• This record comes from PubMed

Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young

. 2022 Sep ; 59 (9) : 1169-1178. [epub] 20220623

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
NV18-01-00078 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 35737141
PubMed Central PMC9219402
DOI 10.1007/s00592-022-01915-x
PII: 10.1007/s00592-022-01915-x
Knihovny.cz E-resources

AIMS: Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS: A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS: MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS: The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.

See more in PubMed

Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med. 1974;43:339–357. PubMed

Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992;356:162–164. doi: 10.1038/356162a0. PubMed DOI

Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, et al. Linkage of type 2 diabetes to the glucokinase gene. Lancet. 1992;339:1307–1310. doi: 10.1016/0140-6736(92)91958-b. PubMed DOI

Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3) Nature. 1996;384:455–458. doi: 10.1038/384455a0. PubMed DOI

Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature. 1996;384:458–460. doi: 10.1038/384458a0. PubMed DOI

Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab. 2022;17:111–129. doi: 10.1080/17446651.2022.2035216. PubMed DOI

Colclough K, Ellard S, Hattersley A, Patel K (2021) Syndromic monogenic diabetes genes should be tested in patients with a clinical suspicion of MODY. Diabetes. 10.2337/db21-0517 PubMed PMC

Saint-Martin C, Bouvet D, Bastide M, Chantelot CB, Monogenic Diabetes Study Group of the Societe Francophone du D (2021) Gene panel sequencing of patients with monogenic diabetes brings to light genes typically associated with syndromic presentations. Diabetes. 10.2337/db21-0520 PubMed

Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54:3126–3132. doi: 10.2337/diabetes.54.11.3126. PubMed DOI

Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med. 2008;25:383–399. doi: 10.1111/j.1464-5491.2008.02359.x. PubMed DOI

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. PubMed DOI PMC

Singh R, Ellard S, Hattersley A, Harries LW. Rapid and sensitive real-time polymerase chain reaction method for detection and quantification of 3243A>G mitochondrial point mutation. J Mol Diagn. 2006;8:225–230. doi: 10.2353/jmoldx.2006.050067. PubMed DOI PMC

Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56:1958–1963. doi: 10.1007/s00125-013-2962-5. PubMed DOI PMC

Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med. 2000;17:543–545. doi: 10.1046/j.1464-5491.2000.00305.x. PubMed DOI

Stride A, Shields B, Gill-Carey O, Chakera AJ, Colclough K, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57:54–56. doi: 10.1007/s00125-013-3075-x. PubMed DOI PMC

Peters JL, Anderson R, Shields B, King S, Hudson M, et al. Strategies to identify individuals with monogenic diabetes: results of an economic evaluation. BMJ Open. 2020;10:e034716. doi: 10.1136/bmjopen-2019-034716. PubMed DOI PMC

Pruhova S, Dusatkova P, Sumnik Z, Kolouskova S, Pedersen O, et al. Glucokinase diabetes in 103 families from a country-based study in the Czech Republic: geographically restricted distribution of two prevalent GCK mutations. Pediatr Diabetes. 2010;11:529–535. doi: 10.1111/j.1399-5448.2010.00646.x. PubMed DOI

Van der Auwera GA, O'Connor BD (2020) Genomics in the cloud: using Docker, GATK, and WDL in Terra, 1st edn. O'Reilly Media, Newton, Massachusetts, United States

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Desvignes JP, Bartoli M, Delague V, Krahn M, Miltgen M, et al. VarAFT: a variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res. 2018;46:W545–W553. doi: 10.1093/nar/gky471. PubMed DOI PMC

Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. doi: 10.1093/bioinformatics/bty897. PubMed DOI PMC

R Core team (2021) R: A language and environment for statistical computing. https://www.R-project.org/

Passanisi S, Salzano G, Bombaci B, Lombardo F. Clinical and genetic features of maturity-onset diabetes of the young in pediatric patients: a 12-year monocentric experience. Diabetol Metab Syndr. 2021;13:96. doi: 10.1186/s13098-021-00716-6. PubMed DOI PMC

Zmyslowska A, Jakiel P, Gadzalska K, Majos A, Ploszaj T, et al. Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. Diabetes Res Clin Pract. 2022;183:109154. doi: 10.1016/j.diabres.2021.109154. PubMed DOI

Shinar Y, Ceccherini I, Rowczenio D, Aksentijevich I, Arostegui J, et al. ISSAID/EMQN best practice guidelines for the genetic diagnosis of monogenic autoinflammatory diseases in the next-generation sequencing era. Clin Chem. 2020;66:525–536. doi: 10.1093/clinchem/hvaa024. PubMed DOI

Karacan I, Balamir A, Ugurlu S, Aydin AK, Everest E, et al. Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study. Rheumatol Int. 2019;39:911–919. doi: 10.1007/s00296-019-04252-5. PubMed DOI

Plachy L, Strakova V, Elblova L, Obermannova B, Kolouskova S, et al. High prevalence of growth plate gene variants in children with familial short stature treated with GH. J Clin Endocrinol Metab. 2019;104:4273–4281. doi: 10.1210/jc.2018-02288. PubMed DOI

Ploszaj T, Antosik K, Jakiel P, Zmyslowska A, Borowiec M. Screening for extremely rare pathogenic variants of monogenic diabetes using targeted panel sequencing. Endocrine. 2021;73:752–757. doi: 10.1007/s12020-021-02753-7. PubMed DOI PMC

Tatsi EB, Kanaka-Gantenbein C, Scorilas A, Chrousos GP, Sertedaki A. Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr Diab. 2020;21:28–39. doi: 10.1111/pedi.12931. PubMed DOI

Shepherd MH, Shields BM, Hudson M, Pearson ER, Hyde C, et al. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia. 2018;61:2520–2527. doi: 10.1007/s00125-018-4728-6. PubMed DOI PMC

Delvecchio M, Salzano G, Bonura C, Cauvin V, Cherubini V, et al. Can HbA1c combined with fasting plasma glucose help to assess priority for GCK-MODY vs HNF1A-MODY genetic testing? Acta Diabetol. 2018;55:981–983. doi: 10.1007/s00592-018-1179-y. PubMed DOI

Ellard S, Bulman MP, Frayling TM, Allen LI, Dronsfield MJ, et al. Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. Diabetes. 1999;48:921–923. doi: 10.2337/diabetes.48.4.921. PubMed DOI

Ellard S, Bellanne-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network Mg (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546-53. 10.1007/s00125-008-0942-y PubMed PMC

Girard CA, Shimomura K, Proks P, Absalom N, Castano L, et al. Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes. Pflugers Arch. 2006;453:323–332. doi: 10.1007/s00424-006-0112-3. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...