Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29251725
DOI
10.1038/nmat5053
PII: nmat5053
Knihovny.cz E-zdroje
- MeSH
- antivirové látky * chemie farmakologie MeSH
- biomimetické materiály * chemie farmakologie MeSH
- heparansulfát proteoglykany chemie farmakologie MeSH
- herpes simplex farmakoterapie metabolismus patologie MeSH
- infekce respiračními syncytiálními viry farmakoterapie metabolismus patologie MeSH
- lidé MeSH
- lidský herpesvirus 2 metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nanočástice * chemie terapeutické užití MeSH
- respirační syncytiální viry metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antivirové látky * MeSH
- heparansulfát proteoglykany MeSH
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
AP HP Laboratoire de Microbiologie Hôpital Ambroise Paré 92104 Boulogne Billancourt France
Department of Chemistry University of Illinois at Chicago Chicago Illinois 60607 USA
Department of Chemistry University of Texas at El Paso El Paso Texas 79968 USA
Dipartimento di Scienze Cliniche e Biologiche Univerisità degli Studi di Torino Orbassano Italy
Faculty of Medicine of Geneva Department of Microbiology and Molecular medicine Geneva Switzerland
Fondazione Centro Europeo Nanomedicina Milan Italy
Fondazione IRCCS Istituto Neurologico Carlo Besta IFOM IEO Campus Milan Italy
Geneva University Hospitals Infectious Diseases Divisions Geneva Switzerland
IFOM FIRC Institute of Molecular Oncology IFOM IEO Campus Milan Italy
Institute of Materials Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
Interfaculty Bioengineering Institute Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
IRCCS Istituto Tumori Giovanni Paolo 2 Bari Italy
Istituto per la Protezione Sostenibile delle Piante CNR Torino Italy
Jones Lab School of Materials University of Manchester Oxford Road Manchester M13 9PL UK
UMR INSERM U1173 I2 UFR des Sciences de la Santé Simone Veil UVSQ Montigny Le Bretonneux France
Zobrazit více v PubMed
J Virol. 2006 May;80(10):4740-7 PubMed
Lancet. 2010 Oct 16;376(9749):1329-37 PubMed
Antimicrob Agents Chemother. 2014 Aug;58(8):4782-94 PubMed
Biophys J. 1998 Jan;74(1):422-9 PubMed
ACS Appl Mater Interfaces. 2016 Jul 6;8(26):16564-72 PubMed
Nanoscale. 2014 Jun 21;6(12):7052-61 PubMed
Antivir Ther. 2000 Sep;5(3):181-5 PubMed
ChemMedChem. 2011 Aug 1;6(8):1335-9, 1318 PubMed
Langmuir. 2013 Sep 17;29(37):11560-6 PubMed
Nat Commun. 2014 Oct 03;5:5104 PubMed
Nat Chem. 2017 Apr;9(4):333-340 PubMed
Small. 2010 May 7;6(9):1044-50 PubMed
Biomaterials. 2016 Apr;85:40-53 PubMed
Biochimie. 2001 Aug;83(8):811-7 PubMed
J Biol Chem. 2007 Sep 21;282(38):27913-22 PubMed
Langmuir. 2012 Mar 6;28(9):4548-58 PubMed
N Engl J Med. 2008 Jul 31;359(5):463-72 PubMed
Antiviral Res. 2011 Jun;90(3):168-82 PubMed
J Am Chem Soc. 2016 Jul 20;138(28):8654-66 PubMed
Nat Mater. 2008 Jul;7(7):588-95 PubMed
Phys Biol. 2011 Aug;8(4):046002 PubMed
Lancet. 2012 Dec 15;380(9859):2095-128 PubMed
Nanoscale. 2013 Aug 7;5(15):6928-35 PubMed
Eur J Pharm Biopharm. 2014 Sep;88(1):275-82 PubMed
Pharmacol Ther. 2009 Sep;123(3):310-22 PubMed
ACS Nano. 2014 Jun 24;8(6):5402-12 PubMed
Antimicrob Agents Chemother. 2015 Sep;59(9):5250-9 PubMed
J Biol Chem. 2011 Jan 28;286(4):2617-24 PubMed
Antivir Chem Chemother. 2002 May;13(3):185-95 PubMed
Clin Microbiol Rev. 2016 Jul;29(3):695-747 PubMed
Nat Med. 2005 Apr;11(4 Suppl):S5-11 PubMed
J Virol. 2016 Sep 29;90(20):9237-50 PubMed
J Virol Methods. 2013 Nov;193(2):470-7 PubMed
Antimicrob Agents Chemother. 2005 Sep;49(9):3607-15 PubMed
J Nanobiotechnology. 2011 Aug 03;9:30 PubMed
J Virol. 2015 Nov 18;90(3):1414-23 PubMed
Sci Rep. 2016 Dec 01;6:38035 PubMed
Nat Rev Drug Discov. 2002 Jan;1(1):13-25 PubMed
PLoS One. 2015 Oct 16;10(10):e0141050 PubMed
Jpn J Infect Dis. 2007 Nov;60(6):342-6 PubMed
J Am Chem Soc. 2008 Jun 4;130(22):6896-7 PubMed
Stability and biological response of PEGylated gold nanoparticles
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?
Carbon dots for virus detection and therapy
Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus