Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM110137
NIGMS NIH HHS - United States
PubMed
27571288
PubMed Central
PMC5912336
DOI
10.1021/acs.jpcb.6b05604
Knihovny.cz E-zdroje
- MeSH
- fosfolipidy chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- peptidy chemie MeSH
- polylysin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fosfolipidy MeSH
- lipidové dvojvrstvy MeSH
- peptidy MeSH
- polyarginine MeSH Prohlížeč
- polylysin MeSH
The interactions of two highly positively charged short peptide sequences with negatively charged lipid bilayers were explored by fluorescence binding assays and all-atom molecular dynamics simulations. The bilayers consisted of mixtures of phosphatidylglycerol (PG) and phosphatidylcholine (PC) lipids as well as a fluorescence probe that was sensitive to the interfacial potential. The first peptide contained nine arginine repeats (Arg9), and the second one had nine lysine repeats (Lys9). The experimentally determined apparent dissociation constants and Hill cooperativity coefficients demonstrated that the Arg9 peptides exhibited weakly anticooperative binding behavior at the bilayer interface at lower PG concentrations, but this anticooperative effect vanished once the bilayers contained at least 20 mol % PG. By contrast, Lys9 peptides showed strongly anticooperative binding behavior at all PG concentrations, and the dissociation constants with Lys9 were approximately 2 orders of magnitude higher than with Arg9. Moreover, only arginine-rich peptides could bind to the phospholipid bilayers containing just PC lipids. These results along with the corresponding molecular dynamics simulations suggested two important distinctions between the behavior of Arg9 and Lys9 that led to these striking differences in binding and cooperativity. First, the interactions of the guanidinium moieties on the Arg side chains with the phospholipid head groups were stronger than for the amino group. This helped facilitate stronger Arg9 binding at all PG concentrations that were tested. However, at PG concentrations of 20 mol % or greater, the Arg9 peptides came into sufficiently close proximity with each other so that favorable like-charge pairing between the guanidinium moieties could just offset the long-range electrostatic repulsions. This led to Arg9 aggregation at the bilayer surface. By contrast, Lys9 molecules experienced electrostatic repulsion from each other at all PG concentrations. These insights may help explain the propensity for cell penetrating peptides containing arginine to more effectively cross cell membranes in comparison with lysine-rich peptides.
Zobrazit více v PubMed
Yount NY, Yeaman MR. Multidimensional Signatures in Antimicrobial Peptides. Proc Natl Acad Sci U S A. 2004;101:7363–7368. doi: 10.1073/pnas.0401567101. PubMed DOI PMC
Blondelle SE, Lohner K, Aguilar MI. Lipid-Induced Conformation and Lipid-Binding Properties of Cytolytic and Antimicrobial Peptides: Determination and Biological Specificity. Biochim Biophys Acta, Biomembr. 1999;1462:89–108. doi: 10.1016/S0005-2736(99)00202-3. PubMed DOI
Epand RM, Vogel HJ. Diversity of Antimicrobial Peptides and Their Mechanisms of Action. Biochim Biophys Acta, Biomembr. 1999;1462:11–28. doi: 10.1016/S0005-2736(99)00198-4. PubMed DOI
Koren E, Torchilin VP. Cell-Penetrating Peptides: Breaking through to the Other Side. Trends Mol Med. 2012;18:385–393. doi: 10.1016/j.molmed.2012.04.012. PubMed DOI
Rapaport D, Shai Y. Interaction of Fluorescently Labeled Pardaxin and Its Analogs with Lipid Bilayers. J Biol Chem. 1991;266:23769–23775. PubMed
Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane Pores Induced by Magainin. Biochemistry. 1996;35:13723–13728. doi: 10.1021/bi9620621. PubMed DOI
Gazit E, Miller IR, Biggin PC, Sansom MSP, Shai Y. Structure and Orientation of the Mammalian Antibacterial Peptide Cecropin P1 within Phospholipid Membranes. J Mol Biol. 1996;258:860–870. doi: 10.1006/jmbi.1996.0293. PubMed DOI
Bechinger B, Lohner K. Detergent-Like Actions of Linear Amphipathic Cationic Antimicrobial Peptides. Biochim Biophys Acta, Biomembr. 2006;1758:1529–1539. doi: 10.1016/j.bbamem.2006.07.001. PubMed DOI
Bechara C, Sagan S. Cell-Penetrating Peptides: 20 Years Later, Where Do We Stand? FEBS Lett. 2013;587:1693–1702. doi: 10.1016/j.febslet.2013.04.031. PubMed DOI
Hoernke M, Schwieger C, Kerth A, Blume A. Binding of Cationic Pentapeptides with Modified Side Chain Lengths to Negatively Charged Lipid Membranes: Complex Interplay of Electrostatic and Hydrophobic Interactions. Biochim Biophys Acta, Biomembr. 2012;1818:1663–1672. doi: 10.1016/j.bbamem.2012.03.001. PubMed DOI
Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA. Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. J Am Chem Soc. 2004;126:9506–9507. doi: 10.1021/ja0482536. PubMed DOI
Sakai N, Matile S. Anion-Mediated Transfer of Polyarginine across Liquid and Bilayer Membranes. J Am Chem Soc. 2003;125:14348–14356. doi: 10.1021/ja037601l. PubMed DOI
Jung H, Robison AD, Cremer PS. Detecting Protein-Ligand Binding on Supported Bilayers by Local Ph Modulation. J Am Chem Soc. 2009;131:1006–1014. doi: 10.1021/ja804542p. PubMed DOI PMC
Masunov A, Lazaridis T. Potentials of Mean Force between Ionizable Amino Acid Side Chains in Water. J Am Chem Soc. 2003;125:1722–1730. doi: 10.1021/ja025521w. PubMed DOI
Vazdar M, Vymetal J, Heyda J, Vondrasek J, Jungwirth P. Like-Charge Guanidinium Pairing from Molecular Dynamics and Ab Initio Calculations. J Phys Chem A. 2011;115:11193–11201. doi: 10.1021/jp203519p. PubMed DOI
Vazdar M, Uhlig F, Jungwirth P. Like-Charge Ion Pairing in Water: An Ab Initio Molecular Dynamics Study of Aqueous Guanidinium Cations. J Phys Chem Lett. 2012;3:2021–2024. doi: 10.1021/jz3007657. DOI
Vondrasek J, Mason PE, Heyda J, Collins KD, Jungwirth P. The Molecular Origin of Like-Charge Arginine-Arginine Pairing in Water. J Phys Chem B. 2009;113:9041–9045. doi: 10.1021/jp902377q. PubMed DOI
Xia YN, McClelland JJ, Gupta R, Qin D, Zhao XM, Sohn LL, Celotta RJ, Whitesides GM. Replica Molding Using Polymeric Materials: A Practical Step toward Nanomanufacturing. Adv Mater. 1997;9:147–149. doi: 10.1002/adma.19970090211. DOI
Xia YN, Whitesides GM. Soft Lithography. Angew Chem, Int Ed. 1998;37:550–575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.3.CO;2-7. PubMed DOI
Huang D, Zhao T, Xu W, Yang T, Cremer PS. Sensing Small Molecule Interactions with Lipid Membranes by Local Ph Modulation. Anal Chem. 2013;85:10240–10248. doi: 10.1021/ac401955t. PubMed DOI
Axelrod D, Burghardt TP, Thompson NL. Total Internal Reflection Fluorescence. Annu Rev Biophys Bioeng. 1984;13:247–268. doi: 10.1146/annurev.bb.13.060184.001335. PubMed DOI
Yang TL, Jung SY, Mao HB, Cremer PS. Fabrication of Phospholipid Bilayer-Coated Microchannels for on-Chip Immunoassays. Anal Chem. 2001;73:165–169. doi: 10.1021/ac000997o. PubMed DOI
Burmeister JS, Olivier LA, Reichert WM, Truskey GA. Application of Total Internal Reflection Fluorescence Microscopy to Study Cell Adhesion to Biomaterials. Biomaterials. 1998;19:307–325. doi: 10.1016/S0142-9612(97)00109-9. PubMed DOI
Hlady V, Reinecke DR, Andrade JD. Fluorescence of Adsorbed Protein Layers: I. Quantitation of Total Internal Reflection Fluorescence. J Colloid Interface Sci. 1986;111:555–569. doi: 10.1016/0021-9797(86)90059-7. DOI
Mark JE. Polymer Data Handbook. 2. Oxford University Press; Oxford, U.K: 2009.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins: Struct, Funct, Genet. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC
Jämbeck JPM, Lyubartsev AP. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J Phys Chem B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Jämbeck JPM, Lyubartsev AP. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J Chem Theory Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI
Jämbeck JPM, Lyubartsev AP. Another Piece of the Membrane Puzzle: Extending Slipids Further. J Chem Theory Comput. 2013;9:774–784. doi: 10.1021/ct300777p. PubMed DOI
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J Chem Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J Appl Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Nose S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A Linear Constraint Solver for Molecular Simulations. J Comput Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hockney RW, Goel SP, Eastwood J. Quiet High Resolution Computer Models of a Plasma. J Comput Phys. 1974;14:148–158. doi: 10.1016/0021-9991(74)90010-2. DOI
Hess B, Kutzner C, van der Spoel D, Lindahl E. Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI
Vazdar M, Wernersson E, Khabiri M, Cwiklik L, Jurkiewicz P, Hof M, Mann E, Kolusheva S, Jelinek R, Jungwirth P. Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations, Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. J Phys Chem B. 2013;117:11530–11540. doi: 10.1021/jp405451e. PubMed DOI
Kim JY, Mosior M, Chung LA, Wu H, Mclaughlin S. Binding of Peptides with Basic Residues to Membranes Containing Acidic Phospholipids. Biophys J. 1991;60:135–148. doi: 10.1016/S0006-3495(91)82037-9. PubMed DOI PMC
Murray D, Arbuzova A, Hangyas-Mihalyne G, Gambhir A, Ben-Tal N, Honig B, McLaughlin S. Electrostatic Properties of Membranes Containing Acidic Lipids and Adsorbed Basic Peptides: Theory and Experiment. Biophys J. 1999;77:3176–3188. doi: 10.1016/S0006-3495(99)77148-1. PubMed DOI PMC
Ben-Tal N, Honig B, Peitzsch RM, Denisov G, McLaughlin S. Binding of Small Basic Peptides to Membranes Containing Acidic Lipids: Theoretical Models and Experimental Results. Biophys J. 1996;71:561–575. doi: 10.1016/S0006-3495(96)79280-9. PubMed DOI PMC
Roux M, Neumann JM, Bloom M, Devaux PF. 2H and 31P NMR Study of Pentalysine Interaction with Headgroup Deuterated Phosphatidylcholine and Phosphatidylserine. Eur Biophys J. 1988;16:267–273. doi: 10.1007/BF00254062. PubMed DOI
Bonev B, Watts A, Bokvist M, Grobner G. Electrostatic Peptide-Lipid Interactions of Amyloid-Beta Peptide and Pentalysine with Membrane Surfaces Monitored by P-31 Mas Nmr. Phys Chem Chem Phys. 2001;3:2904–2910. doi: 10.1039/b103352m. DOI
Mosior M, Mclaughlin S. Electrostatics and Reduction of Dimensionality Produce Apparent Cooperativity When Basic Peptides Bind to Acidic Lipids in Membranes. Biochim Biophys Acta, Biomembr. 1992;1105:185–187. doi: 10.1016/0005-2736(92)90178-O. PubMed DOI
Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine Enters Cells More Efficiently Than Other Polycationic Homopolymers. J Pept Res. 2000;56:318–325. doi: 10.1034/j.1399-3011.2000.00723.x. PubMed DOI
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-Rich Peptides - an Abundant Source of Membrane-Permeable Peptides Having Potential as Carriers for Intracellular Protein Delivery. J Biol Chem. 2001;276:5836–5840. doi: 10.1074/jbc.M007540200. PubMed DOI
Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The Design, Synthesis, and Evaluation of Molecules That Enable or Enhance Cellular Uptake: Peptoid Molecular Transporters. Proc Natl Acad Sci U S A. 2000;97:13003–13008. doi: 10.1073/pnas.97.24.13003. PubMed DOI PMC
Tang M, Waring AJ, Hong M. Phosphate-Mediated Arginine Insertion into Lipid Membranes and Pore Formation by a Cationic Membrane Peptide from Solid-State Nmr. J Am Chem Soc. 2007;129:11438–11446. doi: 10.1021/ja072511s. PubMed DOI
Magalhaes A, Maigret B, Hoflack J, Gomes JANF, Scheraga HA. Contribution of Unusual Arginine-Arginine Short-Range Interactions to Stabilization and Recognition in Proteins. J Protein Chem. 1994;13:195–215. doi: 10.1007/BF01891978. PubMed DOI
Mason PE, Neilson GW, Enderby JE, Saboungi ML, Dempsey CE, MacKerell AD, Brady JW. The Structure of Aqueous Guanidinium Chloride Solutions. J Am Chem Soc. 2004;126:11462–11470. doi: 10.1021/ja040034x. PubMed DOI
Mason PE, Brady JW, Neilson GW, Dempsey CE. The Interaction of Guanidinium Ions with a Model Peptide. Biophys J. 2007;93:L04–06. doi: 10.1529/biophysj.107.108290. PubMed DOI PMC
Schwieger C, Blume A. Interaction of Poly(L-Arginine) with Negatively Charged Dppg Membranes: Calorimetric and Monolayer Studies. Biomacromolecules. 2009;10:2152–2161. doi: 10.1021/bm9003207. PubMed DOI
Herce HD, Garcia AE. Molecular Dynamics Simulations Suggest a Mechanism for Translocation of the Hiv-1 Tat Peptide across Lipid Membranes. Proc Natl Acad Sci U S A. 2007;104:20805–20810. doi: 10.1073/pnas.0706574105. PubMed DOI PMC
Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A, Milesi V. Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides. Biophys J. 2009;97:1917–1925. doi: 10.1016/j.bpj.2009.05.066. PubMed DOI PMC
Self-association of a highly charged arginine-rich cell-penetrating peptide