Arylethynyl- or Alkynyl-Linked Pyrimidine and 7-Deazapurine 2'-Deoxyribonucleoside 3'-Phosphoramidites for Chemical Synthesis of Hypermodified Hydrophobic Oligonucleotides

. 2023 Oct 24 ; 8 (42) : 39447-39453. [epub] 20231012

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37901526

We designed and synthesized a set of 2'-deoxyribonucleoside 3'-phosphoramidites derived from 5-phenylethynyluracil, 5-(pentyn-1-yl)cytosine, 7-(indol-3-yl)ethynyl-7-deazaadenine, and 7-isopropylethynyl-7-deazaguanine. These nucleoside phosphoramidites were successfully used for automated solid-phase synthesis of oligonucleotides containing one or several modifications, including fully modified sequences where every nucleobase was displaying a modification, and their hybridization was studied. The phosphoramidite building blocks have potential for synthesis of hypermodified aptamers and other functional nucleic acid-based polymers, which sequence-specifically display amino acid-like hydrophobic substituents.

Zobrazit více v PubMed

McKenzie L. K.; El-Khoury R.; Thorpe J. D.; Damha M. J.; Hollenstein M. Recent Progress in Non-Native Nucleic Acid Modifications. Chem. Soc. Rev. 2021, 50, 5126–5164. 10.1039/D0CS01430C. PubMed DOI

Röthlisberger P.; Hollenstein M. Aptamer Chemistry. Adv. Drug Delivery Rev. 2018, 134, 3–21. 10.1016/j.addr.2018.04.007. PubMed DOI

Vaught J. D.; Bock C.; Carter J.; Fitzwater T.; Otis M.; Schneider D.; Rolando J.; Waugh S.; Wilcox S. K.; Eaton B. E. Expanding the Chemistry of DNA for in Vitro Selection. J. Am. Chem. Soc. 2010, 132, 4141–4151. 10.1021/ja908035g. PubMed DOI

Rohloff J. C.; Gelinas A. D.; Jarvis T. C.; Ochsner U. A.; Schneider D. J.; Gold L.; Janjic N. Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. Mol. Ther.--Nucleic Acids 2014, 3, e20110.1038/mtna.2014.49. PubMed DOI PMC

Cheung Y.-W.; Röthlisberger P.; Mechaly A. E.; Weber P.; Levi-Acobas F.; Lo Y.; Wong A. W. C.; Kinghorn A. B.; Haouz A.; Savage G. P.; Hollenstein M.; Tanner J. A. Evolution of Abiotic Cubane Chemistries in a Nucleic Acid Aptamer Allows Selective Recognition of a Malaria Biomarker. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 16790–16798. 10.1073/pnas.2003267117. PubMed DOI PMC

Mulholland C.; Jestřábová I.; Sett A.; Ondruš M.; Sýkorová V.; Manzanares C. L.; Šimončík O.; Muller P.; Hocek M. The Selection of a Hydrophobic 7-Phenylbutyl-7-Deazaadenine-Modified DNA Aptamer with High Binding Affinity for the Heat Shock Protein 70. Commun. Chem. 2023, 6, 65.10.1038/s42004-023-00862-0. PubMed DOI PMC

Gawande B. N.; Rohloff J. C.; Carter J. D.; von Carlowitz I.; Zhang C.; Schneider D. J.; Janjic N. Selection of DNA Aptamers with Two Modified Bases. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 2898–2903. 10.1073/pnas.1615475114. PubMed DOI PMC

Wagner R. W. Gene Inhibition Using Antisense Oligodeoxynucleotides. Nature 1994, 372, 333–335. 10.1038/372333a0. PubMed DOI

Wagner R. W.; Matteucci M. D.; Lewis J. G.; Gutierrez A. J.; Moulds C.; Froehler B. C. Antisense Gene Inhibition by Oligonucleotides Containing C-5 Propyne Pyrimidines. Science 1993, 260, 1510–1513. 10.1126/science.7684856. PubMed DOI

Wagner R. W.; Matteucci M. D.; Grant D.; Huang T.; Froehler B. C. Potent and Selective Inhibition of Gene Expression by an Antisense Heptanucleotide. Nat. Biotechnol. 1996, 14, 840–844. 10.1038/nbt0796-840. PubMed DOI

Barnes T. W.; Turner D. H. Long-Range Cooperativity in Molecular Recognition of RNA by Oligodeoxynucleotides with Multiple C5-(1-Propynyl) Pyrimidines. J. Am. Chem. Soc. 2001, 123, 4107–4118. 10.1021/ja003208t. PubMed DOI

Gyi J. I.; Gao D.; Conn G. L.; Trent J. O.; Brown T.; Lane A. N. The Solution Structure of a DNA6RNA Duplex Containing 5-Propynyl U and C; Comparison with 5-Me Modifications. Nucleic Acids Res. 2003, 31, 2683–2693. 10.1093/nar/gkg356. PubMed DOI PMC

Kottysch T.; Ahlborn C.; Brotzel F.; Richert C. Stabilizing or Destabilizing Oligodeoxynucleotide Duplexes Containing Single 2’-Deoxyuridine Residues with 5-Alkynyl Substituents. Chem.—Eur. J. 2004, 10, 4017–4028. 10.1002/chem.200306044. PubMed DOI

Buhr C. A.; Wagner R. W.; Grant D.; Froehler B. C. Oligodeoxynucleotides Containing C-7 Propyne Analogs of 7-Deaza-2’-Deoxyguanosine and 7-Deaza-2’-Deoxyadenosine. Nucleic Acids Res. 1996, 24, 2974–2980. 10.1093/nar/24.15.2974. PubMed DOI PMC

Seela F.; Zulauf M. 7-Deazaadenine-DNA: Bulky 7-Iodo Substituents or Hydrophobic 7-Hexynyl Chains Are Well Accommodated in the Major Groove of Oligonucleotide Duplexes. Chem.—Eur. J. 1998, 4, 1781–1790. 10.1002/(sici)1521-3765(19980904)4:9<1781::aid-chem1781>3.0.co;2-k. DOI

Seela F.; Shaikh K. I. Oligonucleotides Containing 7-Propynyl-7-Deazaguanine: Synthesis and Base Pair Stability. Tetrahedron 2005, 61, 2675–2681. 10.1016/j.tet.2005.01.060. DOI

Skorobogatyi M. V.; Malakhov A. D.; Pchelintseva A. A.; Turban A. A.; Bondarev S. L.; Korshun V. A. Fluorescent 5-Alkynyl-2’-Deoxyuridines: High Emission Efficiency of a Conjugated Perylene Nucleoside in a DNA Duplex. ChemBioChem 2006, 7, 810–816. 10.1002/cbic.200600040. PubMed DOI

Saito Y.; Motegi K.; Bag S. S.; Saito I. Anthracene Based Base-Discriminating Fluorescent Oligonucleotide Probes for SNPs Typing: Synthesis and Photophysical Properties. Bioorg. Med. Chem. 2008, 16, 107–113. 10.1016/j.bmc.2006.07.025. PubMed DOI

Okamoto A.; Kanatani K.; Saito I. Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing. J. Am. Chem. Soc. 2004, 126, 4820–4827. 10.1021/ja039625y. PubMed DOI

Barbaric J.; Wagenknecht H.-A. DNA as a Supramolecular Scaffold for the Helical Arrangement of a Stack of 1-Ethynylpyrene Chromophores. Org. Biomol. Chem. 2006, 4, 2088–2090. 10.1039/b605251g. PubMed DOI

Jäger S.; Famulok M. Generation and Enzymatic Amplification of High-Density Functionalized DNA Double Strands. Angew. Chem., Int. Ed. 2004, 43, 3337–3340. 10.1002/anie.200453926. PubMed DOI

