Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33152081
PubMed Central
PMC7708046
DOI
10.1093/nar/gkaa999
PII: 5957170
Knihovny.cz E-zdroje
- MeSH
- adenin chemie metabolismus MeSH
- aptamery nukleotidové chemická syntéza genetika MeSH
- cytosin chemie metabolismus MeSH
- deoxyribonukleosidy chemie genetika metabolismus MeSH
- dinukleosidfosfáty chemie genetika metabolismus MeSH
- DNA-dependentní DNA-polymerasy genetika metabolismus MeSH
- DNA chemie genetika metabolismus MeSH
- guanin chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- párování bází MeSH
- polymerázová řetězová reakce MeSH
- polymery chemická syntéza metabolismus MeSH
- replikace DNA * MeSH
- sekvence nukleotidů MeSH
- uracil chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- aptamery nukleotidové MeSH
- cytosin MeSH
- deoxyribonukleosidy MeSH
- dinukleosidfosfáty MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- guanin MeSH
- polymery MeSH
- uracil MeSH
A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.
Zobrazit více v PubMed
Keefe A.D., Pai S., Ellington A.. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010; 9:537–550. PubMed PMC
Dunn M.R., Jimenez R.M., Chaput J.C.. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017; 1:0076.
Ng E.W.M., Shima D.T., Calias P., Cunningham E.T., Guyer D.R., Adamis A.P.. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006; 5:123–132. PubMed
Ma H., Liu J., Ali M.M., Mahmood M.A.I., Labanieh L., Lu M., Iqbal S.M., Zhang Q., Zhao W., Wan Y.C.. Nucleic acid aptamers in cancer research, diagnostics and therapy. Chem. Soc. Rev. 2015; 44:1240–1256. PubMed
Diafa S., Hollenstein M.. Generation of aptamers with an expanded chemical repertoire. Molecules. 2015; 20:16643–16671. PubMed PMC
Lapa S.A., Chudinov A.V., Timofeev E.N.. The toolbox for modified aptamers. Mol. Biotechnol. 2016; 58:79–92. PubMed
Röthlisberger P., Hollenstein M.. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018; 134:3–21. PubMed
Latham J.A., Johnson R., Toole J.J.. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. 1994; 22:2817–2822. PubMed PMC
Li M., Lin N., Huang Z., Lupei D., Altier C., Fang H., Wang B.. Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 2008; 130:12636–12638. PubMed PMC
Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T. et al. .. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010; 5:e15004. PubMed PMC
Vaught J.D., Bock C., Carter J., Fitzwater T., Otis M., Schneider D., Rolando J., Waugh S., Wilcox S.K., Eaton B.E.. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 2010; 132:4141–4151. PubMed
Imaizumi Y., Kasahara Y., Fujita H., Kitadume S., Ozaki H., Endoh T., Kuwahara M., Sugimoto N.. Efficacyof Base-Modification on Target Binding of Small Molecule DNA Aptamers. J. Am. Chem.Soc. 2013; 135:9412–9419. PubMed
Gupta S., Drolet D.W., Wolk S.K., Waugh S.M., Rohloff J.C., Carter J.D., Mayfield W.S., Otis M.R., Fowler C.R. et al. .. Pharmacokinetic properties of DNA aptamers with base modifications. Nucleic Acid Ther. 2017; 27:345–353. PubMed PMC
Renders M., Miller E., Lam C.H., Perrin D.M.. Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Org. Biomol. Chem. 2017; 15:1980–1989. PubMed
Dolot R., Lam C.H., Sierant M., Zhao Q., Liu F.-W., Nawrot B., Egli M., Yang X.. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018; 46:4819–4830. PubMed PMC
Minagawa H., Shimizu A., Kataoka Y., Kuwahara M., Kato S., Horii K., Shiratori I., Waga I.. Fluorescence polarization-based rapid detection system for salivary biomarkers using modified DNA aptamers containing base-appended bases. Anal. Chem. 2020; 92:1780–1787. PubMed
Percze K., Mészáros T.. Analysis of modified nucleotide aptamer library generation by thermophilic DNA polymerases. ChemBioChem. 2020; 21:2939–2944. PubMed PMC
Cheung Y.-W., Röthlisberger P., Mechaly A.E., Weber P., Levi-Acobas F., Lo Y., Wong A.W.C., Kinghorn A.B., Haouz A., Savage G.P. et al. .. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl. Acad. Sci. USA. 2020; 117:16790–16798. PubMed PMC
Gawande B.N., Rohloff J.C., Carter J.D., von Carlowitz I., Zhang C., Schneider D.J., Janjic N.. Selection of DNA aptamers with two modified bases. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:2898–2903. PubMed PMC
Gasse C., Zaarour M., Noppen S., Abramov M., Marlière P., Liekens S., De Strooper B., Herdewijn P.. Modulation of BACE1 activity by chemically modified aptamers. ChemBioChem. 2018; 19:754–763. PubMed
Tolle F., Brandle G.M., Matzner D., Mayer G.. Angew. Chem. Int. Ed. 2015; 54:10971–10974. PubMed
Temme J.S., Drzyzga M.G., MacPherson I.S., Krauss I.J.. Directed evolution of 2G12-targeted nonamannose glycoclusters by SELMA. Chem. Eur. J. 2013; 19:17291–17295. PubMed PMC
Tolle F., Mayer G.. Dressed for success – applying chemistry to modulate aptamer functionality. Chem. Sci. 2013; 4:60–67.
Pfeiffer F., Tolle F., Rosenthal M., Brändle G.M., Ewers J., Mayer G.. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat. Protoc. 2018; 13:1153–1180. PubMed
Gordon C.K.L., Wu D., Pusuluri A., Feagin T.A., Csordas A.T., Eisenstein M.S., Hawker C.J., Niu J., Soh H.T.. Click-Particle display for base-modified aptamer discovery. ACS Chem. Biol. 2019; 14:2652–2662. PubMed PMC
Rosenthal M., Pfeiffer F., Mayer G.. A receptor-guided design strategy for ligand identification. Angew. Chem. Int. Ed. 2019; 58:10752–10755. PubMed
Shao Q., Chen T., Sheng K., Liu Z., Zhang Z., Romesberg F.E.. Selection of aptamers with large hydrophobic 2′-substituents. J. Am. Chem. Soc. 2020; 142:2125–2128. PubMed
Kimoto M., Yamashige R., Matsunaga K., Yokoyama S., Hirao I.. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013; 31:453–457. PubMed
Matsunaga K.-I., Kimoto M., Hirao I.. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J. Am. Chem. Soc. 2017; 139:324–334. PubMed
Sefah K., Yang Z., Bradley K.M., Hoshika S., Jiménez E., Zhang L., Zhu G., Shanker S., Yu F., Turek D. et al. .. In vitro selection with artificial expanded genetic information systems. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:1449–1454. PubMed PMC
Biondi E., Lane J.D., Das D., Dasgupta S., Piccirilli J.A., Hoshika S., Bradley K.M., Krantz B.A., Benner S.A.. Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic Acids Res. 2016; 44:9565–9577. PubMed PMC
Hili R., Niu J., Liu D.R.. DNA ligase-mediated translation of DNA into densely functionalized nucleic acid polymers. J. Am. Chem. Soc. 2013; 135:98–101. PubMed PMC
Lei Y., Kong D., Hili R.. A high-fidelity codon set for the T4 DNA ligase-catalyzed polymerization of modified oligonucleotides. ACS Comb. Sci. 2015; 17:716–721. PubMed
Kong D., Yeung W., Hili R.. In vitro selection of diversely functionalized aptamers. J. Am. Chem. Soc. 2017; 139:13977–13980. PubMed
Chen Z., Lichtor P.A., Berliner A.P., Chen J.C., Liu D.R.. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat. Chem. 2018; 10:420–427. PubMed PMC
Guo C., Mahdavi-Amiri Y., Hili R.. Influence of linker length on ligase-catalyzed oligonucleotide polymerization. ChemBioChem. 2019; 20:793–799. PubMed
Lichtor P.A., Chen Z., Elowe N.H., Chen J.C., Liu D.R.. Side chain determinants of biopolymer function during selection and replication. Nat. Chem. Biol. 2019; 15:419–426. PubMed PMC
Badi N., Lutz J.-F.. Sequence control in polymer synthesis. Chem. Soc. Rev. 2009; 38:3383–3390. PubMed
Terashima T., Mes T., De Greef T.F.A., Gillissen M.A.J., Besenius P., Palmans A.R.A., Meijer E.W.. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 2011; 133:4742–4745. PubMed
Celasun S., Remmler D., Schwaar T., Weller M.G., Du Prez F., Börner H.G.. Digginginto the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains. Angew. Chem. Int. Ed. 2019; 58:1960–1964. PubMed
Solleder S.C., Zengel D., Wetzel K.S., Meier M.A.R.. A scalable and high-yield strategy for the synthesis of sequence-defined macromolecules. Angew. Chem. Int. Ed. 2016; 55:1204–1207. PubMed
Yang C., Flynn J.P., Niu J.. Facile synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 2018; 57:16194–16199. PubMed
Hocek M. Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein-DNA binding and transcription. Acc. Chem. Res. 2019; 52:1730–1737. PubMed
Hottin A., Marx A.. Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc. Chem. Res. 2016; 49:418–427. PubMed
Kielkowski P., Fanfrlík J., Hocek M.. 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew. Chem. Int. Ed. 2014; 53:7552–7555. PubMed
Cahová H., Panattoni A., Kielkowski P., Fanfrlík J., Hocek M.. 5-Substituted pyrimidine and 7-substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem. Biol. 2016; 11:3165–3171. PubMed
Bergen K., Steck A.-L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A.. Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J. Am. Chem. Soc. 2012; 134:11840–11843. PubMed
Hottin A., Betz K., Diederichs K., Marx A.. Structural basis for the KlenTaq DNA polymerase catalysed incorporation of alkene- versus alkyne-modified nucleotides. Chem. Eur. J. 2017; 23:2109–2118. PubMed
Kropp H.M., Diederichs K., Marx A.. The structure of an archaeal B-family DNA polymerase in complex with a chemically modified nucleotide. Angew. Chem. Int. Ed. 2019; 58:5457–5461. PubMed
Ménová P., Hocek M.. Preparation of short cytosine-modified oligonucleotides by nicking enzyme amplification reaction. Chem. Commun. 2012; 48:6921–6923. PubMed
Ménová P., Raindlová V., Hocek M.. Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR. Bioconjug. Chem. 2013; 24:1081–1093. PubMed
Sarac I., Hollenstein M.. Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids. ChemBioChem. 2019; 20:860–871. PubMed
Hollenstein M. Generation of long, fully modified, and serum-resistant oligonucleotides by rolling circle amplification. Org. Biomol. Chem. 2015; 13:9820–9824. PubMed
Wang Y., Tkachenko B.A., Schreiner P.R., Marx A.. Diamondoid-modified DNA. Org. Biomol. Chem. 2011; 9:7482–7490. PubMed
Fujita H., Nakajima K., Kasahara Y., Ozaki H., Kuwahara M.. Polymerase-mediated high-density incorporation of amphiphilic functionalities into DNA: enhancement of nuclease resistance and stability in human serum. Bioorg. Med. Chem. Lett. 2015; 25:333–336. PubMed
Baccaro A., Marx A.. Enzymatic synthesis of organic-polymer-grafted DNA. Chem. Eur. J. 2010; 16:218–226. PubMed
Ikonen S., Macícková-Cahová H., Pohl R., Sanda M., Hocek M.. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org. Biomol. Chem. 2010; 8:1194–1201. PubMed
Balintová J., Simonova A., Białek-Pietras M., Olejniczak A., Lesnikowski Z.J., Hocek M.. Carborane-linked 2′-deoxyuridine 5′-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA. Bioorg. Med. Chem. Lett. 2017; 27:4786–4788. PubMed
Zasedateleva O.A., Surzhikov S.A., Shershov V.E., Miftakhov R.A., Yurasov D.A., Kuznetsova V.E., Chudinov A.. PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases. Bioorg. Chem. 2020; 99:103829. PubMed
Hollenstein M., Hipolito C.J., Lam C.H., Perrin D.M.. A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. ChemBioChem. 2009; 10:1988–1992. PubMed
Hollenstein M. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues–synthesis and biochemical characterization. Org. Biomol. Chem. 2013; 11:5162–5172. PubMed
Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M.. Benzofurazane as a new redox label for electrochemical detection of DNA: towards multipotential redox coding of DNA bases. Chem. Eur. J. 2013; 19:12720–12731. PubMed
Wang Y., Liu E., Lam C.H., Perrin D.M.. A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 2018; 9:1813–1821. PubMed PMC
Simonova A., Magriñá I., Sýkorová V., Pohl R., Ortiz M., Havran L., Fojta M., O’Sullivan C.K., Hocek M.. Tuning of oxidation potential of ferrocene for ratiometric redox labeling and coding of nucleotides and DNA. Chem. Eur. J. 2020; 26:1286–1291. PubMed PMC
Augustin M.A., Ankenbauer W., Angerer B.. Progress towards single-molecule sequencing: enzymatic synthesis of nucleotide-specifically labeled DNA. J. Biotechnol. 2001; 86:289–301. PubMed
Thum O., Jäger S., Famulok M.. Functionalized DNA: a new replicable biopolymer. Angew. Chem. Int. Ed. 2001; 40:3990–3993. PubMed
Jäger S., Famulok M.. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew. Chem. Int. Ed. 2004; 43:3337–3340. PubMed
Jäger S., Rasched G., Kornreich-Leshem H., Engeser M., Thum O., Famulok M.. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005; 127:15071–15082. PubMed
Chen F., Dong M., Ge M., Zhu L., Ren L., Liu G., Mu R.. The history and advances of reversible terminators used in new generations of sequencing technology. Genomics Proteomics Bioinformatics. 2013; 11:34–40. PubMed PMC
Bentley D.R., Balasubramanian S., Swerdlow H.P., Smith G.P., Milton J., Brown C.G., Hall K.P., Evers D.J., Barnes C.L., Bignell H.R. et al. .. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456:53–59. PubMed PMC
Seo T.S., Bai X., Kim D.H., Meng Q., Shi S., Ruparel H., Li Z., Turro N.J., Ju J.. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:5926–5931. PubMed PMC
Eremeeva E., Abramov M., Margamuljana L., Rozenski J., Pezo V., Marlière P., Herdewijn P.. Chemical morphing of DNA containing four noncanonical bases. Angew. Chem. Int. Ed. 2016; 55:7515–7519. PubMed
Whitfield C.J., Little R.C., Khan K., Ijiro K., Connolly B.A., Tuite E.M., Pike A.R.. Self-priming enzymatic fabrication of multiply modified DNA. Chem. Eur. J. 2018; 24:15267–15274. PubMed
Yu C.J., Yowanto H., Wan Y., Meade T.J., Chong Y., Strong M., Donilon L.H., Kayyem J.F., Gozin M., Blackburn G.F.. Uridine-conjugated ferrocene DNA oligonucleotides: unexpected cyclization reaction of the uridine base. J. Am. Chem. Soc. 2000; 122:6767–6768.
Pike A.R., Ryder L.C., Horrocks B.R., Clegg W., Elsegood M.R.J., Connolly B.A., Houlton A.. Metallocene-DNA: synthesis, molecular and electronic structure and DNA incorporation of C5-ferrocenylthymidine derivatives. Chem. Eur. J. 2002; 8:2891–2899. PubMed
McGuigan C., Balzarini J.. Aryl furano pyrimidines: the most potent and selective anti-VZV agents reported to date. Antiviral Res. 2006; 71:149–153. PubMed
Sniady A., Sevilla M.D., Meneni S., Lis T., Szafert S., Khanduri D., Finke J.M., Dembinski R.. Synthesis and EPR studies of 2′-deoxyuridines with alkynyl, rodlike linkages. Chem. Eur. J. 2009; 15:7569–7577. PubMed PMC
Kovács T., Ötvös L.. Simple synthesis of 5-vinyl- and5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988; 29:4525–4528.
Krömer M., Bártová K., Raindlová V., Hocek M.. Synthesis of dihydroxyalkynyl and dihydroxyalkyl nucleotides as building blocks or precursors for introduction of diol or aldehyde groups to DNA for bioconjugations. Chem. Eur. J. 2018; 24:11890–11894. PubMed
Nishioka M., Mizuguchi H., Fujiwara S., Komatsubara S., Kitabayashi M., Uemura H., Takagi M., Imanaka T.. Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J. Biotechnol. 2001; 88:141–149. PubMed
Kujau M.J., Wölfl S.. Efficient preparation of single-stranded DNA for in vitro selection. Mol. Biotechnol. 1997; 7:333–335. PubMed
Null A.P., Hannis J.C., Muddiman D.C.. Preparation of single-stranded PCR products for electrospray ionization mass spectrometry using the DNA repair enzyme lambda exonuclease. Analyst. 2000; 125:619–626. PubMed
Lee S.E., Sidorov A., Gourlain T., Mignet N., Thorpe S.J., Brazier J.A., Dickman M.J., Hornby D.P., Grasby J.A., Williams D.M.. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001; 29:1565–1573. PubMed PMC
Gourlain T., Sidorov A., Mignet N., Thorpe S.J., Lee S.E., Grasby J.A., Williams D.M.. Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 2001; 29:1898–1905. PubMed PMC
Guixens-Gallardo P., Hocek M., Perlikova P.. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg. Med. Chem. Lett. 2016; 26:288–291. PubMed
Gyllensten U.B., Erlich H.A.. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. U.S.A. 1988; 85:7652–7656. PubMed PMC
He J., Seela F.. Propynyl groups in duplex DNA: stability of base pairs incorporating 7-substituted 8-aza-7-deazapurines or 5-substituted pyrimidines. Nucleic Acids Res. 2002; 30:5485–5496. PubMed PMC
Freier S.M., Altmann K.H.. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997; 25:4429–4443. PubMed PMC
Wagner R.W., Matteucci M.D., Lewis J.G., Gutierrez A.J., Moulds C., Froehler B.C.. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993; 260:1510–1513. PubMed
Wagner R.W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994; 372:333–335. PubMed
Kypr J., Kejnovská I., Renciuk D., Vorlícková M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Ivanov V.I., Minchenkova L.E., Schyolkina A.K., Poletayev A.I.. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973; 12:89–110. PubMed
Brakmann S., Löbermann S.. High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew. Chem. Int. Ed. 2001; 40:1427–1429. PubMed
Ehrlich N., Anhalt K., Paulsen H., Brakmann S., Hübner C.G.. Exonucleolytic degradation of high-density labeled DNA studied by fluorescence correlation spectroscopy. Analyst. 2012; 137:1160–1167. PubMed