The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37024672
PubMed Central
PMC10079658
DOI
10.1038/s42004-023-00862-0
PII: 10.1038/s42004-023-00862-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.
Zobrazit více v PubMed
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010;9:537–550. doi: 10.1038/nrd3141. PubMed DOI PMC
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: pros and cons, and comprehensive selection strategies. RNA Biol. 2016;13:1232–1245. doi: 10.1080/15476286.2016.1236173. PubMed DOI PMC
Civit L, et al. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie. 2018;145:53–62. doi: 10.1016/j.biochi.2017.10.007. PubMed DOI
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM. Toward the combinatorial selection of chemically modified DNAzyme RNase a mimics active against All-RNA substrates. ACS Comb. Sci. 2013;15:174–182. doi: 10.1021/co3001378. PubMed DOI
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018;134:3–21. doi: 10.1016/j.addr.2018.04.007. PubMed DOI
Rohloff JC, et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids. 2014;3:e201. doi: 10.1038/mtna.2014.49. PubMed DOI PMC
Minagawa H, et al. A high affinity modified DNA aptamer containing base-appended bases for human β-defensin. Anal. Biochem. 2020;594:113627. doi: 10.1016/j.ab.2020.113627. PubMed DOI
Chan KY, Kinghorn AB, Hollenstein M, Tanner JA. Chemical modifications for a next generation of nucleic acid aptamers. ChemBioChem. 2022;23:e202200006. doi: 10.1002/cbic.202200006. PubMed DOI
Latham JA, Johnson R, Toole JJ. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-Pentynyl)-2’-deoxyuridine. Nucleic Acids Res. 1994;22:2817–282. doi: 10.1093/nar/22.14.2817. PubMed DOI PMC
Battersby TR, et al. Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J. Am. Chem. Soc. 1999;121:9781–9789. doi: 10.1021/ja9816436. PubMed DOI
Vaught JD, et al. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 2010;132:4141–4151. doi: 10.1021/ja908035g. PubMed DOI
Ochsner UA, Katilius E, Janjic N. Detection of clostridium difficile toxins A, B and binary toxin with slow off-rate modified Aptamers. Diagn. Microbiol. Infect. Dis. 2013;76:278–285. doi: 10.1016/j.diagmicrobio.2013.03.029. PubMed DOI
Gold L, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5:e15004. doi: 10.1371/journal.pone.0015004. PubMed DOI PMC
Gawande BN, et al. Selection of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. 2017;114:2898–2903. doi: 10.1073/pnas.1615475114. PubMed DOI PMC
Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8:4016–4032. doi: 10.7150/thno.25958. PubMed DOI PMC
Ni S, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces. 2021;13:9500–9519. doi: 10.1021/acsami.0c05750. PubMed DOI
Byun J. Recent progress and opportunities for nucleic acid aptamers. Life. 2021;11:193. doi: 10.3390/life11030193. PubMed DOI PMC
Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004;351:2805–2816. doi: 10.1056/NEJMoa042760. PubMed DOI
Stuart RK, et al. Randomized phase II trial of the nucleolin targeting aptamer AS1411 combined with high-dose cytarabine in relapsed/refractory acute myeloid leukemia (AML) J. Clin. Oncol. 2009;27:7019. doi: 10.1200/jco.2009.27.15_suppl.7019. DOI
Chan MY, et al. A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J. Thromb. Haemost. 2008;6:789–796. doi: 10.1111/j.1538-7836.2008.02932.x. PubMed DOI
Cheung YW, et al. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl Acad. Sci. 2020;117:16790–16798. doi: 10.1073/pnas.2003267117. PubMed DOI PMC
Diafa S, Hollenstein M. Generation of aptamers with an expanded chemical repertoire. Molecules. 2015;20:16643–16671. doi: 10.3390/molecules200916643. PubMed DOI PMC
Renders M, Miller E, Lam CH, Perrin D. Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Org. Biomol. Chem. 2017;15:1980–1989. doi: 10.1039/C6OB02451C. PubMed DOI
Hirao I, et al. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods. 2006;3:729–735. doi: 10.1038/nmeth915. PubMed DOI
Pfeiffer F, et al. Identification and characteridation of nucleobase modified aptamers by click- SELEX. Nat. Protoc. 2018;13:1153–1180. doi: 10.1038/nprot.2018.023. PubMed DOI
Li M, et al. Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 2008;130:12636–12638. doi: 10.1021/ja801510d. PubMed DOI PMC
Hocek M. Synthesis of base-modified 2′-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified dna for applications in bioanalysis and chemical biology. J. Org. Chem. 2014;79:9914–9921. doi: 10.1021/jo5020799. PubMed DOI
Hocek M. Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein–DNA binding and transcription. Acc. Chem. Res. 2019;52:1730–1737. doi: 10.1021/acs.accounts.9b00195. PubMed DOI
Ondruš M, Sýkorová V, Bednárová L, Pohl R, Hocek M. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res. 2020;48:11982–11993. doi: 10.1093/nar/gkaa999. PubMed DOI PMC
Evans C, Chang L, Gestwicki J. Heat shock protein 70 (Hsp70) as an emerging drug target. J. Med. Chem. 2010;53:4585–4602. doi: 10.1021/jm100054f. PubMed DOI PMC
Lin C-N, et al. An aptamer interacting with heat shock protein 70 shows therapeutic effects and prognostic ability in serous ovarian cancer. Mol. Ther. Nucleic Acids. 2021;23:757–768. doi: 10.1016/j.omtn.2020.12.025. PubMed DOI PMC
Du, S. et al. Advances in the study of Hsp70 inhibitors to enhance the sensitivity of tumour cells to radiotherapy. Front. Cell Dev. Biol. 10, 942828 (2022). PubMed PMC
Freilich R, Arhar T, Abrams JL, Gestwicki JE. Protein-protein interactions in the molecular chaperone network. Acc. Chem. Res. 2018;51:940–949. doi: 10.1021/acs.accounts.8b00036. PubMed DOI PMC
Lee BJ, et al. A comparison of two commercially available ELISA methods for the quantification of human plasma heat shock protein 70 during rest and exercise stress. Cell Stress Chaperones. 2015;20:917–926. doi: 10.1007/s12192-015-0610-3. PubMed DOI PMC
Lechner, P., Buck, D., Sick, L., Hemmer, B. & Multhoff, G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin.4, 2055217318767192 (2018). PubMed PMC
Rérole A-L, et al. Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res. 2011;71:484–495. doi: 10.1158/0008-5472.CAN-10-1443. PubMed DOI
Matarazzo A, Brow J, Hudson RHE. Synthesis and photophysical evaluation of new fluorescent 7-arylethynyl-7-deazaadenosine analogs. Can. J. Chem. 2018;96:1093–1100. doi: 10.1139/cjc-2018-0303. DOI
Tanaka K, Okuda T, Kasahara Y, Obika S. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol. Ther. Nucleic Acids. 2021;23:440–449. doi: 10.1016/j.omtn.2020.11.016. PubMed DOI PMC
Yoshikawa AM, et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 2021;12:7106. doi: 10.1038/s41467-021-26933-1. PubMed DOI PMC
Kuwahara M, Sugimoto N. Molecular evolution of functional nucleic acids with chemical modifications. Molecules. 2010;15:5423–5444. doi: 10.3390/molecules15085423. PubMed DOI PMC
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–1161. doi: 10.1016/j.biotechadv.2015.02.008. PubMed DOI
Lee KH, Zeng H. Aptamer-based ELISA assay for highly specific and sensitive detection of Zika NS1 Protein. Anal. Chem. 2017;89:12743–12748. doi: 10.1021/acs.analchem.7b02862. PubMed DOI
Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS ONE. 2014;9:e106805. doi: 10.1371/journal.pone.0106805. PubMed DOI PMC
Stoltenburg R, Strehlitz B. Refining the results of a classical SELEX experiment by expanding the sequence data set of an aptamer pool selected for protein A. Int. J. Mol. Sci. 2018;19:E642. doi: 10.3390/ijms19020642. PubMed DOI PMC
Abou Assi H, Garavís M, González C, Damha MJ. I-Motif DNA.: structural features and significance to cell biology. Nucleic Acids Res. 2018;46:8038–8056. doi: 10.1093/nar/gky735. PubMed DOI PMC
Marangoni K, et al. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Sci. Rep. 2015;5:12090. doi: 10.1038/srep12090. PubMed DOI PMC