Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
28177616
PubMed Central
PMC5364432
DOI
10.1021/jacs.6b11760
Knihovny.cz E-zdroje
- MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- molekulární konformace MeSH
- simulace molekulární dynamiky * MeSH
- vápník chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- vápník MeSH
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.
Department of Physics Tampere University of Technology P O Box 692 FI 33101 Tampere Finland
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
German Center for Diabetes Research Ingolstädter Landstraße 1 85764 Neuherberg Germany
MEMPHYS Center for Biomembrane Physics University of Southern Denmark DK 5230 Odense Denmark
Zobrazit více v PubMed
Putney J. W.; Tomita T. Adv. Biol. Regul 2012, 52 (1), 152–64. 10.1016/j.advenzreg.2011.09.005. PubMed DOI PMC
van den Bogaart G.; Meyenberg K.; Diederichsen U.; Jahn R. J. Biol. Chem. 2012, 287 (20), 16447–53. 10.1074/jbc.M112.343418. PubMed DOI PMC
McLaughlin S.; Wang J.; Gambhir A.; Murray D. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 151–75. 10.1146/annurev.biophys.31.082901.134259. PubMed DOI
Di Paolo G.; De Camilli P. Nature 2006, 443 (7112), 651–7. 10.1038/nature05185. PubMed DOI
Nasuhoglu C.; Feng S.; Mao J.; Yamamoto M.; Yin H. L.; Earnest S.; Barylko B.; Albanesi J. P.; Hilgemann D. W. Anal. Biochem. 2002, 301 (2), 243–54. 10.1006/abio.2001.5489. PubMed DOI
Wang Y. H.; Slochower D. R.; Janmey P. A. Chem. Phys. Lipids 2014, 182, 38–51. 10.1016/j.chemphyslip.2014.01.001. PubMed DOI PMC
Clapham D. E. Cell 2007, 131 (6), 1047–58. 10.1016/j.cell.2007.11.028. PubMed DOI
Usachev Y. M.; Marchenko S. M.; Sage S. O. J. Physiol. 1995, 489, 309–17. 10.1113/jphysiol.1995.sp021052. PubMed DOI PMC
Berridge M. J. J. Physiol. 1997, 499, 291–306. 10.1113/jphysiol.1997.sp021927. PubMed DOI PMC
Berridge M. J. Cell Calcium 2006, 40 (5–6), 405–12. 10.1016/j.ceca.2006.09.002. PubMed DOI
Heidelberger R.; Heinemann C.; Neher E.; Matthews G. Nature 1994, 371 (6497), 513–5. 10.1038/371513a0. PubMed DOI
Llinas R.; Sugimori M.; Silver R. B. Science 1992, 256 (5057), 677–9. 10.1126/science.1350109. PubMed DOI
Tengholm A.; Gylfe E. Mol. Cell. Endocrinol. 2009, 297 (1–2), 58–72. 10.1016/j.mce.2008.07.009. PubMed DOI
Ammala C.; Eliasson L.; Bokvist K.; Larsson O.; Ashcroft F. M.; Rorsman P. J. Physiol. 1993, 472, 665–88. 10.1113/jphysiol.1993.sp019966. PubMed DOI PMC
Parekh A. B. J. Physiol. 2008, 586 (13), 3043–54. 10.1113/jphysiol.2008.153460. PubMed DOI PMC
Grubbs R. D. BioMetals 2002, 15 (3), 251–9. 10.1023/A:1016026831789. PubMed DOI
Fujise H.; Cruz P.; Reo N. V.; Lauf P. K. Biochim. Biophys. Acta, Mol. Cell Res. 1991, 1094 (1), 51–54. 10.1016/0167-4889(91)90025-S. PubMed DOI
Carvalho K.; Ramos L.; Roy C.; Picart C. Biophys. J. 2008, 95 (9), 4348–60. 10.1529/biophysj.107.126912. PubMed DOI PMC
Ellenbroek W. G.; Wang Y. H.; Christian D. A.; Discher D. E.; Janmey P. A.; Liu A. J. Biophys. J. 2011, 101 (9), 2178–84. 10.1016/j.bpj.2011.09.039. PubMed DOI PMC
Levental I.; Christian D. A.; Wang Y. H.; Madara J. J.; Discher D. E.; Janmey P. A. Biochemistry 2009, 48 (34), 8241–8. 10.1021/bi9007879. PubMed DOI PMC
Sarmento M. J.; Coutinho A.; Fedorov A.; Prieto M.; Fernandes F. Biochim. Biophys. Acta, Biomembr. 2014, 1838 (3), 822–30. 10.1016/j.bbamem.2013.11.020. PubMed DOI
Levental I.; Cebers A.; Janmey P. A. J. Am. Chem. Soc. 2008, 130 (28), 9025–30. 10.1021/ja800948c. PubMed DOI PMC
Wang Y. H.; Collins A.; Guo L.; Smith-Dupont K. B.; Gai F.; Svitkina T.; Janmey P. A. J. Am. Chem. Soc. 2012, 134 (7), 3387–95. 10.1021/ja208640t. PubMed DOI PMC
Graber Z. T.; Wang W.; Singh G.; Kuzmenko I.; Vaknin D.; Kooijman E. E. RSC Adv. 2015, 5 (129), 106536–106542. 10.1039/C5RA19023A. DOI
Slochower D. R.; Huwe P. J.; Radhakrishnan R.; Janmey P. A. J. Phys. Chem. B 2013, 117 (28), 8322–9. 10.1021/jp401414y. PubMed DOI PMC
Jung H.; Robison A. D.; Cremer P. S. J. Am. Chem. Soc. 2009, 131 (3), 1006–14. 10.1021/ja804542p. PubMed DOI PMC
Huang D.; Zhao T.; Xu W.; Yang T.; Cremer P. S. Anal. Chem. 2013, 85 (21), 10240–8. 10.1021/ac401955t. PubMed DOI
Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J. P.; Jungwirth P.; Vazdar M.; Cremer P. S. J. Phys. Chem. B 2016, 120 (35), 9287–96. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC
Toner M.; Vaio G.; McLaughlin A.; McLaughlin S. Biochemistry 1988, 27 (19), 7435–43. 10.1021/bi00419a039. PubMed DOI
Balla T.; Varnai P. Sci. Signaling 2002, 2002 (125), pl3.10.1126/scisignal.1252002pl3. PubMed DOI
Garcia P.; Gupta R.; Shah S.; Morris A. J.; Rudge S. A.; Scarlata S.; Petrova V.; McLaughlin S.; Rebecchi M. J. Biochemistry 1995, 34 (49), 16228–34. 10.1021/bi00049a039. PubMed DOI
Saliba A. E.; Vonkova I.; Ceschia S.; Findlay G. M.; Maeda K.; Tischer C.; Deghou S.; van Noort V.; Bork P.; Pawson T.; Ellenberg J.; Gavin A. C. Nat. Methods 2013, 11 (1), 47–50. 10.1038/nmeth.2734. PubMed DOI
Lemmon M. A.; Ferguson K. M.; O’Brien R.; Sigler P. B.; Schlessinger J. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (23), 10472–6. 10.1073/pnas.92.23.10472. PubMed DOI PMC
Lemmon M. A. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 99–111. 10.1038/nrm2328. PubMed DOI
Milovanovic D.; Platen M.; Junius M.; Diederichsen U.; Schaap I. A.; Honigmann A.; Jahn R.; van den Bogaart G. J. Biol. Chem. 2016, 291 (15), 7868–76. 10.1074/jbc.M116.716225. PubMed DOI PMC
Magarkar A.; Jurkiewicz P.; Allolio C.; Hof M.; Jungwirth P. J. Phys. Chem. Lett. 2017, 8 (2), 518–523. 10.1021/acs.jpclett.6b02818. PubMed DOI
Czogalla A.; Grzybek M.; Jones W.; Coskun U. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2014, 1841 (8), 1049–59. 10.1016/j.bbalip.2013.12.012. PubMed DOI
Isbrandt L. R.; Oertel R. P. J. Am. Chem. Soc. 1980, 102 (9), 3144–3148. 10.1021/ja00529a043. DOI
Laroche G.; Dufourc E. J.; Dufourcq J.; Pezolet M. Biochemistry 1991, 30 (12), 3105–14. 10.1021/bi00226a018. PubMed DOI
Casillas-Ituarte N. N.; Chen X.; Castada H.; Allen H. C. J. Phys. Chem. B 2010, 114 (29), 9485–95. 10.1021/jp1022357. PubMed DOI
Levinson N. M.; Bolte E. E.; Miller C. S.; Corcelli S. A.; Boxer S. G. J. Am. Chem. Soc. 2011, 133 (34), 13236–9. 10.1021/ja2042589. PubMed DOI PMC
Flach C. R.; Brauner J. W.; Mendelsohn R. Biophys. J. 1993, 65 (5), 1994–2001. 10.1016/S0006-3495(93)81276-1. PubMed DOI PMC
Rzeznicka II; Sovago M.; Backus E. H.; Bonn M.; Yamada T.; Kobayashi T.; Kawai M. Langmuir 2010, 26 (20), 16055–62. 10.1021/la1028965. PubMed DOI
Gurau M. C.; Lim S. M.; Castellana E. T.; Albertorio F.; Kataoka S.; Cremer P. S. J. Am. Chem. Soc. 2004, 126 (34), 10522–3. 10.1021/ja047715c. PubMed DOI
Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr.; Pastor R. W. J. Phys. Chem. B 2010, 114 (23), 7830–43. 10.1021/jp101759q. PubMed DOI PMC
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Berger O.; Edholm O.; Jahnig F. Biophys. J. 1997, 72 (5), 2002–13. 10.1016/S0006-3495(97)78845-3. PubMed DOI PMC
Kohagen M.; Pluharova E.; Mason P. E.; Jungwirth P. J. Phys. Chem. Lett. 2015, 6 (9), 1563–7. 10.1021/acs.jpclett.5b00060. PubMed DOI
Porasso R. D.; Lopez Cascales J. J. Colloids Surf., B 2009, 73 (1), 42–50. 10.1016/j.colsurfb.2009.04.028. PubMed DOI
Bockmann R. A.; Grubmuller H. Angew. Chem., Int. Ed. 2004, 43 (8), 1021–4. 10.1002/anie.200352784. PubMed DOI
Magarkar A.; Rog T.; Bunker A. J. Phys. Chem. C 2014, 118 (33), 19444–19449. 10.1021/jp505633y. DOI
Binder H.; Zschornig O. Chem. Phys. Lipids 2002, 115 (1–2), 39–61. 10.1016/S0009-3084(02)00005-1. PubMed DOI
Melcrova A.; Pokorna S.; Pullanchery S.; Kohagen M.; Jurkiewicz P.; Hof M.; Jungwirth P.; Cremer P. S.; Cwiklik L. Sci. Rep. 2016, 6, 38035.10.1038/srep38035. PubMed DOI PMC
Li Z.; Venable R. M.; Rogers L. A.; Murray D.; Pastor R. W. Biophys. J. 2009, 97 (1), 155–63. 10.1016/j.bpj.2009.04.037. PubMed DOI PMC
Lupyan D.; Mezei M.; Logothetis D. E.; Osman R. Biophys. J. 2010, 98 (2), 240–7. 10.1016/j.bpj.2009.09.063. PubMed DOI PMC
Wu E. L.; Qi Y.; Song K. C.; Klauda J. B.; Im W. J. Phys. Chem. B 2014, 118 (16), 4315–25. 10.1021/jp500610t. PubMed DOI
Graber Z. T.; Gericke A.; Kooijman E. E. Chem. Phys. Lipids 2014, 182, 62–72. 10.1016/j.chemphyslip.2013.11.004. PubMed DOI
Mathiasen S.; Christensen S. M.; Fung J. J.; Rasmussen S. G. F.; Fay J. F.; Jorgensen S. K.; Veshaguri S.; Farrens D. L.; Kiskowski M.; Kobilka B.; Stamou D. Nat. Methods 2014, 11 (9), 931–934. 10.1038/nmeth.3062. PubMed DOI PMC
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints
Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding