Matching the green wave: growing season length determines embryonic diapause in roe deer
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Research Excellence in Environmental Sciences CZU Prague
Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie
Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten
PubMed
40393484
PubMed Central
PMC12092121
DOI
10.1098/rspb.2024.2903
Knihovny.cz E-zdroje
- Klíčová slova
- embryonic diapause, length of season, phenology, phenotypic quality, proportional hazard model, roe deer,
- MeSH
- diapauza * MeSH
- klimatické změny MeSH
- porod MeSH
- roční období MeSH
- vysoká zvěř * fyziologie embryologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
The roe deer (Capreolus capreolus) is Europe's most widespread ungulate, notable for its unique trait of embryonic diapause (delayed blastocyst implantation after mating) and an ongoing debate regarding how climate change affects its parturition timing. Given the relatively constant timing of the rut, roe deer could cope with advancing greening by adjusting its diapause end. Here, we bridge the gap on factors influencing roe deer's diapause by analysing 390 uteri from legally hunted roe deer females in Germany (2017-2020), which we macroscopically examined for the presence of visible embryonic tissue to retrospectively identify the diapause end date. By employing a marginal Cox proportional hazard model, we tested associations between female phenotypic attributes, environmental conditions and the probability of ending embryonic diapause prematurely. Our results confirmed that high-quality, well-conditioned and prime-aged females tend to terminate embryonic diapause earlier. We also demonstrated for the first time that on a population-averaged level, the growing season length in the year of conception significantly influences the diapause timing, even explaining the much-debated shifts in parturition dates in roe deer over the last seven decades. Increased knowledge of mechanisms involved in embryonic diapause may also help decipher embryo-maternal interactions in general, including in vitro fertilization.
Czech University of Life Sciences Prague Faculty of Environmental Sciences Praha Czech Republic
Department of Zoology Poznań University of Life Sciences Poznań Poland
Institute for Advanced Study TUM Garching Bayern Germany
Professorship of Ecoclimatology TUM School of Life Sciences Freising Bayern Germany
Wildlife Biology and Management Unit TUM School of Life Sciences Freising Bayern Germany
Zobrazit více v PubMed
Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. ( 10.1038/nature01286) PubMed DOI
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. ( 10.1038/nature01333) PubMed DOI
Menzel A, et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976. ( 10.1111/j.1365-2486.2006.01193.x) DOI
Thackeray SJ, et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245. ( 10.1038/nature18608) PubMed DOI
Cohen JM, Lajeunesse MJ, Rohr JR. 2018. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228. ( 10.1038/s41558-018-0067-3) DOI
Visser ME, Gienapp P. 2019. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885. ( 10.1038/s41559-019-0880-8) PubMed DOI PMC
Twining CW, Shipley JR, Matthews B. 2022. Climate change creates nutritional phenological mismatches. Trends Ecol. Evol. 37, 736–739. ( 10.1016/j.tree.2022.06.009) PubMed DOI
Rutberg AT. 1987. Adaptive hypotheses of birth synchrony in ruminants: an interspecific test. Am. Nat. 130, 691–703.
Oftedal OT. 1985. Pregnancy and lactation. In Bioenergetics of wild herbivores (eds Hudson RJ, White RG), pp. 215–238. Boca de Ratón, FL: CRC Press Inc. ( 10.1201/9781351070218-10) DOI
Albon SD, Langvatn R. 1992. Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65, 502–513. ( 10.2307/3545568) DOI
Tufto J. 2000. The evolution of plasticity and nonplastic spatial and temporal adaptations in the presence of imperfect environmental cues. Am. Nat. 156, 121–130. ( 10.1086/303381) PubMed DOI
Bronson FH. 2009. Climate change and seasonal reproduction in mammals. Phil. Trans. R. Soc. B 364, 3331–3340. ( 10.1098/rstb.2009.0140) PubMed DOI PMC
Bernhardt JR, O’Connor MI, Sunday JM, Gonzalez A. 2020. Life in fluctuating environments. Phil. Trans. R. Soc. B 375, 20190454. ( 10.1098/rstb.2019.0454) PubMed DOI PMC
Moyes K, Nussey DH, Clements MN, Guinness FE, Morris A, Morris S, Pemberton JM, Kruuk LEB, Clutton-Brock TH. 2011. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Chang. Biol. 17, 2455–2469. ( 10.1111/j.1365-2486.2010.02382.x) DOI
Renaud LA, Pigeon G, Festa-Bianchet M, Pelletier F. 2019. Phenotypic plasticity in bighorn sheep reproductive phenology: from individual to population. Behav. Ecol. Sociobiol. 73, 50. ( 10.1007/s00265-019-2656-1) DOI
Clements MN, Clutton-Brock TH, Albon SD, Pemberton JM, Kruuk LEB. 2011. Gestation length variation in a wild ungulate. Funct. Ecol. 25, 691–703. ( 10.1111/j.1365-2435.2010.01812.x) DOI
Peláez M, San Miguel A, Rodríguez‐Vigal C, Perea R. 2017. Climate, female traits and population features as drivers of breeding timing in Mediterranean red deer populations. Integr. Zool. 12, 396–408. ( 10.1111/1749-4877.12252) PubMed DOI
Paoli A, Weladji RB, Holand Ø, Kumpula J. 2018. Winter and spring climatic conditions influence timing and synchrony of calving in reindeer. PLoS One 13, e0195603. ( 10.1371/journal.pone.0195603) PubMed DOI PMC
Laforge MP, Webber QMR, Vander Wal E. 2023. Plasticity and repeatability in spring migration and parturition dates with implications for annual reproductive success. J. Anim. Ecol. 92, 1042–1054. ( 10.1111/1365-2656.13911) PubMed DOI
Rehnus M, Peláez M, Bollmann K. 2020. Advancing plant phenology causes an increasing trophic mismatch in an income breeder across a wide elevational range. Ecosphere 11, e03144. ( 10.1002/ecs2.3144) DOI
Hagen R, Ortmann S, Elliger A, Arnold J. 2021. Advanced roe deer (Capreolus capreolus) parturition date in response to climate change. Ecosphere 12, e03819. ( 10.1002/ecs2.3819) DOI
Stehr FP, Baur S, Peters W, König A. 2025. Deriving birth timing of roe deer fawns from body measurements to limit mowing mortality. Wildl. Biol. e01268. ( 10.1002/wlb3.01268) DOI
Gaillard JM, Mark Hewison AJ, Klein F, Plard F, Douhard M, Davison R, Bonenfant C. 2013. How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol. Lett. 16, 48–57. ( 10.1111/ele.12059) PubMed DOI
Plard F, Gaillard JM, Coulson T, Hewison AJM, Delorme D, Warnant C, Bonenfant C. 2014. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828. ( 10.1371/journal.pbio.1001828) PubMed DOI PMC
Danilkin A, Hewison AJM. 1996. Behavioural ecology of Siberian and European roe deer. London, UK: Chapman Hall.
Rüegg AB, Ulbrich SE. 2023. Review: embryonic diapause in the European roe deer – slowed, but not stopped. Animal 17, 100829. ( 10.1016/j.animal.2023.100829) PubMed DOI
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. 2024. Developmental progression continues during embryonic diapause in the roe deer. Commun. Biol. 7, 270. ( 10.1038/s42003-024-05944-w) PubMed DOI PMC
Aitken RJ. 1974. Delayed implantation in roe deer (Capreolus capreolus). Reproduction 39, 225–233. ( 10.1530/jrf.0.0390225) PubMed DOI
Aitken RJ. 1981. Aspects of delayed implantation in the roe deer (Capreolus capreolus). J. Reprod. Fertil. 29, 83–95. PubMed
Lambert RT, Ashworth CJ, Beattie L, Gebbie FE, Hutchinson JS, Kyle DJ, Racey PA. 2001. Temporal changes in reproductive hormones and conceptus-endometrial interactions during embryonic diapause and reactivation of the blastocyst in European roe deer (Capreolus capreolus). Reproduction 121, 863–871. ( 10.1530/rep.0.1210863) PubMed DOI
Aitken RJ. 1974. Delayed implantation in roe deer (Capreolus capreolus). Reproduction 29, 83–95. ( 10.1530/jrf.0.0390225) PubMed DOI
Renfree MB, Fenelon JC. 2017. The enigma of embryonic diapause. Development 144, 3199–3210. ( 10.1242/dev.148213) PubMed DOI
Drews B, Rudolf Vegas A, van der Weijden VA, Milojevic V, Hankele AK, Schuler G, Ulbrich SE. 2019. Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer (Capreolus capreolus)? Reprod. Biol. 19, 149–157. ( 10.1016/j.repbio.2019.04.003) PubMed DOI
van der Weijden VA, et al. 2021. Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. Proc. Natl Acad. Sci. USA 118, e2100500118. ( 10.1073/pnas.2100500118) PubMed DOI PMC
Beyes M, Nause N, Bleyer M, Kaup F‐J, Neumann S. 2017. Description of post‐implantation embryonic stages in European roe deer (Capreolus capreolus) after embryonic diapause. Anat. Histol. Embryol. 46, 582–591. ( 10.1111/ahe.12315) PubMed DOI
Ehrmantraut C, Wild T, Dahl SA, Wagner N, König A. 2023. Early end of embryonic diapause and overall reproductive activity in roe deer populations from Bavaria. Anim. Prod. Sci. 63, 1623–1632. ( 10.1071/an23040) DOI
Jönsson KI. 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78, 57–66. ( 10.2307/3545800) DOI
Andersen R, Gaillard JM, Liberg O, San Jose C. 1998. Variation in life-history parameters. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.
König A, Hudler M, Dahl SA, Bolduan C, Brugger D, Windisch W. 2020. Response of roe deer (Capreolus capreolus) to seasonal and local changes in dietary energy content and quality. Anim. Prod. Sci. 60, 1315–1325. ( 10.1071/AN19375) DOI
König A, Dahl SA, Windisch W. 2023. Energy intake and nutritional balance of roe deer (Capreolus capreolus) in special Bavarian landscapes in southern Germany. Anim. Prod. Sci. 63, 1648–1663. ( 10.1071/an23034) DOI
Plard F, Gaillard JM, Coulson T, Hewison AJM, Delorme D, Warnant C, Nilsen EB, Bonenfant C. 2014. Long‐lived and heavier females give birth earlier in roe deer. Ecography 37, 241–249. ( 10.1111/j.1600-0587.2013.00414.x) DOI
Ellenberg H. 1978. Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae) in Mitteleuropa. Zool. Staatssamml. 2, 1–212.
Plard F, Gaillard JM, Coulson T, Hewison AJM, Douhard M, Klein F, Delorme D, Warnant C, Bonenfant C. 2015. The influence of birth date via body mass on individual fitness in a long‐lived mammal. Ecology 96, 1516–1528. ( 10.1890/14-0106.1) DOI
Hewison AJM, Gaillard JM. 2001. Phenotypic quality and senescence affect different components of reproductive output in roe deer. J. Anim. Ecol. 70, 600–608. ( 10.1046/j.1365-2656.2001.00528.x) DOI
Kauffert J, Baur S, Matiu M, König A, Peters W, Menzel A. 2023. Fawn birthdays: from opportunistically sampled fawn rescue data to true wildlife demographic parameters. Ecol. Solutions Evid. 4, e12225. ( 10.1002/2688-8319.12225) DOI
Rehnus M, Reimoser F. 2014. Rehkitzmarkierung — Nutzen für Praxis und Forschung. FaunaFocus 9, 1–16.
Bock A, Sparks TH, Estrella N, Menzel A. 2013. Changes in the timing of hay cutting in Germany do not keep pace with climate warming. Glob. Chang. Biol. 19, 3123–3132. ( 10.1111/gcb.12280) PubMed DOI
Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N. 2020. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 26, 2599–2612. ( 10.1111/gcb.15000) PubMed DOI
Ssymank A. 1994. Neue Anforderungen im europäischen Naturschutz: das Schutzgebietssystem Natura 2000 und die FFH-Richtlinie der EU. Nat. Und Landsch. 69, 395–406.
Wetterdienst D. 2024. DWD Climate Data Center. See https://opendata.dwd.de/climate_ environment/CDC/.
