Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30397112
PubMed Central
PMC6255155
DOI
10.1073/pnas.1811520115
PII: 1811520115
Knihovny.cz E-zdroje
- Klíčová slova
- cell-penetrating peptide, electron microscopy, fluorescence microscopy, membrane fusion, molecular dynamics,
- MeSH
- arginin metabolismus fyziologie MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- fúze membrán účinky léků fyziologie MeSH
- kinetika MeSH
- lipidové dvojvrstvy chemie MeSH
- membrány metabolismus MeSH
- penetrační peptidy chemie metabolismus MeSH
- peptidy chemie fyziologie MeSH
- pseudopodia metabolismus fyziologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin MeSH
- lipidové dvojvrstvy MeSH
- penetrační peptidy MeSH
- peptidy MeSH
Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.
Department of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
Fritz Haber Research Center The Hebrew University of Jerusalem Jerusalem 9190401 Israel
Institute of Physical and Theoretical Chemistry University of Regensburg D 93040 Regensburg Germany
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences 182 23 Prague 8 Czech Republic
Microbiology and Archaea Centre University of Regensburg D 93040 Regensburg Germany
Zobrazit více v PubMed
Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702. PubMed
Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10:310–315. PubMed
Pae J, et al. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. J Control Release. 2014;192:103–113. PubMed
Mishra A, et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci USA. 2011;108:16883–16888. PubMed PMC
Lamazière A, et al. Non-metabolic membrane tubulation and permeability induced by bioactive peptides. PLoS One. 2007;2:e201. PubMed PMC
Sun D, Forsman J, Lund M, Woodward CE. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: A molecular simulation study. Phys Chem Chem Phys. 2014;16:20785–20795. PubMed
Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc. 2014;136:17459–17467. PubMed PMC
Ciobanasu C, Siebrasse JP, Kubitscheck U. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys J. 2010;99:153–162. PubMed PMC
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. PubMed
Lee MT, Sun TL, Hung WC, Huang HW. Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA. 2013;110:14243–14248. PubMed PMC
Marks JR, Placone J, Hristova K, Wimley WC. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc. 2011;133:8995–9004. PubMed PMC
Guterstam P, et al. Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim Biophys Acta Biomembr. 2009;1788:2509–2517. PubMed
Maniti O, Piao HR, Ayala-Sanmartin J. Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution. Int J Biochem Cell Biol. 2014;50:73–81. PubMed
Swiecicki JM, et al. Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Pept Sci. 2015;104:533–543. PubMed
Katayama S, et al. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: Recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Biochim Biophys Acta Biomembr. 2013;1828:2134–2142. PubMed
Gestin M, Dowaidar M, Langel Ü. In: Uptake Mechanism of Cell-Penetrating Peptides. Sunna A, Care A, Bergquist PL, editors. Springer International Publishing; Cham, Switzerland: 2017. pp. 255–264. PubMed
Chen YA, Scheller RH. Snare-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001;2:98–106. PubMed
Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell. 1999;97:165–174. PubMed
Babai N, Kochubey O, Keller D, Schneggenburger R. An alien divalent ion reveals a major role for Ca2+ buffering in controlling slow transmitter release. J Neurosci. 2014;34:12622–12635. PubMed PMC
Papahadjopoulos D, Vail W, Pangborn W, Poste G. Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim Biophys Acta. 1976;448:265–283. PubMed
Brock TG, Nagaprakash K, Margolis DI, Smolen JE. Modeling degranulation with liposomes: Effect of lipid composition on membrane fusion. J Memb Biol. 1994;141:139–148. PubMed
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci. 2015;18:935–941. PubMed
Kozlovsky Y, Kozlov MM. Stalk model of membrane fusion: Solution of energy crisis. Biophys J. 2002;82:882–895. PubMed PMC
Zhao WD, et al. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature. 2016;534:548–552. PubMed PMC
Yang ST, Zaitseva E, Chernomordik LV, Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J. 2010;99:2525–2533. PubMed PMC
Tünnemann G, et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2008;14:469–476. PubMed
Mitchell D, Steinman L, Kim D, Fathman C, Rothbard J. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56:318–325. PubMed
Hu Y, Sinha SK, Patel S. Investigating hydrophilic pores in model lipid bilayers using molecular simulations: Correlating bilayer properties with pore-formation thermodynamics. Langmuir. 2015;31:6615–6631. PubMed PMC
Churchward MA, et al. Specific lipids supply critical negative spontaneous curvature—an essential component of native Ca2+-triggered membrane fusion. Biophys J. 2008;94:3976–3986. PubMed PMC
Düzgünes N, Wilschut J, Fraley R, Papahadjopoulos D. Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta. 1981;642:182–195. PubMed
Summers SA, Guebert BA, Shanahan MF. Polyphosphoinositide inclusion in artificial lipid bilayer vesicles promotes divalent cation-dependent membrane fusion. Biophys J. 1996;71:3199–3206. PubMed PMC
Churchward MA, et al. Specific lipids supply critical negative spontaneous curvature—an essential component of native Ca2+-triggered membrane fusion. Biophys. J. 2008;94:3976–3986. PubMed PMC
Kachar B, Fuller N, Rand R. Morphological responses to calcium-induced interaction of phosphatidylserine-containing vesicles. Biophys J. 1986;50:779–788. PubMed PMC
Grafmüller A, Shillcock J, Lipowsky R. Pathway of membrane fusion with two tension-dependent energy barriers. Phys Rev Lett. 2007;98:218101. PubMed
Marrink SJ, Mark AE. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc. 2003;125:11144–11145. PubMed
Noguchi H, Takasu M. Fusion pathways of vesicles: A Brownian dynamics simulation. J Chem Phys. 2001;115:9547–9551.
Fuhrmans M, Marrink SJ. Molecular view of the role of fusion peptides in promoting positive membrane curvature. J Am Chem Soc. 2012;134:1543–1552. PubMed
Derossi D, et al. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem. 1996;271:18188–18193. PubMed
Kawamoto S, et al. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys. 2011;134:095103. PubMed
Siegel DP, Kozlov MM. The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: Relevance to membrane fusion and lipid phase behavior. Biophys J. 2004;87:366–374. PubMed PMC
Hirose H, et al. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther. 2012;20:984–993. PubMed PMC
Kawamoto S, Klein ML, Shinoda W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. J Chem Phys. 2015;143:243112. PubMed
Nir S, Wilschut J, Bentz J. The rate of fusion of phospholipid vesicles and the role of bilayer curvature. Biochim Biophys Acta. 1982;688:275–278. PubMed
Robison AD, et al. Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J Phys Chem B. 2016;120:9287–9296. PubMed PMC
Allolio C, Haluts A, Harries D. A local instantaneous surface method for extracting membrane elastic moduli from simulation: Comparison with other strategies. Chem Phys. 2018 doi: 10.1016/j.chemphys.2018.03.004. DOI
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints