Matching the green wave: growing season length determines embryonic diapause in roe deer

. 2025 May ; 292 (2047) : 20242903. [epub] 20250521

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40393484

Grantová podpora
Research Excellence in Environmental Sciences CZU Prague
Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie
Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten

The roe deer (Capreolus capreolus) is Europe's most widespread ungulate, notable for its unique trait of embryonic diapause (delayed blastocyst implantation after mating) and an ongoing debate regarding how climate change affects its parturition timing. Given the relatively constant timing of the rut, roe deer could cope with advancing greening by adjusting its diapause end. Here, we bridge the gap on factors influencing roe deer's diapause by analysing 390 uteri from legally hunted roe deer females in Germany (2017-2020), which we macroscopically examined for the presence of visible embryonic tissue to retrospectively identify the diapause end date. By employing a marginal Cox proportional hazard model, we tested associations between female phenotypic attributes, environmental conditions and the probability of ending embryonic diapause prematurely. Our results confirmed that high-quality, well-conditioned and prime-aged females tend to terminate embryonic diapause earlier. We also demonstrated for the first time that on a population-averaged level, the growing season length in the year of conception significantly influences the diapause timing, even explaining the much-debated shifts in parturition dates in roe deer over the last seven decades. Increased knowledge of mechanisms involved in embryonic diapause may also help decipher embryo-maternal interactions in general, including in vitro fertilization.

Zobrazit více v PubMed

Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. ( 10.1038/nature01286) PubMed DOI

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. ( 10.1038/nature01333) PubMed DOI

Menzel A, et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976. ( 10.1111/j.1365-2486.2006.01193.x) DOI

Thackeray SJ, et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245. ( 10.1038/nature18608) PubMed DOI

Cohen JM, Lajeunesse MJ, Rohr JR. 2018. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228. ( 10.1038/s41558-018-0067-3) DOI

Visser ME, Gienapp P. 2019. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885. ( 10.1038/s41559-019-0880-8) PubMed DOI PMC

Twining CW, Shipley JR, Matthews B. 2022. Climate change creates nutritional phenological mismatches. Trends Ecol. Evol. 37, 736–739. ( 10.1016/j.tree.2022.06.009) PubMed DOI

Rutberg AT. 1987. Adaptive hypotheses of birth synchrony in ruminants: an interspecific test. Am. Nat. 130, 691–703.

Oftedal OT. 1985. Pregnancy and lactation. In Bioenergetics of wild herbivores (eds Hudson RJ, White RG), pp. 215–238. Boca de Ratón, FL: CRC Press Inc. ( 10.1201/9781351070218-10) DOI

Albon SD, Langvatn R. 1992. Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65, 502–513. ( 10.2307/3545568) DOI

Tufto J. 2000. The evolution of plasticity and nonplastic spatial and temporal adaptations in the presence of imperfect environmental cues. Am. Nat. 156, 121–130. ( 10.1086/303381) PubMed DOI

Bronson FH. 2009. Climate change and seasonal reproduction in mammals. Phil. Trans. R. Soc. B 364, 3331–3340. ( 10.1098/rstb.2009.0140) PubMed DOI PMC

Bernhardt JR, O’Connor MI, Sunday JM, Gonzalez A. 2020. Life in fluctuating environments. Phil. Trans. R. Soc. B 375, 20190454. ( 10.1098/rstb.2019.0454) PubMed DOI PMC

Moyes K, Nussey DH, Clements MN, Guinness FE, Morris A, Morris S, Pemberton JM, Kruuk LEB, Clutton-Brock TH. 2011. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Chang. Biol. 17, 2455–2469. ( 10.1111/j.1365-2486.2010.02382.x) DOI

Renaud LA, Pigeon G, Festa-Bianchet M, Pelletier F. 2019. Phenotypic plasticity in bighorn sheep reproductive phenology: from individual to population. Behav. Ecol. Sociobiol. 73, 50. ( 10.1007/s00265-019-2656-1) DOI

Clements MN, Clutton-Brock TH, Albon SD, Pemberton JM, Kruuk LEB. 2011. Gestation length variation in a wild ungulate. Funct. Ecol. 25, 691–703. ( 10.1111/j.1365-2435.2010.01812.x) DOI

Peláez M, San Miguel A, Rodríguez‐Vigal C, Perea R. 2017. Climate, female traits and population features as drivers of breeding timing in Mediterranean red deer populations. Integr. Zool. 12, 396–408. ( 10.1111/1749-4877.12252) PubMed DOI

Paoli A, Weladji RB, Holand Ø, Kumpula J. 2018. Winter and spring climatic conditions influence timing and synchrony of calving in reindeer. PLoS One 13, e0195603. ( 10.1371/journal.pone.0195603) PubMed DOI PMC

Laforge MP, Webber QMR, Vander Wal E. 2023. Plasticity and repeatability in spring migration and parturition dates with implications for annual reproductive success. J. Anim. Ecol. 92, 1042–1054. ( 10.1111/1365-2656.13911) PubMed DOI

Rehnus M, Peláez M, Bollmann K. 2020. Advancing plant phenology causes an increasing trophic mismatch in an income breeder across a wide elevational range. Ecosphere 11, e03144. ( 10.1002/ecs2.3144) DOI

Hagen R, Ortmann S, Elliger A, Arnold J. 2021. Advanced roe deer (Capreolus capreolus) parturition date in response to climate change. Ecosphere 12, e03819. ( 10.1002/ecs2.3819) DOI

Stehr FP, Baur S, Peters W, König A. 2025. Deriving birth timing of roe deer fawns from body measurements to limit mowing mortality. Wildl. Biol. e01268. ( 10.1002/wlb3.01268) DOI

Gaillard JM, Mark Hewison AJ, Klein F, Plard F, Douhard M, Davison R, Bonenfant C. 2013. How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol. Lett. 16, 48–57. ( 10.1111/ele.12059) PubMed DOI

Plard F, Gaillard JM, Coulson T, Hewison AJM, Delorme D, Warnant C, Bonenfant C. 2014. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828. ( 10.1371/journal.pbio.1001828) PubMed DOI PMC

Danilkin A, Hewison AJM. 1996. Behavioural ecology of Siberian and European roe deer. London, UK: Chapman Hall.

Rüegg AB, Ulbrich SE. 2023. Review: embryonic diapause in the European roe deer – slowed, but not stopped. Animal 17, 100829. ( 10.1016/j.animal.2023.100829) PubMed DOI

Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. 2024. Developmental progression continues during embryonic diapause in the roe deer. Commun. Biol. 7, 270. ( 10.1038/s42003-024-05944-w) PubMed DOI PMC

Aitken RJ. 1974. Delayed implantation in roe deer (Capreolus capreolus). Reproduction 39, 225–233. ( 10.1530/jrf.0.0390225) PubMed DOI

Aitken RJ. 1981. Aspects of delayed implantation in the roe deer (Capreolus capreolus). J. Reprod. Fertil. 29, 83–95. PubMed

Lambert RT, Ashworth CJ, Beattie L, Gebbie FE, Hutchinson JS, Kyle DJ, Racey PA. 2001. Temporal changes in reproductive hormones and conceptus-endometrial interactions during embryonic diapause and reactivation of the blastocyst in European roe deer (Capreolus capreolus). Reproduction 121, 863–871. ( 10.1530/rep.0.1210863) PubMed DOI

Aitken RJ. 1974. Delayed implantation in roe deer (Capreolus capreolus). Reproduction 29, 83–95. ( 10.1530/jrf.0.0390225) PubMed DOI

Renfree MB, Fenelon JC. 2017. The enigma of embryonic diapause. Development 144, 3199–3210. ( 10.1242/dev.148213) PubMed DOI

Drews B, Rudolf Vegas A, van der Weijden VA, Milojevic V, Hankele AK, Schuler G, Ulbrich SE. 2019. Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer (Capreolus capreolus)? Reprod. Biol. 19, 149–157. ( 10.1016/j.repbio.2019.04.003) PubMed DOI

van der Weijden VA, et al. 2021. Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. Proc. Natl Acad. Sci. USA 118, e2100500118. ( 10.1073/pnas.2100500118) PubMed DOI PMC

Beyes M, Nause N, Bleyer M, Kaup F‐J, Neumann S. 2017. Description of post‐implantation embryonic stages in European roe deer (Capreolus capreolus) after embryonic diapause. Anat. Histol. Embryol. 46, 582–591. ( 10.1111/ahe.12315) PubMed DOI

Ehrmantraut C, Wild T, Dahl SA, Wagner N, König A. 2023. Early end of embryonic diapause and overall reproductive activity in roe deer populations from Bavaria. Anim. Prod. Sci. 63, 1623–1632. ( 10.1071/an23040) DOI

Jönsson KI. 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78, 57–66. ( 10.2307/3545800) DOI

Andersen R, Gaillard JM, Liberg O, San Jose C. 1998. Variation in life-history parameters. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.

König A, Hudler M, Dahl SA, Bolduan C, Brugger D, Windisch W. 2020. Response of roe deer (Capreolus capreolus) to seasonal and local changes in dietary energy content and quality. Anim. Prod. Sci. 60, 1315–1325. ( 10.1071/AN19375) DOI

König A, Dahl SA, Windisch W. 2023. Energy intake and nutritional balance of roe deer (Capreolus capreolus) in special Bavarian landscapes in southern Germany. Anim. Prod. Sci. 63, 1648–1663. ( 10.1071/an23034) DOI

Plard F, Gaillard JM, Coulson T, Hewison AJM, Delorme D, Warnant C, Nilsen EB, Bonenfant C. 2014. Long‐lived and heavier females give birth earlier in roe deer. Ecography 37, 241–249. ( 10.1111/j.1600-0587.2013.00414.x) DOI

Ellenberg H. 1978. Zur Populationsökologie des Rehes (Capreolus capreolus L., Cervidae) in Mitteleuropa. Zool. Staatssamml. 2, 1–212.

Plard F, Gaillard JM, Coulson T, Hewison AJM, Douhard M, Klein F, Delorme D, Warnant C, Bonenfant C. 2015. The influence of birth date via body mass on individual fitness in a long‐lived mammal. Ecology 96, 1516–1528. ( 10.1890/14-0106.1) DOI

Hewison AJM, Gaillard JM. 2001. Phenotypic quality and senescence affect different components of reproductive output in roe deer. J. Anim. Ecol. 70, 600–608. ( 10.1046/j.1365-2656.2001.00528.x) DOI

Kauffert J, Baur S, Matiu M, König A, Peters W, Menzel A. 2023. Fawn birthdays: from opportunistically sampled fawn rescue data to true wildlife demographic parameters. Ecol. Solutions Evid. 4, e12225. ( 10.1002/2688-8319.12225) DOI

Rehnus M, Reimoser F. 2014. Rehkitzmarkierung — Nutzen für Praxis und Forschung. FaunaFocus 9, 1–16.

Bock A, Sparks TH, Estrella N, Menzel A. 2013. Changes in the timing of hay cutting in Germany do not keep pace with climate warming. Glob. Chang. Biol. 19, 3123–3132. ( 10.1111/gcb.12280) PubMed DOI

Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N. 2020. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 26, 2599–2612. ( 10.1111/gcb.15000) PubMed DOI

Ssymank A. 1994. Neue Anforderungen im europäischen Naturschutz: das Schutzgebietssystem Natura 2000 und die FFH-Richtlinie der EU. Nat. Und Landsch. 69, 395–406.

Wetterdienst D. 2024. DWD Climate Data Center. See https://opendata.dwd.de/climate_ environment/CDC/.

Mitchell B. 1967. Growth layers in dental cement for determining the age of red deer (Cervus elaphus L.). J. Anim. Ecol. 36, 279–293. ( 10.2307/2912) DOI

Aitken RJ. 1977. Embryonic diapause. In Development in mammals (ed. Johnson M), pp. 307–359. Amsterdam, The Netherlands: Elsevier.

Bubenik A. 1984. Ernährung, verhalten und umwelt des schalenwildes. Wien, Zürich, Switzerland: BLV Verlag, München.

Strandgaard H. 1972. An investigation of corpora lutea, embryonic development and time of birth of roe deer (Capreolus capreolus) in Denmark. Dan. Rev. Game Biol. 6, 1–22.

De Marinis AM, Chirichella R, Bottero E, Apollonio M. 2019. Ecological conditions experienced by offspring during pregnancy and early post-natal life determine mandible size in roe deer. PLoS One 14, e0222150. ( 10.1371/journal.pone.0222150) PubMed DOI PMC

Yuan Y, Härer S, Ottenheym T, Misra G, Lüpke A, Estrella N, Menzel A. 2021. Maps, trends, and temperature sensitivities—phenological information from and for decreasing numbers of volunteer observers. Int. J. Biometeorol. 65, 1377–1390. ( 10.1007/s00484-021-02110-3) PubMed DOI PMC

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. 2018. An ensemble version of the E‐OBS temperature and precipitation data sets. J. Geophys. Res. 123, 9391–9409. ( 10.1029/2017jd028200) DOI

Menzel A, Seifert H, Estrella N. 2011. Effects of recent warm and cold spells on European plant phenology. Int. J. Biometeorol. 55, 921–932. ( 10.1007/s00484-011-0466-x) PubMed DOI

Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374. ( 10.1890/1540-9295(2007)5[365:angoce]2.0.co;2) DOI

Zimmermann NE, Yoccoz NG, Edwards TC Jr, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl Acad. Sci. USA 106, 19723–19728. ( 10.1073/pnas.0901643106) PubMed DOI PMC

Müller J, et al. 2024. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354. ( 10.1038/s41586-023-06402-z) PubMed DOI

Therneau TM, Lumley T, Elizabeth A, Cynthia C. 2023. Package ‘survival’. See https://github. com/therneau/survival.

Cox DR. 1972. Regression models and life-tables. J. R. Stat. Soc. Ser. B 34, 187–220.

George B, Seals S, Aban I. 2014. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694. ( 10.1007/s12350-014-9908-2) PubMed DOI PMC

Schober P, Vetter TR. 2018. Survival analysis and interpretation of time-to-event data: the tortoise and the hare. Anesth. Analg. 127, 792–798. ( 10.1213/ANE.0000000000003653) PubMed DOI PMC

Zimmermann B, Nelson L, Wabakken P, Sand H, Liberg O. 2014. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. ( 10.1093/beheco/aru134) PubMed DOI PMC

Stedman MR, Lew RA, Losina E, Gagnon DR, Solomon DH, Brookhart MA. 2012. A comparison of statistical approaches for physician-randomized trials with survival outcomes. Contemp. Clin. Trials 33, 104–115. ( 10.1016/j.cct.2011.08.008) PubMed DOI PMC

Jacobs LA, Skeem JL. 2021. Neighborhood risk factors for recidivism: for whom do they matter? Am. J. Community Psychol. 67, 103–115. ( 10.1002/ajcp.12463) PubMed DOI PMC

Rieck W. 1955. Die Setzzeit bei Reh-, Rot- und Damwild in Mitteleuropa. Z. Für Jagdwiss. 1, 69–75. ( 10.1007/bf01907251) DOI

Hewison AJM. 1993. The reproductive performance of roe deer in relation to environmental and genetic factors. PhD thesis, Southampton University.

Kałuziński J. 1982. Dynamics and structure of a field roe deer population. Acta Theriol. 27, 385–408. ( 10.4098/AT.arch.82-35) DOI

Hewison AJM, Vincent JP, Reby D. 1998. Social organisation of European roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell JDC), pp. 189–219. Oslo, Norway: Scandinavian University Press.

Lister A, Grubb P, Sumner S. 1998. Taxonomy, morphology and evolution of European roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.

Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE. 2009. Quaternary history of the European roe deer Capreolus capreolus. Mammal Rev. 39, 1–16. ( 10.1111/j.1365-2907.2008.00137.x) DOI

Linnell JDC, Andersen R. 1998. Timing and synchrony of birth in a hider species, the roe deer Capreolus capreolus. J. Zool. 244, 497–504. ( 10.1017/s0952836998004038) DOI

Peláez M, Gaillard J, Bollmann K, Heurich M, Rehnus M. 2020. Large‐scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. J. Anim. Ecol. 89, 1906–1917. ( 10.1111/1365-2656.13251) PubMed DOI

Gill RM. 1994. The population dynamics of roe deer (Capreolus capreolus L.) in relation to forest habitat succession. PhD thesis, The Open University.

Prell H. 1938. Die Tragzeit des Rehes. Zuechtungskunde 13, 325–345.

Sempéré A, Mauget R, Mauget C. 1998. Reproductive physiology of roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.

Liberg O, Johansson A, Andersen R, Linnell JDC. 1998. The function of male territorialty in roe deer. In The european roe deer: the biology of success (eds Andersen R, Duncan P, Linnell J). Oslo, Norway: Scandinavian University Press.

Debeffe L, et al. 2014. A one night stand? Reproductive excursions of female roe deer as a breeding dispersal tactic. Oecologia 176, 431–443. ( 10.1007/s00442-014-3021-8) PubMed DOI

v. Parson JW. 1734. Der edle hirsch-gerechte jäger. Leipzig, Germany: Im Weidmannlichen Buchladen.

Hothorn T, Müller J, Held L, Möst L, Mysterud A. 2015. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 81, 143–152. ( 10.1016/j.aap.2015.04.037) PubMed DOI

Chirichella R, Pokorny B, Bottero E, Flajšman K, Mattioli L, Apollonio M. 2019. Factors affecting implantation failure in roe deer. J. Wildl. Manag. 83, 599–609. ( 10.1002/jwmg.21623) DOI

Horak A. 1989. Histologische und histomorphometrische Untersuchungen am Ovarium des Rehes (Capreolus capreolus, L.) und der zyklischen Veränderungen seiner Funktionsstrukturen. PhD thesis, [Gießen, Germany: ]: Justus-Liebig-Universität Gießen.

Gaillard JM, Festa-Bianchet M, Delorme D, Jorgenson J. 2000. Body mass and individual fitness in female ungulates: bigger is not always better. Proc. R. Soc. B 267, 471–477. ( 10.1098/rspb.2000.1024) PubMed DOI PMC

Hewison AJM. 1996. Variation in the fecundity of roe deer in Britain: effects of age and body weight. Acta Theriol. 41, 187–198. ( 10.4098/AT.arch.96-18) DOI

Flajšman K, Jerina K, Pokorny B. 2017. Age-related effects of body mass on fertility and litter size in roe deer. PLoS One 12, 12–16. ( 10.1371/journal.pone.0175579) PubMed DOI PMC

Flajšman K, Borowik T, Pokorny B, Jędrzejewska B. 2018. Effects of population density and female body mass on litter size in European roe deer at a continental scale. Mammal Res. 63, 91–98. ( 10.1007/s13364-017-0348-7) DOI

Lombardini M, Varuzza P, Meriggi A. 2017. Influence of weather and phenotypic characteristics on pregnancy rates of female roe deer in central Italy. Popul. Ecol. 59, 131–137. ( 10.1007/s10144-017-0577-2) DOI

Gaillard JM, Sempéré AJ, Boutin JM, Laere GV, Boisaubert B. 1992. Effects of age and body weight on the proportion of females breeding in a population of roe deer (Capreolus capreolus). Can. J. Zool. 70, 1541–1545. ( 10.1139/z92-212) DOI

Gaillard JM, Andersen R, Delorme D, Linnell JDC. 1998. Family effects on growth and survival of juvenile roe deer. Ecology 79, 2878–2889. ( 10.1890/0012-9658(1998)079[2878:feogas]2.0.co;2) DOI

Ptak GE, Modlinski JA, Loi P. 2013. Embryonic diapause in humans: time to consider? Reprod. Biol. Endocrinol. 11, 1–4. ( 10.1186/1477-7827-11-92) PubMed DOI PMC

Mantalenakis SJ, Ketchel MM. 1966. Frequency and extent of delayed implantation in lactating rats and mice. Reproduction 12, 391–394. ( 10.1530/jrf.0.0120391) PubMed DOI

Murphy B. 2012. Embryonic diapause: advances in understanding the enigma of seasonal delayed implantation. Reprod. Domest. Anim. 47, 121–124. ( 10.1111/rda.12046) PubMed DOI

Tyndale-Biscoe CH, Renfree M. 1987. Reproductive physiology of marsupials. Cambridge, UK: Cambridge University Press.

Osinga N, Pen I, Udo de Haes HA, Brakefield PM. 2012. Evidence for a progressively earlier pupping season of the common seal (Phoca vitulina) in the Wadden Sea. J. Mar. Biol. Assoc. U. K. 92, 1663–1668. ( 10.1017/s0025315411000592) DOI

Bowen WD, den Heyer CE, Lang SLC, Lidgard D, Iverson SJ. 2020. Exploring causal components of plasticity in grey seal birthdates: effects of intrinsic traits, demography, and climate. Ecol. Evol. 10, 11507–11522. ( 10.1002/ece3.6787) PubMed DOI PMC

Bull JC, Jones OR, Börger L, Franconi N, Banga R, Lock K, Stringell TB. 2021. Climate causes shifts in grey seal phenology by modifying age structure. Proc. R. Soc. B 288, 20212284. ( 10.1098/rspb.2021.2284) PubMed DOI PMC

Kourkgy C, Garel M, Appolinaire J, Loison A, Toïgo C. 2016. Onset of autumn shapes the timing of birth in Pyrenean chamois more than onset of spring. J. Anim. Ecol. 85, 581–590. ( 10.1111/1365-2656.12463) PubMed DOI

Zohner CM, et al. 2023. Effect of climate warming on the timing of autumn leaf senescence reverses after the summer solstice. Science 381, eadf5098. ( 10.1126/science.adf5098) PubMed DOI

Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH. 2019. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337. ( 10.1002/ecm.1337) DOI

van de Pol M, Wright J. 2009. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. ( 10.1016/j.anbehav.2008.11.006) DOI

Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ, Grenfell BT. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292, 1528–1531. ( 10.1126/science.292.5521.1528) PubMed DOI

Nilsen EB, Gaillard JM, Andersen R, Odden J, Delorme D, van Laere G, Linnell JDC. 2009. A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. J. Anim. Ecol. 78, 585–594. ( 10.1111/j.1365-2656.2009.01523.x) PubMed DOI

Dahl SA, Hudler M, Windisch W, Bolduan C, Brugger D, König A. 2020. High fibre selection by roe deer (Capreolus capreolus): evidence of ruminal microbiome adaption to seasonal and geographical differences in nutrient composition. Anim. Prod. Sci. 60, 1303–1314. ( 10.1071/AN19376) DOI

van der Weijden VA, Ulbrich SE. 2020. Embryonic diapause in roe deer: a model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species. Theriogenology 158, 105–111. ( 10.1016/j.theriogenology.2020.06.042) PubMed DOI

Dhimolea E, et al. 2021. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256. ( 10.1016/j.ccell.2020.12.002) PubMed DOI PMC

Rehman SK, et al. 2021. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242. ( 10.1016/j.cell.2020.11.018) PubMed DOI PMC

Kauffert J, Ehrmantraut C, Mikula Pet al. 2025. Matching the green wave: growing season length determines embryonic diapause in roe deer. Dryad Digital Repository. ( 10.5061/dryad.qz612jms1) PubMed DOI PMC

Kauffert J, Ehrmantraut C, Mikula P, Tryjanowski P, Menzel A, König A. 2025. Supplementary material from: Matching the green wave: growing season length determines embryonic diapause in roe deer. Figshare. ( 10.6084/m9.figshare.c.7819499) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Matching the green wave: growing season length determines embryonic diapause in roe deer

. 2025 May ; 292 (2047) : 20242903. [epub] 20250521

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...