Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
340420
Grantová Agentura, Univerzita Karlova
PubMed
37897565
PubMed Central
PMC10709478
DOI
10.1007/s00125-023-06030-2
PII: 10.1007/s00125-023-06030-2
Knihovny.cz E-zdroje
- Klíčová slova
- Consanguineous population, Consanguinity, Diabetes genes, Genetics, Monogenic diabetes, Neonatal diabetes, Paediatric diabetes, Syndromic diabetes,
- MeSH
- diabetes mellitus 1. typu * epidemiologie genetika MeSH
- diabetes mellitus 2. typu * epidemiologie genetika diagnóza MeSH
- dítě MeSH
- kohortové studie MeSH
- lidé MeSH
- mutace genetika MeSH
- nemoci novorozenců * genetika MeSH
- novorozenec MeSH
- pokrevní příbuzenství MeSH
- proteiny přenášející nukleosidy genetika MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Irák epidemiologie MeSH
- Názvy látek
- proteiny přenášející nukleosidy MeSH
- SLC29A3 protein, human MeSH Prohlížeč
AIMS/HYPOTHESIS: Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity. METHODS: Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing. RESULTS: A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes. CONCLUSIONS/INTERPRETATION: This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.
Clinical and Biomedical Sciences University of Exeter Faculty of Health and Life Sciences Exeter UK
Department of Paediatrics College of Medicine Sulaimani University Sulaimani Kurdistan Iraq
Diabetic Clinic Dr Jamah Ahmad Rashed Hospital Sulaimani Kurdistan Iraq
Zobrazit více v PubMed
Patterson C, Guariguata L, Dahlquist G, Soltész G, Ogle G, Silink M. Diabetes in the young - a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract. 2014;103(2):161–175. doi: 10.1016/j.diabres.2013.11.005. PubMed DOI
Pacaud D, Schwandt A, de Beaufort C, et al. A description of clinician reported diagnosis of type 2 diabetes and other non-type 1 diabetes included in a large international multicenteredpediatric diabetes registry (SWEET) Pediatr Diabetes. 2016;17(Suppl 23):24–31. doi: 10.1111/pedi.12426. PubMed DOI
Sousa M, Bruges-Armas J. Monogenic diabetes: genetics and relevance on diabetes mellitus personalized medicine. Curr Diabetes Rev. 2020;16(8):807–819. doi: 10.2174/1573399816666191230114352. PubMed DOI
Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):47–63. doi: 10.1111/pedi.12772. PubMed DOI
Irgens HU, Molnes J, Johansson BB, et al. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia. 2013;56(7):1512–1519. doi: 10.1007/s00125-013-2916-y. PubMed DOI
Fendler W, Borowiec M, Baranowska-Jazwiecka A, et al. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 2012;55(10):2631–2635. doi: 10.1007/s00125-012-2621-2. PubMed DOI PMC
Kropff J, Selwood MP, McCarthy MI, Farmer AJ, Owen KR. Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire. UK. Diabetologia. 2011;54(5):1261–1263. doi: 10.1007/s00125-011-2090-z. PubMed DOI
Haliloğlu B, Abalı S, Buğrul F, et al. The distribution of different types of diabetes in childhood: a single center experience. J Clin Res Pediatr Endocrinol. 2018;10(2):125–130. doi: 10.4274/jcrpe.5204. PubMed DOI PMC
Elkholy S, Lardhi AA. Do we need to test for maturity onset diabetes of the young among newly diagnosed diabetics in Saudi Arabia? Int J Diabetes Mellitus. 2015;3(1):51–56. doi: 10.1016/j.ijdm.2011.01.006. DOI
De Franco E, Flanagan SE, Houghton JA, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015;386(9997):957–963. doi: 10.1016/S0140-6736(15)60098-8. PubMed DOI PMC
United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) (2023) Neonatal mortality data. Available from https://data.unicef.org/topic/child-survival/neonatal-mortality/#data. Accessed 2 Feb 2023
Kamal N, Othman N, Salih A. Incidence and types of congenital heart diseases among children in Sulaimani Governorate. Kurd J Appl Res. 2017;2(2):106–111. doi: 10.24017/science.2017.2.15. DOI
Lafta FM. Consanguineous marriages and some reproductive health parameters for sample from families in Baghdad, Iraq. Al-Mustansiriyah J Sci. 2010;21(5):344–354.
Saadat M, Ansari-Lari M, Farhud DD. Consanguineous marriage in Iran. Ann Hum Biol. 2004;31(2):263–269. doi: 10.1080/03014460310001652211. PubMed DOI
Dusatkova P, Pavlikova M, Elblova L, et al. Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young. Acta Diabetol. 2022;59(9):1169–1178. doi: 10.1007/s00592-022-01915-x. PubMed DOI PMC
Fowler A. DECoN: a detection and visualization tool for exonic copy number variants. Methods Mol Biol. 2022;2493:77–88. doi: 10.1007/978-1-0716-2293-3_6. PubMed DOI
Chen S, Francioli LC, Goodrich JK et al (2022) A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv 2022.03.20.485034 (Preprint). 10 Oct 2022. Available from 10.1101/2022.03.20.485034. Accessed 24 Sep 2023
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Pruhova S, Dusatkova P, Sumnik Z, et al. Glucokinase diabetes in 103 families from a country-based study in the Czech republic: geographically restricted distribution of two prevalent GCK mutations. Pediatr Diabetes. 2010;11(8):529–535. doi: 10.1111/j.1399-5448.2010.00646.x. PubMed DOI
Patel KA, Ozbek MN, Yildiz M, et al. Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional studies in paediatric diabetes clinics. Diabetologia. 2022;65(2):336–342. doi: 10.1007/s00125-021-05597-y. PubMed DOI PMC
Wakeling MN (2021) SavvySuite. 2018. Available from https://github.com/rdemolgen/SavvySuite/. Accessed 27 Aug 2023
WHO Multicentre Growth Reference Study Group (2009) WHO child growth standards: growth velocity based on weight, length and head circumference: methods and development. WHO, Geneva. Available from https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age. Accessed 5 Aug 2023
Houghton JA, Swift GH, Shaw-Smith C, et al. Isolated pancreatic aplasia due to a hypomorphic PTF1A mutation. Diabetes. 2016;65(9):2810–2815. doi: 10.2337/db15-1666. PubMed DOI PMC
Albishi LA, AlAmri E, Mahmoud AA. Relationships among consanguinity, family history, and the onset of type 1 diabetes in children from Saudi Arabia. Prim Care Diabetes. 2022;16(1):102–106. doi: 10.1016/j.pcd.2021.09.002. PubMed DOI
Rapini N, Patera PI, Schiaffini R, et al. Monogenic diabetes clinic (MDC): 3-year experience. Acta Diabetol. 2023;60(1):61–70. doi: 10.1007/s00592-022-01972-2. PubMed DOI PMC
Amaratunga SA, Tayeb TH, Dusatkova P, Pruhova S, Lebl J. Invaluable role of consanguinity in providing insight into paediatric endocrine conditions: lessons learnt from congenital hyperinsulinism, monogenic diabetes, and short stature. Horm Res Paediatr. 2022;95(1):1–11. doi: 10.1159/000521210. PubMed DOI
De Franco E, Owens NDL, Montaser H et al (2021) Primate-specific ZNF808 is essential for pancreatic development in humans. medRxiv 2021.08.23.21262262 (Preprint). 23 Aug 2021. Available from 10.1101/2021.08.23.21262262. Accessed 28 Jan 2023 PubMed PMC
Støy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–15044. doi: 10.1073/pnas.0707291104. PubMed DOI PMC
Weedon MN, Cebola I, Patch AM, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46(1):61–64. doi: 10.1038/ng.2826. PubMed DOI PMC
Kadowaki H, Takahashi Y, Ando A, et al. Four mutant alleles of the insulin receptor gene associated with genetic syndromes of extreme insulin resistance. Biochem Biophys Res Commun. 1997;237(3):516–520. doi: 10.1006/bbrc.1997.7181. PubMed DOI
Molho-Pessach V, Lerer I, Abeliovich D, et al. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet. 2008;83(4):529–534. doi: 10.1016/j.ajhg.2008.09.013. PubMed DOI PMC
Nampoothiri S, Elcioglu NH, Koca SS, et al. Does the clinical phenotype of mucolipidosis-IIIγ differ from its αβ counterpart?: supporting facts in a cohort of 18 patients. Clin Dysmorphol. 2019;28(1):7–16. doi: 10.1097/MCD.0000000000000249. PubMed DOI