Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Grantová Agentura České Republiky
PubMed
37870471
PubMed Central
PMC10681718
DOI
10.1093/nar/gkad893
PII: 7327076
Knihovny.cz E-zdroje
- MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA * chemie MeSH
- nukleotidy * chemie MeSH
- pyrimidiny MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
- DNA * MeSH
- nukleotidy * MeSH
- pyrimidiny MeSH
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Zobrazit více v PubMed
McKenzie L.K., El-Khoury R., Thorpe J.D., Damha M.J., Hollenstein M.. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 2021; 50:5126–5164. PubMed
Hollenstein M. Nucleic acid enzymes based on functionalized nucleosides. Curr. Opin. Chem. Biol. 2019; 52:93–101. PubMed
Silverman S.K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC
Hollenstein M., Hipolito C.J., Lam C.H., Perrin D.M.. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 2009; 37:1638–1649. PubMed PMC
Röthlisberger P., Hollenstein M.. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018; 134:3–21. PubMed
Diafa S., Hollenstein M.. Generation of aptamers with an expanded chemical repertoire. Molecules. 2015; 20:16643–16671. PubMed PMC
Ma H., Liu J., Ali M.M., Mahmood M.A.I., Labanieh L., Lu M., Iqbal S.M., Zhang Q., Zhao W., Wan Y.C.. Nucleic acid aptamers in cancer research, diagnostics and therapy. Chem. Soc. Rev. 2015; 44:1240–1256. PubMed
Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T.et al. .. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010; 5:e15004. PubMed PMC
Taylor A.I., Beuron F., Peak-Chew S.-Y., Morris E.P., Herdewijn P., Holliger P.. Nanostructures from synthetic genetic polymers. ChemBioChem. 2016; 17:1107–1110. PubMed PMC
Wang J., Wang D.-X., Liu B., Jing X., Chen D.-Y., Tang A.-N., Cui Y.-X., Kong D.-M.. Recent advances in constructing higher-order DNA structures. Chem. Asian J. 2022; 17:e202101315. PubMed
Baker Y.R., Yuan L., Chen J., Belle R., Carlisle R., El-Sagheer A.H., Brown T.. Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification. Nucleic Acids Res. 2021; 49:9042–9052. PubMed PMC
Hottin A., Marx A.. Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc. Chem. Res. 2016; 49:418–427. PubMed
Hocek M. Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein-DNA binding and transcription. Acc. Chem. Res. 2019; 52:1730–1737. PubMed
Cheung Y.-W., Röthlisberger P., Mechaly A.E., Weber P., Levi-Acobas F., Lo Y., Wong A.W.C., Kinghorn A.B., Haouz A., Savage G.P.et al. .. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:16790–16798. PubMed PMC
Dolot R., Lam C.H., Sierant M., Zhao Q., Liu F.-W., Nawrot B., Egli M., Yang X.. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018; 46:4819–4830. PubMed PMC
Mulholland C., Jestřábová I., Sett A., Ondruš M., Sýkorová V., Manzanares C.L., Šimončík O., Muller P., Hocek M.. The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Commun. Chem. 2023; 6:65. PubMed PMC
Gawande B.N., Rohloff J.C., Carter J.D., von Carlowitz I., Zhang C., Schneider D.J., Janjic N.. Selection of DNA aptamers with two modified bases. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:2898–2903. PubMed PMC
Thum O., Jäger S., Famulok M.. Functionalized DNA: a new replicable biopolymer. Angew. Chem. Int. Ed. 2001; 40:3990–3993. PubMed
Jäger S., Famulok M.. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew. Chem. Int. Ed. 2004; 43:3337–3340. PubMed
Jäger S., Rasched G., Kornreich-Leshem H., Engeser M., Thum O., Famulok M.. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005; 127:15071–15082. PubMed
Kodr D., Yenice C.P., Simonova A., Saftić D.P., Pohl R., Sýkorová V., Ortiz M., Havran L., Fojta M., Lesnikowski Z.J.et al. .. Carborane- or metallacarborane-linked nucleotides for redox labeling. Orthogonal multipotential coding of all four DNA bases for electrochemical analysis and sequencing. J. Am. Chem. Soc. 2021; 143:7124–7134. PubMed
Ondruš M., Sýkorová V., Bednárová L., Pohl R., Hocek M.. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res. 2020; 48:11982–11993. PubMed PMC
Ondruš M., Sýkorová V., Hocek M.. Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates. Chem. Commun. 2022; 58:11248–11251. PubMed
Peters J.P., Yelgaonkar S.P., Srivatsan S.G., Tor Y., James Maher L.. Mechanical properties of DNA-like polymers. Nucleic Acids Res. 2013; 41:10593–10604. PubMed PMC
Steigenberger B., Schiesser S., Hackner B., Brandmayr C., Laube S.K., Steinbacher J., Pfaffeneder T., Carell T.. Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction. Org. Lett. 2013; 15:366–369. PubMed
Hollenstein M. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues–synthesis and biochemical characterization. Org. Biomol. Chem. 2013; 11:5162–5172. PubMed
Lee S.E., Sidorov A., Gourlain T., Mignet N., Thorpe S.J., Brazier J.A., Dickman M.J., Hornby D.P., Grasby J.A., Williams D.M.. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001; 29:1565–1573. PubMed PMC
Dutson C., Allen E., Thompson M.J., Hedley J.H., Murton H.E., Williams D.M.. Synthesis of polyanionic C5-modified 2’-deoxyuridine and 2’-deoxycytidine-5’-triphosphates and their properties as substrates for DNA polymerases. Molecules. 2021; 26:2250. PubMed PMC
Kuwahara M., Hanawa K., Ohsawa K., Kitagata R., Ozaki H., Sawai H.. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 2006; 14:2518–2526. PubMed
Yang X., Dai C., Molina A.D.C., Wang B.. Boronic acid-modified DNA that changes fluorescent properties upon carbohydrate binding. Chem. Commun. 2010; 46:1073–1075. PubMed PMC
Cheng Y., Dai C., Peng H., Zheng S., Jin S., Wang B.. Design, synthesis, and polymerase-catalyzed incorporation of click-modified boronic acid-TTP analogues. Chem. Asian J. 2011; 6:2747–2752. PubMed
Čapek P., Cahová H., Pohl R., Hocek M., Gloeckner C., Marx A.. An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem. Eur. J. 2007; 13:6196–6203. PubMed
Cahová H., Havran L., Brázdilová P., Pivoňková H., Pohl R., Fojta M., Hocek M.. Aminophenyl- and nitrophenyl-labeled nucleoside triphosphates: synthesis, enzymatic incorporation, and electrochemical detection. Angew. Chem. Int. Ed. 2008; 47:1433–7851. PubMed
Le B.H., Koo J.C., Joo H.N., Seo Y.J.. Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA. Bioorg. Med. Chem. 2017; 25:3591–3596. PubMed
Sýkorová V., Tichý M., Hocek M.. Polymerase synthesis of DNA containing iodinated pyrimidine or 7-deazapurine nucleobases and their post-synthetic modifications through the Suzuki-Miyaura cross-coupling reactions. ChemBioChem. 2022; 23:e202100608. PubMed
Cahová H., Panattoni A., Kielkowski P., Fanfrlík J., Hocek M.. 5-Substituted pyrimidine and 7-Substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem. Biol. 2016; 11:3165–3171. PubMed
Hottin A., Betz K., Diederichs K., Marx A.. Structural basis for the KlenTaq DNA Polymerase Catalysed incorporation of Alkene- versus Alkyne-modified nucleotides. Chem. Eur. J. 2017; 23:2109–2118. PubMed
Nishioka M., Mizuguchi H., Fujiwara S., Komatsubara S., Kitabayashi M., Uemura H., Takagi M., Imanaka T.. Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J. Biotechnol. 2001; 88:141–149. PubMed
Mikalkėnas A., Ravoitytė B., Tauraitė D., Servienė E., Meškys R., Serva S.. Conjugation of phosphonoacetic acid to nucleobase promotes a mechanism-based inhibition. J. Enzyme Inhib. Med. Chem. 2018; 33:384–389. PubMed PMC
Wagner R.W., Matteucci M.D., Lewis J.G., Gutierrez A.J., Moulds C., Froehler B.C.. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993; 260:1510–1513. PubMed
Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Brakmann S., Lobermann S.. High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew. Chem. Int. Ed. 2001; 40:1427–1429. PubMed
Berova N., Polavarapu P.L., Nakanishi K., Woody R.W.. Comprehensive Chiroptical Spectroscopy, Vol. 2: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules. 2012; Hoboken, NJ: John Wiley & Sons, Inc.
Qian Y., Cui H., Shi R., Guo J., Wang B., Xu Y., Ding Y., Mao H., Yan F.. Antimicrobial anionic polymers: the effect of cations. Eur. Polym. J. 2018; 107:181–188.
Pirrone V., Wigdahl B., Krebs F.C.. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Res. 2011; 90:168–182. PubMed
Cagno V., Andreozzi P., D’Alicarnasso M., Jacob Silva P., Mueller M., Galloux M., Le Goffic R., Jones S.T., Vallino M., Hodek J.et al. .. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 2018; 17:195–203. PubMed
Evans B.C., Fletcher R.B., Kilchrist K.V., Dailing E.A., Mukalel A.J., Colazo J.M., Oliver M., Cheung-Flynn J., Brophy C.M., Tierney J.W.et al. .. An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles. Nat. Commun. 2019; 10:5012. PubMed PMC
Dailing E.A., Kilchrist K.V., Tierney J.W., Fletcher R.B., Evans B.C., Duvall C.L.. Modifying cell membranes with anionic polymer amphiphiles potentiates intracellular delivery of cationic peptides. ACS Appl. Mater. Interfaces. 2020; 12:50222–50235. PubMed PMC
Richter F., Leer K., Martin L., Mapfumo P., Solomun J.I., Kuchenbrod M.T., Hoeppener S., Brendel J.C., Traeger A.. The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. J. Nanobiotechnol. 2021; 19:292. PubMed PMC