Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition

. 2017 Mar 22 ; 139 (11) : 4019-4024. [epub] 20170307

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid28177616

The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.

Zobrazit více v PubMed

Putney J. W.; Tomita T. Adv. Biol. Regul 2012, 52 (1), 152–64. 10.1016/j.advenzreg.2011.09.005. PubMed DOI PMC

van den Bogaart G.; Meyenberg K.; Diederichsen U.; Jahn R. J. Biol. Chem. 2012, 287 (20), 16447–53. 10.1074/jbc.M112.343418. PubMed DOI PMC

McLaughlin S.; Wang J.; Gambhir A.; Murray D. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 151–75. 10.1146/annurev.biophys.31.082901.134259. PubMed DOI

Di Paolo G.; De Camilli P. Nature 2006, 443 (7112), 651–7. 10.1038/nature05185. PubMed DOI

Nasuhoglu C.; Feng S.; Mao J.; Yamamoto M.; Yin H. L.; Earnest S.; Barylko B.; Albanesi J. P.; Hilgemann D. W. Anal. Biochem. 2002, 301 (2), 243–54. 10.1006/abio.2001.5489. PubMed DOI

Wang Y. H.; Slochower D. R.; Janmey P. A. Chem. Phys. Lipids 2014, 182, 38–51. 10.1016/j.chemphyslip.2014.01.001. PubMed DOI PMC

Clapham D. E. Cell 2007, 131 (6), 1047–58. 10.1016/j.cell.2007.11.028. PubMed DOI

Usachev Y. M.; Marchenko S. M.; Sage S. O. J. Physiol. 1995, 489, 309–17. 10.1113/jphysiol.1995.sp021052. PubMed DOI PMC

Berridge M. J. J. Physiol. 1997, 499, 291–306. 10.1113/jphysiol.1997.sp021927. PubMed DOI PMC

Berridge M. J. Cell Calcium 2006, 40 (5–6), 405–12. 10.1016/j.ceca.2006.09.002. PubMed DOI

Heidelberger R.; Heinemann C.; Neher E.; Matthews G. Nature 1994, 371 (6497), 513–5. 10.1038/371513a0. PubMed DOI

Llinas R.; Sugimori M.; Silver R. B. Science 1992, 256 (5057), 677–9. 10.1126/science.1350109. PubMed DOI

Tengholm A.; Gylfe E. Mol. Cell. Endocrinol. 2009, 297 (1–2), 58–72. 10.1016/j.mce.2008.07.009. PubMed DOI

Ammala C.; Eliasson L.; Bokvist K.; Larsson O.; Ashcroft F. M.; Rorsman P. J. Physiol. 1993, 472, 665–88. 10.1113/jphysiol.1993.sp019966. PubMed DOI PMC

Parekh A. B. J. Physiol. 2008, 586 (13), 3043–54. 10.1113/jphysiol.2008.153460. PubMed DOI PMC

Grubbs R. D. BioMetals 2002, 15 (3), 251–9. 10.1023/A:1016026831789. PubMed DOI

Fujise H.; Cruz P.; Reo N. V.; Lauf P. K. Biochim. Biophys. Acta, Mol. Cell Res. 1991, 1094 (1), 51–54. 10.1016/0167-4889(91)90025-S. PubMed DOI

Carvalho K.; Ramos L.; Roy C.; Picart C. Biophys. J. 2008, 95 (9), 4348–60. 10.1529/biophysj.107.126912. PubMed DOI PMC

Ellenbroek W. G.; Wang Y. H.; Christian D. A.; Discher D. E.; Janmey P. A.; Liu A. J. Biophys. J. 2011, 101 (9), 2178–84. 10.1016/j.bpj.2011.09.039. PubMed DOI PMC

Levental I.; Christian D. A.; Wang Y. H.; Madara J. J.; Discher D. E.; Janmey P. A. Biochemistry 2009, 48 (34), 8241–8. 10.1021/bi9007879. PubMed DOI PMC

Sarmento M. J.; Coutinho A.; Fedorov A.; Prieto M.; Fernandes F. Biochim. Biophys. Acta, Biomembr. 2014, 1838 (3), 822–30. 10.1016/j.bbamem.2013.11.020. PubMed DOI

Levental I.; Cebers A.; Janmey P. A. J. Am. Chem. Soc. 2008, 130 (28), 9025–30. 10.1021/ja800948c. PubMed DOI PMC

Wang Y. H.; Collins A.; Guo L.; Smith-Dupont K. B.; Gai F.; Svitkina T.; Janmey P. A. J. Am. Chem. Soc. 2012, 134 (7), 3387–95. 10.1021/ja208640t. PubMed DOI PMC

Graber Z. T.; Wang W.; Singh G.; Kuzmenko I.; Vaknin D.; Kooijman E. E. RSC Adv. 2015, 5 (129), 106536–106542. 10.1039/C5RA19023A. DOI

Slochower D. R.; Huwe P. J.; Radhakrishnan R.; Janmey P. A. J. Phys. Chem. B 2013, 117 (28), 8322–9. 10.1021/jp401414y. PubMed DOI PMC

Jung H.; Robison A. D.; Cremer P. S. J. Am. Chem. Soc. 2009, 131 (3), 1006–14. 10.1021/ja804542p. PubMed DOI PMC

Huang D.; Zhao T.; Xu W.; Yang T.; Cremer P. S. Anal. Chem. 2013, 85 (21), 10240–8. 10.1021/ac401955t. PubMed DOI

Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J. P.; Jungwirth P.; Vazdar M.; Cremer P. S. J. Phys. Chem. B 2016, 120 (35), 9287–96. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC

Toner M.; Vaio G.; McLaughlin A.; McLaughlin S. Biochemistry 1988, 27 (19), 7435–43. 10.1021/bi00419a039. PubMed DOI

Balla T.; Varnai P. Sci. Signaling 2002, 2002 (125), pl3.10.1126/scisignal.1252002pl3. PubMed DOI

Garcia P.; Gupta R.; Shah S.; Morris A. J.; Rudge S. A.; Scarlata S.; Petrova V.; McLaughlin S.; Rebecchi M. J. Biochemistry 1995, 34 (49), 16228–34. 10.1021/bi00049a039. PubMed DOI

Saliba A. E.; Vonkova I.; Ceschia S.; Findlay G. M.; Maeda K.; Tischer C.; Deghou S.; van Noort V.; Bork P.; Pawson T.; Ellenberg J.; Gavin A. C. Nat. Methods 2013, 11 (1), 47–50. 10.1038/nmeth.2734. PubMed DOI

Lemmon M. A.; Ferguson K. M.; O’Brien R.; Sigler P. B.; Schlessinger J. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (23), 10472–6. 10.1073/pnas.92.23.10472. PubMed DOI PMC

Lemmon M. A. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 99–111. 10.1038/nrm2328. PubMed DOI

Milovanovic D.; Platen M.; Junius M.; Diederichsen U.; Schaap I. A.; Honigmann A.; Jahn R.; van den Bogaart G. J. Biol. Chem. 2016, 291 (15), 7868–76. 10.1074/jbc.M116.716225. PubMed DOI PMC

Magarkar A.; Jurkiewicz P.; Allolio C.; Hof M.; Jungwirth P. J. Phys. Chem. Lett. 2017, 8 (2), 518–523. 10.1021/acs.jpclett.6b02818. PubMed DOI

Czogalla A.; Grzybek M.; Jones W.; Coskun U. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2014, 1841 (8), 1049–59. 10.1016/j.bbalip.2013.12.012. PubMed DOI

Isbrandt L. R.; Oertel R. P. J. Am. Chem. Soc. 1980, 102 (9), 3144–3148. 10.1021/ja00529a043. DOI

Laroche G.; Dufourc E. J.; Dufourcq J.; Pezolet M. Biochemistry 1991, 30 (12), 3105–14. 10.1021/bi00226a018. PubMed DOI

Casillas-Ituarte N. N.; Chen X.; Castada H.; Allen H. C. J. Phys. Chem. B 2010, 114 (29), 9485–95. 10.1021/jp1022357. PubMed DOI

Levinson N. M.; Bolte E. E.; Miller C. S.; Corcelli S. A.; Boxer S. G. J. Am. Chem. Soc. 2011, 133 (34), 13236–9. 10.1021/ja2042589. PubMed DOI PMC

Flach C. R.; Brauner J. W.; Mendelsohn R. Biophys. J. 1993, 65 (5), 1994–2001. 10.1016/S0006-3495(93)81276-1. PubMed DOI PMC

Rzeznicka II; Sovago M.; Backus E. H.; Bonn M.; Yamada T.; Kobayashi T.; Kawai M. Langmuir 2010, 26 (20), 16055–62. 10.1021/la1028965. PubMed DOI

Gurau M. C.; Lim S. M.; Castellana E. T.; Albertorio F.; Kataoka S.; Cremer P. S. J. Am. Chem. Soc. 2004, 126 (34), 10522–3. 10.1021/ja047715c. PubMed DOI

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr.; Pastor R. W. J. Phys. Chem. B 2010, 114 (23), 7830–43. 10.1021/jp101759q. PubMed DOI PMC

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI

Berger O.; Edholm O.; Jahnig F. Biophys. J. 1997, 72 (5), 2002–13. 10.1016/S0006-3495(97)78845-3. PubMed DOI PMC

Kohagen M.; Pluharova E.; Mason P. E.; Jungwirth P. J. Phys. Chem. Lett. 2015, 6 (9), 1563–7. 10.1021/acs.jpclett.5b00060. PubMed DOI

Porasso R. D.; Lopez Cascales J. J. Colloids Surf., B 2009, 73 (1), 42–50. 10.1016/j.colsurfb.2009.04.028. PubMed DOI

Bockmann R. A.; Grubmuller H. Angew. Chem., Int. Ed. 2004, 43 (8), 1021–4. 10.1002/anie.200352784. PubMed DOI

Magarkar A.; Rog T.; Bunker A. J. Phys. Chem. C 2014, 118 (33), 19444–19449. 10.1021/jp505633y. DOI

Binder H.; Zschornig O. Chem. Phys. Lipids 2002, 115 (1–2), 39–61. 10.1016/S0009-3084(02)00005-1. PubMed DOI

Melcrova A.; Pokorna S.; Pullanchery S.; Kohagen M.; Jurkiewicz P.; Hof M.; Jungwirth P.; Cremer P. S.; Cwiklik L. Sci. Rep. 2016, 6, 38035.10.1038/srep38035. PubMed DOI PMC

Li Z.; Venable R. M.; Rogers L. A.; Murray D.; Pastor R. W. Biophys. J. 2009, 97 (1), 155–63. 10.1016/j.bpj.2009.04.037. PubMed DOI PMC

Lupyan D.; Mezei M.; Logothetis D. E.; Osman R. Biophys. J. 2010, 98 (2), 240–7. 10.1016/j.bpj.2009.09.063. PubMed DOI PMC

Wu E. L.; Qi Y.; Song K. C.; Klauda J. B.; Im W. J. Phys. Chem. B 2014, 118 (16), 4315–25. 10.1021/jp500610t. PubMed DOI

Graber Z. T.; Gericke A.; Kooijman E. E. Chem. Phys. Lipids 2014, 182, 62–72. 10.1016/j.chemphyslip.2013.11.004. PubMed DOI

Mathiasen S.; Christensen S. M.; Fung J. J.; Rasmussen S. G. F.; Fay J. F.; Jorgensen S. K.; Veshaguri S.; Farrens D. L.; Kiskowski M.; Kobilka B.; Stamou D. Nat. Methods 2014, 11 (9), 931–934. 10.1038/nmeth.3062. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...