The complex nature of calcium cation interactions with phospholipid bilayers
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
27905555
PubMed Central
PMC5131315
DOI
10.1038/srep38035
PII: srep38035
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- liposomy chemie metabolismus MeSH
- molekulární modely MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vápníková signalizace MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fosfolipidy MeSH
- lipidové dvojvrstvy MeSH
- liposomy MeSH
- vápník MeSH
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Department of Chemistry Pennsylvania State University University Park PA 16802 United States
Department of Physics Tampere University of Technology POB 692 Tampere FI 33101 Finland
Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
Zobrazit více v PubMed
Xu N., Francis M., Cioffi D. L. & Stevens T. Studies on the resolution of subcellular free calcium concentrations: a technological advance. Focus on “Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells”. American Journal of Physiology-Cell Physiology 306, C636–C638 (2014). PubMed PMC
Subedi K. P., Paudel O. & Sham J. S. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells. American Journal of Physiology-Cell Physiology 306, C659–C669 (2014). PubMed PMC
Berridge M. J. Calcium microdomains: organization and function. Cell calcium 40, 405–412 (2006). PubMed
Prins D. & Michalak M. Organellar calcium buffers. Cold Spring Harbor perspectives in biology 3, a004069 (2011). PubMed PMC
Berridge M. J., Bootman M. D. & Roderick H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature reviews Molecular cell biology 4, 517–529 (2003). PubMed
Tadross M. R., Tsien R. W. & Yue D. T. Ca2+ channel nanodomains boost local Ca2+ amplitude. Proceedings of the National Academy of Sciences 110, 15794–15799 (2013). PubMed PMC
Shi X. et al.. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013). PubMed
Lemmon M. A. Membrane recognition by phospholipid-binding domains. Nature reviews Molecular cell biology 9, 99–111 (2008). PubMed
Nielsen R. D., Che K., Gelb M. H. & Robinson B. H. A ruler for determining the position of proteins in membranes. Journal of the American Chemical Society 127, 6430–6442 (2005). PubMed
Martens S. & McMahon H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Reviews Molecular Cell Biology 9, 543–556 (2008). PubMed
Ito T. & Ohnishi S.-I. Ca 2+-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 352, 29–37 (1974). PubMed
Papahadjopoulos D., Vail W., Jacobson K. & Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 394, 483–491 (1975). PubMed
Dluhy R., Cameron D. G., Mantsch H. H. & Mendelsohn R. Fourier transform infrared spectroscopic studies of the effect of calcium ions on phosphatidylserine. Biochemistry 22, 6318–6325 (1983).
Naga K., Rich N. & Keough K. Interaction between dipalmitoylphosphatidylglycerol and phosphatidylcholine and calcium. Thin Solid Films 244, 841–844 (1994).
Garidel P. & Blume A. Interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol: a differential scanning and isothermal titration calorimetric study. Langmuir 15, 5526–5534 (1999).
Garidel P. & Blume A. 1, 2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: influence of temperature, pH, ionic strength and binding of alkaline earth cations. Chemistry and physics of lipids 138, 50–59 (2005). PubMed
Binder H. & Zschörnig O. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chemistry and physics of lipids 115, 39–61 (2002). PubMed
Pedersen U. R., Leidy C., Westh P. & Peters G. H. The effect of calcium on the properties of charged phospholipid bilayers. Biochimica Et Biophysica Acta-Biomembranes 1758, 573–582, doi: 10.1016/j.bbamem.2006.03.035 (2006). PubMed DOI
Sinn C. G., Antonietti M. & Dimova R. Binding of calcium to phosphatidylcholine-phosphatidylserine membranes. Colloids and Surfaces a-Physicochemical and Engineering Aspects 282, 410–419, doi: 10.1016/j.colsurfa.2005.10.014 (2006). DOI
Boettcher J. M. et al.. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 50, 2264–2273 (2011). PubMed PMC
Garidel P., Blume A. & Hübner W. A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol. Biochimica et Biophysica Acta (BBA)-Biomembranes 1466, 245–259 (2000). PubMed
Akutsu H. & Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 20, 7366–7373 (1981). PubMed
Mirza M., Guo Y., Arnold K., van Oss C. J. & Ohki S. Hydrophobizing effect of cations on acidic phospholipid membranes. Journal of Dispersion Science and Technology 19, 951–962, doi: 10.1080/01932699808913225 (1998). DOI
Ohki S. & Zschornig O. Ion-Induced Fusion of Phosphatidic-Acid Vesicles and Correlation between Surface Hydrophobicity and Membrane-Fusion. Chemistry and Physics of Lipids 65, 193–204, doi: 10.1016/0009-3084(93)90017-W (1993). PubMed DOI
Porasso R. D. & Cascales J. J. L. Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/DPPC plus DPPS lipid bilayer by molecular dynamics simulation. Colloids and Surfaces B-Biointerfaces 73, 42–50, doi: 10.1016/j.colsurfb.2009.04.028 (2009). PubMed DOI
Tsai H. H. G. et al.. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion. Biochim. Biophys. Acta-Biomembr. 1818, 2742–2755 (2012). PubMed
Roux M. & Bloom M. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry 29, 7077–7089 (1990). PubMed
Huster D., Arnold K. & Gawrisch K. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization. Biophys J 78, 3011–3018, doi: 10.1016/S0006-3495(00)76839-1 (2000). PubMed DOI PMC
Herbette L., Napolitano C. & McDaniel R. Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. Biophysical journal 46, 677 (1984). PubMed PMC
Uhrikova D., Kucerka N., Teixeira J., Gordeliy V. & Balgavy P. Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca(2+) ions: a small-angle neutron scattering study. Chemistry and Physics of Lipids 155, 80–89, doi: 10.1016/j.chemphyslip.2008.07.010 (2008). PubMed DOI
Martín-Molina A., Rodríguez-Beas C. & Faraudo J. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations. Biophysical Journal 102, 2095–2103 (2012). PubMed PMC
Rodríguez Y., Mezei M. & Osman R. Association free energy of dipalmitoylphosphatidylserines in a mixed dipalmitoylphosphatidylcholine membrane. Biophysical journal 92, 3071–3080 (2007). PubMed PMC
Bockmann R. A. & Grubmuller H. Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew Chem Int Ed Engl 43, 1021–1024, doi: 10.1002/anie.200352784 (2004). PubMed DOI
Jurkiewicz P., Cwiklik L., Vojtíšková A., Jungwirth P. & Hof M. Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818, 609–616 (2012). PubMed
Kohagen M., Mason P. E. & Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. The Journal of Physical Chemistry B 118, 7902–7909 (2014). PubMed
Wilschut J., Duzgunes N. & Papahadjopoulos D. Calcium-Magnesium Specificity in Membrane-Fusion - Kinetics of Aggregation and Fusion of Phosphatidylserine Vesicles and the Role of Bilayer Curvature. Biochemistry 20, 3126–3133, doi: 10.1021/bi00514a022 (1981). PubMed DOI
Nir S., Bentz J., Wilschut J. & Duzgunes N. Aggregation and Fusion of Phospholipid-Vesicles. Progress in Surface Science 13, 1–124, doi: 10.1016/0079-6816(83)90010-2 (1983). DOI
Kubíčková A. et al.. Overcharging in biological systems: reversal of electrophoretic mobility of aqueous polyaspartate by multivalent cations. Physical review letters 108, 186101 (2012). PubMed
Quesada-Perez M., Gonzalez-Tovar E., Martin-Molina A., Lozada-Cassou M. & Hidalgo-Alvarez R. Overcharging in colloids: Beyond the Poisson-Boltzmann approach. Chemphyschem 4, 234–248, doi: 10.1002/cphc.200390040 (2003). PubMed DOI
Jurkiewicz P., Olzynska A., Langner M. & Hof M. Headgroup hydration and mobility of DOTAP/DOPC bilayers: A fluorescence solvent relaxation study. Langmuir 22, 8741–8749, doi: 10.1021/la061597k (2006). PubMed DOI
Barucha-Kraszewska J., Kraszewski S., Jurkiewicz P., Ramseyer C. & Hof M. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochimica Et Biophysica Acta-Biomembranes 1798, 1724–1734, doi: 10.1016/j.bbamem.2010.05.020 (2010). PubMed DOI
Olzynska A. et al.. Molecular interpretation of fluorescence solvent relaxation of Patman and H-2 NMR experiments in phosphatidylcholine bilayers. Chemistry and Physics of Lipids 147, 69–77, doi: 10.1016/j.chemphyslip.2007.03.004 (2007). PubMed DOI
Gurtovenko A. A. & Vattulainen I. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: Insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Journal of Physical Chemistry B 112, 1953–1962, doi: 10.1021/Jp0750708 (2008). PubMed DOI
Beranova L. et al.. Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Physical Chemistry Chemical Physics 14, 14516–14522, doi: 10.1039/c2cp41275f (2012). PubMed DOI
Vacha R. et al.. Effects of Alkali Cations and Halide Anions on the DOPC Lipid Membrane. Journal of Physical Chemistry A 113, 7235–7243, doi: 10.1021/jp809974e (2009). PubMed DOI
Pokorna S., Jurkiewicz P., Cwiklik L., Vazdar M. & Hof M. Interactions of monovalent salts with cationic lipid bilayers. Faraday Discussions 160, 341–358, doi: 10.1039/c2fd20098h (2013). PubMed DOI
Liljeblad J. F. D., Bulone V., Rutland M. W. & Johnson C. M. Supported Phospholipid Monolayers. The Molecular Structure Investigated by Vibrational Sum Frequency Spectroscopy. The Journal of Physical Chemistry C 115, 10617–10629, doi: 10.1021/jp111587e (2011). DOI
Casal H. L., Mantsch H. H. & Hauser H. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of lithium and calcium. Biochemistry 26, 4408–4416, doi: 10.1021/bi00388a033 (1987). PubMed DOI
Martin-Molina A., Rodriguez-Beas C. & Faraudo J. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations. Biophysical Journal 102, 2095–2103, doi: 10.1016/j.bpj.2012.03.009 (2012). PubMed DOI PMC
Macdonald P. M. & Seelig J. Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry 26, 1231–1240 (1987). PubMed
Catte A. et al.. NMRLipids project, Molecular electrometer and binding of cations to phospholipid bilayers, http://nmrlipids.blogspot.fi/ (accessed Oct 21, 2016). PubMed
Jurkiewicz P., Cwiklik L., Jungwirth P. & Hof M. Lipid hydration and mobility: An interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie 94, 26–32, doi: 10.1016/j.biochi.2011.06.027 (2012). PubMed DOI
Neher E. Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell calcium 24, 345–357 (1998). PubMed
Horng M. L., Gardecki J. A., Papazyan A. & Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. Journal of Physical Chemistry 99, 17311–17337 (1995).
Jurkiewicz P., Sýkora J., Ol żyńska A., Humpolíčková J. & Hof M. Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications. Journal of Fluorescence 15, 883–894, doi: 10.1007/s10895-005-0013-4 (2005). PubMed DOI
Pokorna S., Olżyńska A., Jurkiewicz P. & Hof M. In Fluorescent Methods to Study Biological Membranes Vol. 13 Springer Series on Fluorescence (eds Yves Mély & Guy Duportail) Ch. 46, 141–159 (Springer Berlin Heidelberg, 2013).
Fee R. S. & Maroncelli M. Estimating the time-zero spectrum in time-resolved emmsion measurements of solvation dynamics. Chemical Physics 183, 235–247 (1994).
Shen Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).
Berger O., Edholm O. & Jahnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal 72, 2002–2013 (1997). PubMed PMC
Chen F. & Smith P. E. Simulated surface tensions of common water models. J. Chem. Phys. 126, doi: Artn 22110110.1063/1.2745718 (2007). PubMed
Leontyev I. & Stuchebrukhov A. Electronic continuum model for molecular dynamics simulations of biological molecules. Journal of chemical theory and computation 6, 1498–1508 (2010). PubMed PMC
Leontyev I. & Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Physical Chemistry Chemical Physics 13, 2613–2626 (2011). PubMed
Can calmodulin bind to lipids of the cytosolic leaflet of plasma membranes?
Curvature Matters: Modeling Calcium Binding to Neutral and Anionic Phospholipid Bilayers
Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions
What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?
Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism