Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal ROS Challenges: Timing is of the Essence
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
32430475
PubMed Central
PMC7240161
DOI
10.1128/mbio.00955-20
PII: mBio.00955-20
Knihovny.cz E-zdroje
- Klíčová slova
- chloroplast, eukaryogenesis, mitochondria, reactive oxygen species,
- MeSH
- biologická evoluce MeSH
- časové faktory MeSH
- chloroplasty genetika metabolismus MeSH
- Eukaryota genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sinice genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
When trying to reconstruct the evolutionary trajectories during early eukaryogenesis, one is struck by clear differences in the developments of two organelles of endosymbiotic origin: the mitochondrion and the chloroplast. From a symbiogenic perspective, eukaryotic development can be interpreted as a process in which many of the defining eukaryotic characteristics arose as a result of mutual adaptions of both prokaryotes (an archaeon and a bacterium) involved. This implies that many steps during the bacterium-to-mitochondrion transition trajectory occurred in an intense period of dramatic and rapid changes. In contrast, the subsequent cyanobacterium-to-chloroplast development in a specific eukaryotic subgroup, leading to the photosynthetic lineages, occurred in a full-fledged eukaryote. The commonalities and differences in the two trajectories shed an interesting light on early, and ongoing, eukaryotic evolutionary driving forces, especially endogenous reactive oxygen species (ROS) formation. Differences between organellar ribosomes, changes to the electron transport chain (ETC) components, and mitochondrial codon reassignments in nonplant mitochondria can be understood when mitochondrial ROS formation, e.g., during high energy consumption in heterotrophs, is taken into account.IMPORTANCE The early eukaryotic evolution was deeply influenced by the acquisition of two endosymbiotic organelles - the mitochondrion and the chloroplast. Here we discuss the possibly important role of reactive oxygen species in these processes.
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Medical Biochemistry AmsterdamUMC University of Amsterdam Amsterdam The Netherlands
Zobrazit více v PubMed
Koonin EV. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209. doi:10.1186/gb-2010-11-5-209. PubMed DOI PMC
Poole A, Penny D. 2007. Eukaryote evolution: engulfed by speculation. Nature 447:913. doi:10.1038/447913a. PubMed DOI
Booth A, Doolittle WF. 2015. Eukaryogenesis, how special really? Proc Natl Acad Sci U S A 112:10278–10285. doi:10.1073/pnas.1421376112. PubMed DOI PMC
Emelyanov VV. 2003. Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618. doi:10.1046/j.1432-1033.2003.03499.x. PubMed DOI
Davidov Y, Jurkevitch E. 2009. Predation between prokaryotes and the origin of eukaryotes. Bioessays 31:748–757. doi:10.1002/bies.200900018. PubMed DOI
Martin W, Muller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392:37–41. doi:10.1038/32096. PubMed DOI
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. doi:10.1128/MMBR.05024-11. PubMed DOI PMC
Martijn J, Ettema TJ. 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457. doi:10.1042/BST20120292. PubMed DOI
Speijer D. 2015. Birth of the eukaryotes by a set of reactive innovations: new insights force us to relinquish gradual models. Bioessays 37:1268–1276. doi:10.1002/bies.201500107. PubMed DOI
Speijer D. 2017. Alternating terminal electron-acceptors at the basis of symbiogenesis: how oxygen ignited eukaryotic evolution. Bioessays 39:1600174. doi:10.1002/bies.201600174. PubMed DOI
O’Malley MA. 2010. The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomedical Sci 41:212–224. doi:10.1016/j.shpsc.2010.07.010. PubMed DOI
Martin WF, Garg S, Zimorski V. 2015. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 370:20140330. doi:10.1098/rstb.2014.0330. PubMed DOI PMC
Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. doi:10.1016/j.cub.2017.09.015. PubMed DOI
Lopez-Garcia P, Eme L, Moreira D. 2017. Symbiosis in eukaryotic evolution. J Theor Biol 434:20–33. doi:10.1016/j.jtbi.2017.02.031. PubMed DOI PMC
Moreira D, Lopez-Garcia P. 1998. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530. doi:10.1007/pl00006408. PubMed DOI
Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, Greening C, Baker BJ, Ettema T. 2019. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 4:1138–1148. doi:10.1038/s41564-019-0406-9. PubMed DOI
Rivera MC, Jain R, Moore JE, Lake JA. 1998. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A 95:6239–6244. doi:10.1073/pnas.95.11.6239. PubMed DOI PMC
Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W. 2004. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660. doi:10.1093/molbev/msh160. PubMed DOI
Gould SB, Garg SG, Martin WF. 2016. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24:525–534. doi:10.1016/j.tim.2016.03.005. PubMed DOI
Raven JA, Allen JF. 2003. Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 4:209. doi:10.1186/gb-2003-4-3-209. PubMed DOI PMC
Keeling PJ. 2004. Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493. doi:10.3732/ajb.91.10.1481. PubMed DOI
Nowack ECM, Weber A. 2018. Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu Rev Plant Biol 69:51–84. doi:10.1146/annurev-arplant-042817-040209. PubMed DOI
Williams C. 2014. Going against the flow: a case for peroxisomal protein export. Biochim Biophys Acta 1843:1386–1392. doi:10.1016/j.bbamcr.2014.04.009. PubMed DOI
Speijer D. 2011. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH(2)/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. Bioessays 33:88–94. doi:10.1002/bies.201000097. PubMed DOI
Chatenay-Lapointe M, Shadel GS. 2010. Stressed-out mitochondria get MAD. Cell Metab 12:559–560. doi:10.1016/j.cmet.2010.11.018. PubMed DOI PMC
Bolte K, Gruenheit N, Felsner G, Sommer MS, Maier UG, Hempel F. 2011. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 33:368–376. doi:10.1002/bies.201100007. PubMed DOI
Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, Xie J, Brodsky JL, Madeo F, Gygi SP, Ashrafi K, Glickman MH, Rutter J. 2010. A stress-responsive system for mitochondrial protein degradation. Mol Cell 40:465–480. doi:10.1016/j.molcel.2010.10.021. PubMed DOI PMC
Soll J, Schleiff E. 2004. Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208. doi:10.1038/nrm1333. PubMed DOI
Borden WT, Hoffmann R, Stuyver T, Chen B. 2017. Dioxygen: what makes this triplet diradical kinetically persistent? J Am Chem Soc 139:9010–9018. doi:10.1021/jacs.7b04232. PubMed DOI
Krieger-Liszkay A, Fufezan C, Trebst A. 2008. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564. doi:10.1007/s11120-008-9349-3. PubMed DOI
Maxwell DP, Wang Y, McIntosh L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276. doi:10.1073/pnas.96.14.8271. PubMed DOI PMC
Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844. doi:10.1093/jxb/erw080. PubMed DOI
Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386. PubMed DOI PMC
Speijer D, Lukeš J, Eliáš M. 2015. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci U S A 112:8827–8834. doi:10.1073/pnas.1501725112. PubMed DOI PMC
Speijer D. 2016. What can we infer about the origin of sex in early eukaryotes. ? Philos Trans R Soc Lond B Biol Sci 371:20150530. doi:10.1098/rstb.2015.0530. PubMed DOI PMC
Horandl E, Speijer D. 2018. How oxygen gave rise to eukaryotic sex. Proc Biol Sci 285:1872. doi:10.1098/rspb.2017.2706. PubMed DOI PMC
Bernstein H, Bernstein C. 2013. Evolutionary origin and adaptive function of meiosis. In Bernstein C. (ed), Tech Meiosis, Rijeka. doi:10.5772/56557. DOI
Horandl E, Hadacek F. 2013. The oxidative damage initiation hypothesis for meiosis. Plant Reprod 26:351–367. doi:10.1007/s00497-013-0234-7. PubMed DOI PMC
Marin B, Nowack EC, Melkonian M. 2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432. doi:10.1016/j.protis.2005.09.001. PubMed DOI
Delaye L, Valadez-Cano C, Perez-Zamorano B. 2016. How really ancient is Paulinella chromatophora? PLoS Curr 8. doi:10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b. PubMed DOI PMC
Zhang R, Nowack EC, Price DC, Bhattacharya D, Grossman AR. 2017. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. Plant J 90:221–234. doi:10.1111/tpj.13488. PubMed DOI
Knight RD, Freeland SJ, Landweber LF. 2001. Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58. doi:10.1038/35047500. PubMed DOI
Bender A, Hajieva P, Moosmann B. 2008. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci U S A 105:16496–16501. doi:10.1073/pnas.0802779105. PubMed DOI PMC
Lai L, Sun J, Tarafdar S, Liu C, Murphy E, Kim G, Levine RL. 2019. Loss of methionine sulfoxide reductases increases resistance to oxidative stress. Free Radic Biol Med 145:374–384. doi:10.1016/j.freeradbiomed.2019.10.006. PubMed DOI PMC
Held NM, Houtkooper RH. 2015. Mitochondrial quality control pathways as determinants of metabolic health. Bioessays 37:867–876. doi:10.1002/bies.201500013. PubMed DOI PMC
van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J, Berninghausen O, Neupert W, Herrmann JM, Beckmann R. 2015. Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol Evol 7:1235–1251. doi:10.1093/gbe/evv061. PubMed DOI PMC
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. 2020. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 18:22. doi:10.1186/s12915-020-0741-6. PubMed DOI PMC
Burger G, Gray MW, Forget L, Lang BF. 2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jacobid protists. Genome Biol Evol 5:418–438. doi:10.1093/gbe/evt008. PubMed DOI PMC
Ramrath DJF, Niemann M, Leibundgut M, Bieri P, Prange C, Horn EK, Leitner A, Boehringer D, Schneider A, Ban N. 2018. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362:eaau7735. doi:10.1126/science.aau7735. PubMed DOI
Yamaguchi K, Subramanian AR. 2000. The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482. doi:10.1074/jbc.M005012200. PubMed DOI
Yamaguchi K, von Knoblauch K, Subramanian AR. 2000. The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465. doi:10.1074/jbc.M004350200. PubMed DOI
Allen JF. 1993. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631. doi:10.1006/jtbi.1993.1210. PubMed DOI
Johnston IG, Williams BP. 2016. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst 2:101–111. doi:10.1016/j.cels.2016.01.013. PubMed DOI
Aalto TK, Raivio KO. 1993. Nucleotide depletion due to reactive oxygen metabolites in endothelial cells: effects of antioxidants and 3-aminobenzamide. Pediatr Res 34:572–576. doi:10.1203/00006450-199311000-00004. PubMed DOI
Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179. doi:10.1038/nature14447. PubMed DOI PMC
Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K. 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:519–525. doi:10.1038/s41586-019-1916-6. PubMed DOI PMC
Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–934. doi:10.1038/nature09486. PubMed DOI
Albring M, Griffith J, Attardi G. 1977. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A 74:1348–1352. doi:10.1073/pnas.74.4.1348. PubMed DOI PMC
Cheung CY, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. 2014. A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiol 165:917–929. doi:10.1104/pp.113.234468. PubMed DOI PMC
Gray MW. 2015. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138. doi:10.1073/pnas.1421379112. PubMed DOI PMC
Reddy JK, Hashimoto T. 2001. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21:193–230. doi:10.1146/annurev.nutr.21.1.193. PubMed DOI
Speijer D. 2016. Being right on Q: shaping eukaryotic evolution. Biochem J 473:4103–4127. doi:10.1042/BCJ20160647. PubMed DOI PMC
Kunau WH, Dommes V, Schulz H. 1995. β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342. doi:10.1016/0163-7827(95)00011-9. PubMed DOI
Speijer D. 2017. Evolution of peroxisomes illustrates symbiogenesis. Bioessays 39:1700050. doi:10.1002/bies.201700050. PubMed DOI
Bolte K, Rensing SA, Maier UG. 2015. The evolution of eukaryotic cells from the perspective of peroxisomes: phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution. Bioessays 37:195–203. doi:10.1002/bies.201400151. PubMed DOI
Sugiura A, Mattie S, Prudent J, McBride HM. 2017. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251–254. doi:10.1038/nature21375. PubMed DOI
Keeling PJ. 2010. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748. doi:10.1098/rstb.2009.0103. PubMed DOI PMC
Knoll AH, Javaux EJ, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci 361:1023–1038. doi:10.1098/rstb.2006.1843. PubMed DOI PMC
Speijer D. 2014. Reconsidering ideas regarding the evolution of peroxisomes: the case for a mitochondrial connection. Cell Mol Life Sci 71:2377–2378. doi:10.1007/s00018-013-1507-x. PubMed DOI PMC
Gutteridge JMC, Halliwell B. 2018. Mini-Review: oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 502:183–186. doi:10.1016/j.bbrc.2018.05.045. PubMed DOI
Davies KJ. 1995. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31. doi:10.1042/bss0610001. PubMed DOI
Kowald A, Kirkwood TB. 2011. Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc Natl Acad Sci U S A 108:10237–10242. doi:10.1073/pnas.1101604108. PubMed DOI PMC
Rydstrom J. 2006. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757:721–726. doi:10.1016/j.bbabio.2006.03.010. PubMed DOI
Sheeran FL, Rydstrom J, Shakhparonov MI, Pestov NB, Pepe S. 2010. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta 1797:1138–1148. doi:10.1016/j.bbabio.2010.04.002. PubMed DOI
Lee J, Giordano S, Zhang J. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540. doi:10.1042/BJ20111451. PubMed DOI PMC
Enright HU, Miller WJ, Hebbel RP. 1992. Nucleosomal histone protein protects DNA from iron-mediated damage. Nucleic Acids Res 20:3341–3346. doi:10.1093/nar/20.13.3341. PubMed DOI PMC
Speijer D. 2014. How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. Bioessays 36:634–643. doi:10.1002/bies.201400033. PubMed DOI
Mailloux RJ, Harper ME. 2011. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115. doi:10.1016/j.freeradbiomed.2011.06.022. PubMed DOI