Jäger S.; Rasched G.; Kornreich-Leshem H.; Engeser M.; Thum O.; Famulok M. A Versatile Toolbox for Variable DNA Functionalization at High Density. J. Am. Chem. Soc. 2005, 127, 15071–15082. 10.1021/ja051725b. PubMed DOI

Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; Hocek M. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of All Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI

Hili R.; Niu J.; Liu D. R. DNA Ligase-Mediated Translation of DNA into Densely Functionalized Nucleic Acid Polymers. J. Am. Chem. Soc. 2013, 135, 98–101. 10.1021/ja311331m. PubMed DOI PMC

Chen Z.; Lichtor P. A.; Berliner A. P.; Chen J. C.; Liu D. R. Evolution of Sequence-Defined Highly Functionalized Nucleic Acid Polymers. Nat. Chem. 2018, 10, 420–427. 10.1038/s41557-018-0008-9. PubMed DOI PMC

Ondruš M.; Sýkorová V.; Bednárová L.; Pohl R.; Hocek M. Enzymatic Synthesis of Hypermodified DNA Polymers for Sequence-Specific Display of Four Different Hydrophobic Groups. Nucleic Acids Res. 2020, 48, 11982–11993. 10.1093/nar/gkaa999. PubMed DOI PMC

Ondruš M.; Sýkorová V.; Hocek M. Traceless Enzymatic Synthesis of Monodispersed Hypermodified Oligodeoxyribonucleotide Polymers from RNA Templates. Chem. Commun. 2022, 58, 11248–11251. 10.1039/D2CC03588J. PubMed DOI

Beaucage S. L.; Caruthers M. H. Deoxynucleoside Phosphoramidites—A New Class of Key Intermediates for Deoxypolynucleotide Synthesis. Tetrahedron Lett. 1981, 22, 1859–1862. 10.1016/S0040-4039(01)90461-7. DOI

Chakrapani A.; Vaňková Hausnerová V.; Ruiz-Larrabeiti O.; Pohl R.; Krásný L.; Hocek M. Photocaged 5-(Hydroxymethyl)Pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA. Org. Lett. 2020, 22, 9081–9085. 10.1021/acs.orglett.0c03462. PubMed DOI

Knapp D. C.; Serva S.; D’Onofrio J.; Keller A.; Lubys A.; Kurg A.; Remm M.; Engels J. W. Fluoride-Cleavable, Fluorescently Labelled Reversible Terminators: Synthesis and Use in Primer Extension. Chem.—Eur. J. 2011, 17, 2903–2915. 10.1002/chem.201001952. PubMed DOI PMC

Sánchez-Cantalejo F.; Priest J. D.; Davies P. W. A Gold Carbene Manifold to Prepare Fused γ-Lactams by Oxidative Cyclisation of Ynamides. Chem.—Eur. J. 2018, 24, 17215–17219. 10.1002/chem.201804378. PubMed DOI PMC

Ménová P.; Dziuba D.; Güixens-Gallardo P.; Jurkiewicz P.; Hof M.; Hocek M. Fluorescence Quenching in Oligonucleotides Containing 7-Substituted 7-Deazaguanine Bases Prepared by the Nicking Enzyme Amplification Reaction. Bioconjugate Chem. 2015, 26, 361–366. 10.1021/acs.bioconjchem.5b00006. PubMed DOI

Hudson R. H. E.; Ghorbani-Choghamarani A. Oligodeoxynucleotides Incorporating Structurally Simple 5-Alkynyl-2’-Deoxyuridines Fluorometrically Respond to Hybridization. Org. Biomol. Chem. 2007, 5, 1845–1848. 10.1039/B705805E. PubMed DOI

Østergaard M. E.; Kumar P.; Baral B.; Guenther D. C.; Anderson B. A.; Ytreberg F. M.; Deobald L.; Paszczynski A. J.; Sharma P. K.; Hrdlicka P. J. C5-Functionalized DNA, LNA, and α-L-LNA: Positional Control of Polarity-Sensitive Fluorophores Leads to Improved SNP-Typing. Chem.—Eur. J. 2011, 17, 3157–3165. 10.1002/chem.201002109. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace