Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups

. 2020 Dec 02 ; 48 (21) : 11982-11993.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33152081

A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.

Zobrazit více v PubMed

Keefe A.D., Pai S., Ellington A.. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010; 9:537–550. PubMed PMC

Dunn M.R., Jimenez R.M., Chaput J.C.. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017; 1:0076.

Ng E.W.M., Shima D.T., Calias P., Cunningham E.T., Guyer D.R., Adamis A.P.. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006; 5:123–132. PubMed

Ma H., Liu J., Ali M.M., Mahmood M.A.I., Labanieh L., Lu M., Iqbal S.M., Zhang Q., Zhao W., Wan Y.C.. Nucleic acid aptamers in cancer research, diagnostics and therapy. Chem. Soc. Rev. 2015; 44:1240–1256. PubMed

Diafa S., Hollenstein M.. Generation of aptamers with an expanded chemical repertoire. Molecules. 2015; 20:16643–16671. PubMed PMC

Lapa S.A., Chudinov A.V., Timofeev E.N.. The toolbox for modified aptamers. Mol. Biotechnol. 2016; 58:79–92. PubMed

Röthlisberger P., Hollenstein M.. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018; 134:3–21. PubMed

Latham J.A., Johnson R., Toole J.J.. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. 1994; 22:2817–2822. PubMed PMC

Li M., Lin N., Huang Z., Lupei D., Altier C., Fang H., Wang B.. Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 2008; 130:12636–12638. PubMed PMC

Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T. et al. .. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010; 5:e15004. PubMed PMC

Vaught J.D., Bock C., Carter J., Fitzwater T., Otis M., Schneider D., Rolando J., Waugh S., Wilcox S.K., Eaton B.E.. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 2010; 132:4141–4151. PubMed

Imaizumi Y., Kasahara Y., Fujita H., Kitadume S., Ozaki H., Endoh T., Kuwahara M., Sugimoto N.. Efficacyof Base-Modification on Target Binding of Small Molecule DNA Aptamers. J. Am. Chem.Soc. 2013; 135:9412–9419. PubMed

Gupta S., Drolet D.W., Wolk S.K., Waugh S.M., Rohloff J.C., Carter J.D., Mayfield W.S., Otis M.R., Fowler C.R. et al. .. Pharmacokinetic properties of DNA aptamers with base modifications. Nucleic Acid Ther. 2017; 27:345–353. PubMed PMC

Renders M., Miller E., Lam C.H., Perrin D.M.. Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Org. Biomol. Chem. 2017; 15:1980–1989. PubMed

Dolot R., Lam C.H., Sierant M., Zhao Q., Liu F.-W., Nawrot B., Egli M., Yang X.. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018; 46:4819–4830. PubMed PMC

Minagawa H., Shimizu A., Kataoka Y., Kuwahara M., Kato S., Horii K., Shiratori I., Waga I.. Fluorescence polarization-based rapid detection system for salivary biomarkers using modified DNA aptamers containing base-appended bases. Anal. Chem. 2020; 92:1780–1787. PubMed

Percze K., Mészáros T.. Analysis of modified nucleotide aptamer library generation by thermophilic DNA polymerases. ChemBioChem. 2020; 21:2939–2944. PubMed PMC

Cheung Y.-W., Röthlisberger P., Mechaly A.E., Weber P., Levi-Acobas F., Lo Y., Wong A.W.C., Kinghorn A.B., Haouz A., Savage G.P. et al. .. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl. Acad. Sci. USA. 2020; 117:16790–16798. PubMed PMC

Gawande B.N., Rohloff J.C., Carter J.D., von Carlowitz I., Zhang C., Schneider D.J., Janjic N.. Selection of DNA aptamers with two modified bases. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:2898–2903. PubMed PMC

Gasse C., Zaarour M., Noppen S., Abramov M., Marlière P., Liekens S., De Strooper B., Herdewijn P.. Modulation of BACE1 activity by chemically modified aptamers. ChemBioChem. 2018; 19:754–763. PubMed

Tolle F., Brandle G.M., Matzner D., Mayer G.. Angew. Chem. Int. Ed. 2015; 54:10971–10974. PubMed

Temme J.S., Drzyzga M.G., MacPherson I.S., Krauss I.J.. Directed evolution of 2G12-targeted nonamannose glycoclusters by SELMA. Chem. Eur. J. 2013; 19:17291–17295. PubMed PMC

Tolle F., Mayer G.. Dressed for success – applying chemistry to modulate aptamer functionality. Chem. Sci. 2013; 4:60–67.

Pfeiffer F., Tolle F., Rosenthal M., Brändle G.M., Ewers J., Mayer G.. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat. Protoc. 2018; 13:1153–1180. PubMed

Gordon C.K.L., Wu D., Pusuluri A., Feagin T.A., Csordas A.T., Eisenstein M.S., Hawker C.J., Niu J., Soh H.T.. Click-Particle display for base-modified aptamer discovery. ACS Chem. Biol. 2019; 14:2652–2662. PubMed PMC

Rosenthal M., Pfeiffer F., Mayer G.. A receptor-guided design strategy for ligand identification. Angew. Chem. Int. Ed. 2019; 58:10752–10755. PubMed

Shao Q., Chen T., Sheng K., Liu Z., Zhang Z., Romesberg F.E.. Selection of aptamers with large hydrophobic 2′-substituents. J. Am. Chem. Soc. 2020; 142:2125–2128. PubMed

Kimoto M., Yamashige R., Matsunaga K., Yokoyama S., Hirao I.. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013; 31:453–457. PubMed

Matsunaga K.-I., Kimoto M., Hirao I.. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J. Am. Chem. Soc. 2017; 139:324–334. PubMed

Sefah K., Yang Z., Bradley K.M., Hoshika S., Jiménez E., Zhang L., Zhu G., Shanker S., Yu F., Turek D. et al. .. In vitro selection with artificial expanded genetic information systems. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:1449–1454. PubMed PMC

Biondi E., Lane J.D., Das D., Dasgupta S., Piccirilli J.A., Hoshika S., Bradley K.M., Krantz B.A., Benner S.A.. Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic Acids Res. 2016; 44:9565–9577. PubMed PMC

Hili R., Niu J., Liu D.R.. DNA ligase-mediated translation of DNA into densely functionalized nucleic acid polymers. J. Am. Chem. Soc. 2013; 135:98–101. PubMed PMC

Lei Y., Kong D., Hili R.. A high-fidelity codon set for the T4 DNA ligase-catalyzed polymerization of modified oligonucleotides. ACS Comb. Sci. 2015; 17:716–721. PubMed

Kong D., Yeung W., Hili R.. In vitro selection of diversely functionalized aptamers. J. Am. Chem. Soc. 2017; 139:13977–13980. PubMed

Chen Z., Lichtor P.A., Berliner A.P., Chen J.C., Liu D.R.. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat. Chem. 2018; 10:420–427. PubMed PMC

Guo C., Mahdavi-Amiri Y., Hili R.. Influence of linker length on ligase-catalyzed oligonucleotide polymerization. ChemBioChem. 2019; 20:793–799. PubMed

Lichtor P.A., Chen Z., Elowe N.H., Chen J.C., Liu D.R.. Side chain determinants of biopolymer function during selection and replication. Nat. Chem. Biol. 2019; 15:419–426. PubMed PMC

Badi N., Lutz J.-F.. Sequence control in polymer synthesis. Chem. Soc. Rev. 2009; 38:3383–3390. PubMed

Terashima T., Mes T., De Greef T.F.A., Gillissen M.A.J., Besenius P., Palmans A.R.A., Meijer E.W.. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 2011; 133:4742–4745. PubMed

Celasun S., Remmler D., Schwaar T., Weller M.G., Du Prez F., Börner H.G.. Digginginto the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains. Angew. Chem. Int. Ed. 2019; 58:1960–1964. PubMed

Solleder S.C., Zengel D., Wetzel K.S., Meier M.A.R.. A scalable and high-yield strategy for the synthesis of sequence-defined macromolecules. Angew. Chem. Int. Ed. 2016; 55:1204–1207. PubMed

Yang C., Flynn J.P., Niu J.. Facile synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 2018; 57:16194–16199. PubMed

Hocek M. Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein-DNA binding and transcription. Acc. Chem. Res. 2019; 52:1730–1737. PubMed

Hottin A., Marx A.. Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc. Chem. Res. 2016; 49:418–427. PubMed

Kielkowski P., Fanfrlík J., Hocek M.. 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew. Chem. Int. Ed. 2014; 53:7552–7555. PubMed

Cahová H., Panattoni A., Kielkowski P., Fanfrlík J., Hocek M.. 5-Substituted pyrimidine and 7-substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem. Biol. 2016; 11:3165–3171. PubMed

Bergen K., Steck A.-L., Strütt S., Baccaro A., Welte W., Diederichs K., Marx A.. Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J. Am. Chem. Soc. 2012; 134:11840–11843. PubMed

Hottin A., Betz K., Diederichs K., Marx A.. Structural basis for the KlenTaq DNA polymerase catalysed incorporation of alkene- versus alkyne-modified nucleotides. Chem. Eur. J. 2017; 23:2109–2118. PubMed

Kropp H.M., Diederichs K., Marx A.. The structure of an archaeal B-family DNA polymerase in complex with a chemically modified nucleotide. Angew. Chem. Int. Ed. 2019; 58:5457–5461. PubMed

Ménová P., Hocek M.. Preparation of short cytosine-modified oligonucleotides by nicking enzyme amplification reaction. Chem. Commun. 2012; 48:6921–6923. PubMed

Ménová P., Raindlová V., Hocek M.. Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR. Bioconjug. Chem. 2013; 24:1081–1093. PubMed

Sarac I., Hollenstein M.. Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids. ChemBioChem. 2019; 20:860–871. PubMed

Hollenstein M. Generation of long, fully modified, and serum-resistant oligonucleotides by rolling circle amplification. Org. Biomol. Chem. 2015; 13:9820–9824. PubMed

Wang Y., Tkachenko B.A., Schreiner P.R., Marx A.. Diamondoid-modified DNA. Org. Biomol. Chem. 2011; 9:7482–7490. PubMed

Fujita H., Nakajima K., Kasahara Y., Ozaki H., Kuwahara M.. Polymerase-mediated high-density incorporation of amphiphilic functionalities into DNA: enhancement of nuclease resistance and stability in human serum. Bioorg. Med. Chem. Lett. 2015; 25:333–336. PubMed

Baccaro A., Marx A.. Enzymatic synthesis of organic-polymer-grafted DNA. Chem. Eur. J. 2010; 16:218–226. PubMed

Ikonen S., Macícková-Cahová H., Pohl R., Sanda M., Hocek M.. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org. Biomol. Chem. 2010; 8:1194–1201. PubMed

Balintová J., Simonova A., Białek-Pietras M., Olejniczak A., Lesnikowski Z.J., Hocek M.. Carborane-linked 2′-deoxyuridine 5′-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA. Bioorg. Med. Chem. Lett. 2017; 27:4786–4788. PubMed

Zasedateleva O.A., Surzhikov S.A., Shershov V.E., Miftakhov R.A., Yurasov D.A., Kuznetsova V.E., Chudinov A.. PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases. Bioorg. Chem. 2020; 99:103829. PubMed

Hollenstein M., Hipolito C.J., Lam C.H., Perrin D.M.. A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. ChemBioChem. 2009; 10:1988–1992. PubMed

Hollenstein M. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues–synthesis and biochemical characterization. Org. Biomol. Chem. 2013; 11:5162–5172. PubMed

Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M.. Benzofurazane as a new redox label for electrochemical detection of DNA: towards multipotential redox coding of DNA bases. Chem. Eur. J. 2013; 19:12720–12731. PubMed

Wang Y., Liu E., Lam C.H., Perrin D.M.. A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 2018; 9:1813–1821. PubMed PMC

Simonova A., Magriñá I., Sýkorová V., Pohl R., Ortiz M., Havran L., Fojta M., O’Sullivan C.K., Hocek M.. Tuning of oxidation potential of ferrocene for ratiometric redox labeling and coding of nucleotides and DNA. Chem. Eur. J. 2020; 26:1286–1291. PubMed PMC

Augustin M.A., Ankenbauer W., Angerer B.. Progress towards single-molecule sequencing: enzymatic synthesis of nucleotide-specifically labeled DNA. J. Biotechnol. 2001; 86:289–301. PubMed

Thum O., Jäger S., Famulok M.. Functionalized DNA: a new replicable biopolymer. Angew. Chem. Int. Ed. 2001; 40:3990–3993. PubMed

Jäger S., Famulok M.. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew. Chem. Int. Ed. 2004; 43:3337–3340. PubMed

Jäger S., Rasched G., Kornreich-Leshem H., Engeser M., Thum O., Famulok M.. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005; 127:15071–15082. PubMed

Chen F., Dong M., Ge M., Zhu L., Ren L., Liu G., Mu R.. The history and advances of reversible terminators used in new generations of sequencing technology. Genomics Proteomics Bioinformatics. 2013; 11:34–40. PubMed PMC

Bentley D.R., Balasubramanian S., Swerdlow H.P., Smith G.P., Milton J., Brown C.G., Hall K.P., Evers D.J., Barnes C.L., Bignell H.R. et al. .. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456:53–59. PubMed PMC

Seo T.S., Bai X., Kim D.H., Meng Q., Shi S., Ruparel H., Li Z., Turro N.J., Ju J.. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:5926–5931. PubMed PMC

Eremeeva E., Abramov M., Margamuljana L., Rozenski J., Pezo V., Marlière P., Herdewijn P.. Chemical morphing of DNA containing four noncanonical bases. Angew. Chem. Int. Ed. 2016; 55:7515–7519. PubMed

Whitfield C.J., Little R.C., Khan K., Ijiro K., Connolly B.A., Tuite E.M., Pike A.R.. Self-priming enzymatic fabrication of multiply modified DNA. Chem. Eur. J. 2018; 24:15267–15274. PubMed

Yu C.J., Yowanto H., Wan Y., Meade T.J., Chong Y., Strong M., Donilon L.H., Kayyem J.F., Gozin M., Blackburn G.F.. Uridine-conjugated ferrocene DNA oligonucleotides: unexpected cyclization reaction of the uridine base. J. Am. Chem. Soc. 2000; 122:6767–6768.

Pike A.R., Ryder L.C., Horrocks B.R., Clegg W., Elsegood M.R.J., Connolly B.A., Houlton A.. Metallocene-DNA: synthesis, molecular and electronic structure and DNA incorporation of C5-ferrocenylthymidine derivatives. Chem. Eur. J. 2002; 8:2891–2899. PubMed

McGuigan C., Balzarini J.. Aryl furano pyrimidines: the most potent and selective anti-VZV agents reported to date. Antiviral Res. 2006; 71:149–153. PubMed

Sniady A., Sevilla M.D., Meneni S., Lis T., Szafert S., Khanduri D., Finke J.M., Dembinski R.. Synthesis and EPR studies of 2′-deoxyuridines with alkynyl, rodlike linkages. Chem. Eur. J. 2009; 15:7569–7577. PubMed PMC

Kovács T., Ötvös L.. Simple synthesis of 5-vinyl- and5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988; 29:4525–4528.

Krömer M., Bártová K., Raindlová V., Hocek M.. Synthesis of dihydroxyalkynyl and dihydroxyalkyl nucleotides as building blocks or precursors for introduction of diol or aldehyde groups to DNA for bioconjugations. Chem. Eur. J. 2018; 24:11890–11894. PubMed

Nishioka M., Mizuguchi H., Fujiwara S., Komatsubara S., Kitabayashi M., Uemura H., Takagi M., Imanaka T.. Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J. Biotechnol. 2001; 88:141–149. PubMed

Kujau M.J., Wölfl S.. Efficient preparation of single-stranded DNA for in vitro selection. Mol. Biotechnol. 1997; 7:333–335. PubMed

Null A.P., Hannis J.C., Muddiman D.C.. Preparation of single-stranded PCR products for electrospray ionization mass spectrometry using the DNA repair enzyme lambda exonuclease. Analyst. 2000; 125:619–626. PubMed

Lee S.E., Sidorov A., Gourlain T., Mignet N., Thorpe S.J., Brazier J.A., Dickman M.J., Hornby D.P., Grasby J.A., Williams D.M.. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001; 29:1565–1573. PubMed PMC

Gourlain T., Sidorov A., Mignet N., Thorpe S.J., Lee S.E., Grasby J.A., Williams D.M.. Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 2001; 29:1898–1905. PubMed PMC

Guixens-Gallardo P., Hocek M., Perlikova P.. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg. Med. Chem. Lett. 2016; 26:288–291. PubMed

Gyllensten U.B., Erlich H.A.. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. U.S.A. 1988; 85:7652–7656. PubMed PMC

He J., Seela F.. Propynyl groups in duplex DNA: stability of base pairs incorporating 7-substituted 8-aza-7-deazapurines or 5-substituted pyrimidines. Nucleic Acids Res. 2002; 30:5485–5496. PubMed PMC

Freier S.M., Altmann K.H.. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997; 25:4429–4443. PubMed PMC

Wagner R.W., Matteucci M.D., Lewis J.G., Gutierrez A.J., Moulds C., Froehler B.C.. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993; 260:1510–1513. PubMed

Wagner R.W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994; 372:333–335. PubMed

Kypr J., Kejnovská I., Renciuk D., Vorlícková M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC

Ivanov V.I., Minchenkova L.E., Schyolkina A.K., Poletayev A.I.. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973; 12:89–110. PubMed

Brakmann S., Löbermann S.. High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew. Chem. Int. Ed. 2001; 40:1427–1429. PubMed

Ehrlich N., Anhalt K., Paulsen H., Brakmann S., Hübner C.G.. Exonucleolytic degradation of high-density labeled DNA studied by fluorescence correlation spectroscopy. Analyst. 2012; 137:1160–1167. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bacteriophage-related epigenetic natural and non-natural pyrimidine nucleotides and their influence on transcription with T7 RNA polymerase

. 2024 Nov 09 ; 7 (1) : 256. [epub] 20241109

Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases

. 2024 Apr 09 ; 15 (1) : 3054. [epub] 20240409

Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases

. 2023 Nov 27 ; 51 (21) : 11428-11438.

Arylethynyl- or Alkynyl-Linked Pyrimidine and 7-Deazapurine 2'-Deoxyribonucleoside 3'-Phosphoramidites for Chemical Synthesis of Hypermodified Hydrophobic Oligonucleotides

. 2023 Oct 24 ; 8 (42) : 39447-39453. [epub] 20231012

Lipid-linked nucleoside triphosphates for enzymatic synthesis of hydrophobic oligonucleotides with enhanced membrane anchoring efficiency

. 2023 Apr 12 ; 14 (15) : 4059-4069. [epub] 20230320

The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70

. 2023 Apr 06 ; 6 (1) : 65. [epub] 20230406

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...