Mitchell B. 1967. Growth layers in dental cement for determining the age of red deer (Cervus elaphus L.). J. Anim. Ecol. 36, 279–293. ( 10.2307/2912) DOI
Aitken RJ. 1977. Embryonic diapause. In Development in mammals (ed. Johnson M), pp. 307–359. Amsterdam, The Netherlands: Elsevier.
Bubenik A. 1984. Ernährung, verhalten und umwelt des schalenwildes. Wien, Zürich, Switzerland: BLV Verlag, München.
Strandgaard H. 1972. An investigation of corpora lutea, embryonic development and time of birth of roe deer (Capreolus capreolus) in Denmark. Dan. Rev. Game Biol. 6, 1–22.
De Marinis AM, Chirichella R, Bottero E, Apollonio M. 2019. Ecological conditions experienced by offspring during pregnancy and early post-natal life determine mandible size in roe deer. PLoS One 14, e0222150. ( 10.1371/journal.pone.0222150) PubMed DOI PMC
Yuan Y, Härer S, Ottenheym T, Misra G, Lüpke A, Estrella N, Menzel A. 2021. Maps, trends, and temperature sensitivities—phenological information from and for decreasing numbers of volunteer observers. Int. J. Biometeorol. 65, 1377–1390. ( 10.1007/s00484-021-02110-3) PubMed DOI PMC
Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. 2018. An ensemble version of the E‐OBS temperature and precipitation data sets. J. Geophys. Res. 123, 9391–9409. ( 10.1029/2017jd028200) DOI
Menzel A, Seifert H, Estrella N. 2011. Effects of recent warm and cold spells on European plant phenology. Int. J. Biometeorol. 55, 921–932. ( 10.1007/s00484-011-0466-x) PubMed DOI
Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374. ( 10.1890/1540-9295(2007)5[365:angoce]2.0.co;2) DOI
Zimmermann NE, Yoccoz NG, Edwards TC Jr, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl Acad. Sci. USA 106, 19723–19728. ( 10.1073/pnas.0901643106) PubMed DOI PMC
Müller J, et al. 2024. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354. ( 10.1038/s41586-023-06402-z) PubMed DOI
Therneau TM, Lumley T, Elizabeth A, Cynthia C. 2023. Package ‘survival’. See https://github. com/therneau/survival.
Cox DR. 1972. Regression models and life-tables. J. R. Stat. Soc. Ser. B 34, 187–220.
George B, Seals S, Aban I. 2014. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694. ( 10.1007/s12350-014-9908-2) PubMed DOI PMC
Schober P, Vetter TR. 2018. Survival analysis and interpretation of time-to-event data: the tortoise and the hare. Anesth. Analg. 127, 792–798. ( 10.1213/ANE.0000000000003653) PubMed DOI PMC
Zimmermann B, Nelson L, Wabakken P, Sand H, Liberg O. 2014. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. ( 10.1093/beheco/aru134) PubMed DOI PMC
Stedman MR, Lew RA, Losina E, Gagnon DR, Solomon DH, Brookhart MA. 2012. A comparison of statistical approaches for physician-randomized trials with survival outcomes. Contemp. Clin. Trials 33, 104–115. ( 10.1016/j.cct.2011.08.008) PubMed DOI PMC
Jacobs LA, Skeem JL. 2021. Neighborhood risk factors for recidivism: for whom do they matter? Am. J. Community Psychol. 67, 103–115. ( 10.1002/ajcp.12463) PubMed DOI PMC
Rieck W. 1955. Die Setzzeit bei Reh-, Rot- und Damwild in Mitteleuropa. Z. Für Jagdwiss. 1, 69–75. ( 10.1007/bf01907251) DOI
Hewison AJM. 1993. The reproductive performance of roe deer in relation to environmental and genetic factors. PhD thesis, Southampton University.
Kałuziński J. 1982. Dynamics and structure of a field roe deer population. Acta Theriol. 27, 385–408. ( 10.4098/AT.arch.82-35) DOI
Hewison AJM, Vincent JP, Reby D. 1998. Social organisation of European roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell JDC), pp. 189–219. Oslo, Norway: Scandinavian University Press.
Lister A, Grubb P, Sumner S. 1998. Taxonomy, morphology and evolution of European roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.
Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE. 2009. Quaternary history of the European roe deer Capreolus capreolus. Mammal Rev. 39, 1–16. ( 10.1111/j.1365-2907.2008.00137.x) DOI
Linnell JDC, Andersen R. 1998. Timing and synchrony of birth in a hider species, the roe deer Capreolus capreolus. J. Zool. 244, 497–504. ( 10.1017/s0952836998004038) DOI
Peláez M, Gaillard J, Bollmann K, Heurich M, Rehnus M. 2020. Large‐scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. J. Anim. Ecol. 89, 1906–1917. ( 10.1111/1365-2656.13251) PubMed DOI
Gill RM. 1994. The population dynamics of roe deer (Capreolus capreolus L.) in relation to forest habitat succession. PhD thesis, The Open University.
Prell H. 1938. Die Tragzeit des Rehes. Zuechtungskunde 13, 325–345.
Sempéré A, Mauget R, Mauget C. 1998. Reproductive physiology of roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.
Liberg O, Johansson A, Andersen R, Linnell JDC. 1998. The function of male territorialty in roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.
Debeffe L, et al. 2014. A one night stand? Reproductive excursions of female roe deer as a breeding dispersal tactic. Oecologia 176, 431–443. ( 10.1007/s00442-014-3021-8) PubMed DOI
v. Parson JW. 1734. Der edle hirsch-gerechte jäger. Leipzig, Germany: Im Weidmannlichen Buchladen.
Hothorn T, Müller J, Held L, Möst L, Mysterud A. 2015. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 81, 143–152. ( 10.1016/j.aap.2015.04.037) PubMed DOI
Chirichella R, Pokorny B, Bottero E, Flajšman K, Mattioli L, Apollonio M. 2019. Factors affecting implantation failure in roe deer. J. Wildl. Manag. 83, 599–609. ( 10.1002/jwmg.21623) DOI
Horak A. 1989. Histologische und histomorphometrische Untersuchungen am Ovarium des Rehes (Capreolus capreolus, L.) und der zyklischen Veränderungen seiner Funktionsstrukturen. PhD thesis, [Gießen, Germany: ]: Justus-Liebig-Universität Gießen.
Gaillard JM, Festa-Bianchet M, Delorme D, Jorgenson J. 2000. Body mass and individual fitness in female ungulates: bigger is not always better. Proc. R. Soc. B 267, 471–477. ( 10.1098/rspb.2000.1024) PubMed DOI PMC
Hewison AJM. 1996. Variation in the fecundity of roe deer in Britain: effects of age and body weight. Acta Theriol. 41, 187–198. ( 10.4098/AT.arch.96-18) DOI
Flajšman K, Jerina K, Pokorny B. 2017. Age-related effects of body mass on fertility and litter size in roe deer. PLoS One 12, 12–16. ( 10.1371/journal.pone.0175579) PubMed DOI PMC
Flajšman K, Borowik T, Pokorny B, Jędrzejewska B. 2018. Effects of population density and female body mass on litter size in European roe deer at a continental scale. Mammal Res. 63, 91–98. ( 10.1007/s13364-017-0348-7) DOI
Lombardini M, Varuzza P, Meriggi A. 2017. Influence of weather and phenotypic characteristics on pregnancy rates of female roe deer in central Italy. Popul. Ecol. 59, 131–137. ( 10.1007/s10144-017-0577-2) DOI
Gaillard JM, Sempéré AJ, Boutin JM, Laere GV, Boisaubert B. 1992. Effects of age and body weight on the proportion of females breeding in a population of roe deer (Capreolus capreolus). Can. J. Zool. 70, 1541–1545. ( 10.1139/z92-212) DOI
Gaillard JM, Andersen R, Delorme D, Linnell JDC. 1998. Family effects on growth and survival of juvenile roe deer. Ecology 79, 2878–2889. ( 10.1890/0012-9658(1998)079[2878:feogas]2.0.co;2) DOI
Ptak GE, Modlinski JA, Loi P. 2013. Embryonic diapause in humans: time to consider? Reprod. Biol. Endocrinol. 11, 1–4. ( 10.1186/1477-7827-11-92) PubMed DOI PMC
Mantalenakis SJ, Ketchel MM. 1966. Frequency and extent of delayed implantation in lactating rats and mice. Reproduction 12, 391–394. ( 10.1530/jrf.0.0120391) PubMed DOI
Murphy B. 2012. Embryonic diapause: advances in understanding the enigma of seasonal delayed implantation. Reprod. Domest. Anim. 47, 121–124. ( 10.1111/rda.12046) PubMed DOI
Tyndale-Biscoe CH, Renfree M. 1987. Reproductive physiology of marsupials. Cambridge, UK: Cambridge University Press.
Osinga N, Pen I, Udo de Haes HA, Brakefield PM. 2012. Evidence for a progressively earlier pupping season of the common seal (Phoca vitulina) in the Wadden Sea. J. Mar. Biol. Assoc. U. K. 92, 1663–1668. ( 10.1017/s0025315411000592) DOI
Bowen WD, den Heyer CE, Lang SLC, Lidgard D, Iverson SJ. 2020. Exploring causal components of plasticity in grey seal birthdates: effects of intrinsic traits, demography, and climate. Ecol. Evol. 10, 11507–11522. ( 10.1002/ece3.6787) PubMed DOI PMC
Bull JC, Jones OR, Börger L, Franconi N, Banga R, Lock K, Stringell TB. 2021. Climate causes shifts in grey seal phenology by modifying age structure. Proc. R. Soc. B 288, 20212284. ( 10.1098/rspb.2021.2284) PubMed DOI PMC
Kourkgy C, Garel M, Appolinaire J, Loison A, Toïgo C. 2016. Onset of autumn shapes the timing of birth in Pyrenean chamois more than onset of spring. J. Anim. Ecol. 85, 581–590. ( 10.1111/1365-2656.12463) PubMed DOI
Zohner CM, et al. 2023. Effect of climate warming on the timing of autumn leaf senescence reverses after the summer solstice. Science 381, eadf5098. ( 10.1126/science.adf5098) PubMed DOI
Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH. 2019. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337. ( 10.1002/ecm.1337) DOI
van de Pol M, Wright J. 2009. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. ( 10.1016/j.anbehav.2008.11.006) DOI
Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ, Grenfell BT. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292, 1528–1531. ( 10.1126/science.292.5521.1528) PubMed DOI
Nilsen EB, Gaillard JM, Andersen R, Odden J, Delorme D, van Laere G, Linnell JDC. 2009. A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. J. Anim. Ecol. 78, 585–594. ( 10.1111/j.1365-2656.2009.01523.x) PubMed DOI
Dahl SA, Hudler M, Windisch W, Bolduan C, Brugger D, König A. 2020. High fibre selection by roe deer (Capreolus capreolus): evidence of ruminal microbiome adaption to seasonal and geographical differences in nutrient composition. Anim. Prod. Sci. 60, 1303–1314. ( 10.1071/AN19376) DOI
van der Weijden VA, Ulbrich SE. 2020. Embryonic diapause in roe deer: a model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species. Theriogenology 158, 105–111. ( 10.1016/j.theriogenology.2020.06.042) PubMed DOI
Dhimolea E, et al. 2021. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256. ( 10.1016/j.ccell.2020.12.002) PubMed DOI PMC
Rehman SK, et al. 2021. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242. ( 10.1016/j.cell.2020.11.018) PubMed DOI PMC
Kauffert J, Ehrmantraut C, Mikula Pet al. 2025. Matching the green wave: growing season length determines embryonic diapause in roe deer. Dryad Digital Repository. ( 10.5061/dryad.qz612jms1) PubMed DOI PMC
Kauffert J, Ehrmantraut C, Mikula P, Tryjanowski P, Menzel A, König A. 2025. Supplementary material from: Matching the green wave: growing season length determines embryonic diapause in roe deer. Figshare. ( 10.6084/m9.figshare.c.7819499) PubMed DOI PMC
Matching the green wave: growing season length determines embryonic diapause in roe deer