Neustupa J (2013) Patterns of symmetric and asymmetric morphological variation in unicellular green microalgae of the genus Micrasterias (Desmidiales, Viridiplantae). Fottea 13: 53–63.
Gontcharov AA, Melkonian M (2011) A study of conflict between molecular phylogeny and taxonomy in the Desmidiaceae (Streptophyta, Viridiplantae): Analyses of 291 rbcL sequences. Protist 162 (2): 253–267. PubMed
Hall JD, Karol KG, McCourt RM, Delwiche CF (2008) Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J Phycol 44: 467–477. PubMed
Kasprik W (1973) Beiträge zur Karyologie der Desmidiaceen-Gattung Micrasterias AG. Beih. Nova Hedwigia 42: 115–137.
Černá K, Neustupa J (2010) The pH-related morphological variations of two acidophilic species of Desmidiales (Viridiplantae) isolated from a lowland peat bog, Czech Republic. Aquat Ecol 44: 409–419.
Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85: 625–631.
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, et al. (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82: 17–26.
Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95: 255–260. PubMed PMC
Greilhuber J, Doležel J (2009) 2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma 118: 391–400. PubMed
Coesel PFM, Teixeira RMV (1974) Notes on sexual reproduction in desmids. II experiments in uni-algal cultures. Acta Bot Neerl 23: 603–611.
Blackburn SI, Tyler P (1987) On the nature of eclectic species – a tiered approach to genetic compatibility in the desmid Micrasterias thomasiana . Br Phycol J 22: 277–298.
Lenzenweger R (1973) Über Konjugation und Zygotenkeimung bei Micrasterias rotata (Grev.) Ralfs (Desmidiaceae). Nova Hedvig Beih 42: 155–161.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401: 877–884. PubMed
Revell LJ (2012) Phytotools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3: 217–223.
Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: Investigating evolutionary radiations. Bioinformatics 24: 129–131. PubMed
Verbruggen H (2009) TreeGradients v 1.02. Available: http://www.phycoweb.net. Accesed January 2012.
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.
Neustupa J, Šťastný J, Hodač L (2008) Temperature-related phenotypic plasticity in the green microalga Micrasterias rotata . Aquat Microb Ecol 51: 77–86.
Zelditch ML, Swiderski DL, Sheets DH, Fink WL (2004) Geometric Morphometrics for Biologists: A Primer. London: Elsevier Academic Press. 443 p.
Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012). Available: http://www.kew.org/cvalues/. Accessed: 6 April 2013.
Weiss TL, Johnston JS, Fujisawa K, Sumimoto K, Okada S, et al. (2010) Phylogenetic placement, genome size, and GC content of the liquid-hydrocarbon-producing green microalga Botryococcus braunii strain Berkeley (Showa) (Chlorophyta). J Phycol 46: 534–540.
Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP (2011) Genome size and phylogenetic analysis of A and L races of Botryococcus braunii . J.Appl Phycol 23: 833–839.
Lemaire SD, Hours M, Gerard-Hirne C, Trouabal A, Roche O, et al. (1999) Analysis of light/dark synchronization of cell-wall-less Chlamydomonas reinhardtii (Chlorophyta) cells by flow cytometry. Eur J Phycol 34: 279–286.
Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot 85: 531–546.
Greilhuber J, Borsch T, Muller K, Worberg A, Porembski S, et al. (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8: 770–777. PubMed
Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (similar to 100 Mb) and Drosophila (similar to 175 Mb) using flow cytometry show genome size in Arabidopsis to be similar to 157 Mb and thus similar to 25% larger than the Arabidopsis genome initiative estimate of similar to 125 Mb. Ann Bot 91: 547–557. PubMed PMC
Nishikawa K, Furuta Y, Ishitobi K (1984) Chromosomal evolution in genus Carex as viewed from nuclear-DNA content, with special reference to its aneuploidy. Japanese Journal of Genetics 59: 465–472.
Halkka O (1964) A photometric study of Luzula problem. Hereditas-Genetisk Arkiv 52: 81–88.
Bačič T, Jogan N, Koce JD (2007) Luzula sect. Luzula in the south-eastern Alps – karyology and genome size. Taxon 56: 129–136.
Kaur N, Datson PM, Murray BG (2012) Genome size and chromosome number in the New Zealand species of Schoenus (Cyperaceae). Bot J Linn Soc 169: 555–564.
Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0). Available: http://data.kew.org/cvalues/. Accessed 19 December 2012.
Chung KS, Hipp AL, Roalson EH (2012) Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution 66: 2708–2722. PubMed
Grif VG (2000) Some aspects of plant karyology and karyosystematics. International Review of Cytology – a Survey of Cell Biology 196: 131–175. PubMed
Chung KS, Weber JA, Hipp AL (2011) Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). Am J Bot 98: 122–129. PubMed
Greilhuber J, Doležel J, Leitch IJ, Loureiro J, Suda J (2010) Genome size. J Bot 2010: Article ID 946138, 4 pp. doi: 10.1155/2010/946138. Available: http://www.hindawi.com/journals/jb/2010/946138/ref/. Accessed: 25 January 2012.
Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107: 467–590. PubMed PMC
Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106 (Supplement): 177–200.
Midgley JJ, Bond WJ (1991) Ecological aspects of the rise of angiosperms: a challenge to the reproductive superiority hypotheses. Biol J Linn Soc Lond 44: 81–92.
Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95: 1–6. PubMed PMC
Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95: 45–90. PubMed PMC
Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95: 133–146. PubMed PMC
Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nature Reviews 6: 699–708. PubMed
Mann DG, Poulíčková A (2010) Mating system, auxosporulation, species taxonomy and homoploid evolution in Amphora (Bacillariophyta). Phycologia 49: 183–201.
Wang W, Tanurdzic M, Luo M, Sisneros N, Kim HR, et al. (2005) Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biol 5: 10. PubMed PMC
Brandham PE (1965) The effect of temperature on the radial symmetry of Staurastrum polymorphum . J Phycol 1: 55–57.
Starr RC (1958) The production and inheritance of the triradiate form in Cosmarium turpinii . Am J Bot 45: 243–248.