Polymerase Synthesis of Hypermodified DNA Displaying a Combination of Thiol, Hydroxyl, Carboxylate, and Imidazole Functional Groups in the Major Groove
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Czech Science Foundation
PubMed
40327399
PubMed Central
PMC12172604
DOI
10.1002/chem.202501034
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, enzymatic syntheses, nucleotides, polymerases,
- MeSH
- DNA-dependentní DNA-polymerasy * metabolismus chemie MeSH
- DNA * chemie chemická syntéza MeSH
- imidazoly * chemie MeSH
- katalytická doména MeSH
- kyseliny karboxylové * chemie MeSH
- polymerázová řetězová reakce MeSH
- puriny MeSH
- sulfhydrylové sloučeniny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-deazapurine MeSH Prohlížeč
- DNA-dependentní DNA-polymerasy * MeSH
- DNA * MeSH
- imidazole MeSH Prohlížeč
- imidazoly * MeSH
- kyseliny karboxylové * MeSH
- puriny MeSH
- sulfhydrylové sloučeniny * MeSH
We designed and synthesized a set of six 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing functional groups mimicking amino acid side chains in enzyme active sites (OH, SH, COOH, and imidazole) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through different linkers. These modified dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using several DNA polymerases. In primer extension (PEX), all modified dNTPs provided DNA containing one, two, three, or, (all) four modified nucleotides each bearing a different modification, although the thiol-modified dNTPs were worse substrates compared to the others. In PCR, we observed exponential amplification for any combination of one, two, or three nonsulfur dNTPs but the thiol-modified dNTP did not work well in any combinations. Sequencing of the hypermodified DNA confirmed the good fidelity of the incorporation of all the modified nucleotides. This set of modified dNTPs extends the portfolio of building blocks for prospective use in selections of functional nucleic acids.
Zobrazit více v PubMed
a) Silverman S. K., Trends Biochem. Sci. 2016, 41, 595; PubMed PMC
b) Taylor A. I., Pinheiro V. B., Smola M. J., Morgunov A. S., Peak‐Chew S., Cozens C., Weeks K. M., Herdewijn P., Holliger P., Nature 2015, 518, 427;> PubMed PMC
c) Scheitl C. P. M., Ghaem Maghami M., Lenz A.‐K., Höbartner C., Nature 2020, 587, 663; PubMed PMC
d) Micura R., Höbartner C., Chem. Soc. Rev. 2020, 49, 7331; PubMed
e) Chen H.‐A., Okuda T., Lenz A.‐K., Scheitl C. P. M., Schindelin H., Höbartner C., Nat. Chem. Biol. 2025, doi: 10.1038/s41589-024-01808-w. PubMed DOI
a) Famulok M., Hartig J. S., Mayer G., Chem. Rev. 2007, 107, 3715; PubMed
b) Röthlisberger P., Hollenstein M., Adv. Drug Delivery Rev. 2018, 134, 3; PubMed
c) Aiswarya P. U., Raj G., John J., Mohan K M., John F., George J., Chem. Biodivers. 2023, 20, e202301008; PubMed
d) Ji C., Wei J., Zhang L., Hou X., Tan J., Yuan Q., Tan W., Chem. Rev. 2023, 123, 12471. PubMed
a) Serpell C. J., Edwardson T. G. W., Chidchob P., Carneiro K. M. M., Sleiman H. F., J. Am. Chem. Soc. 2014, 136, 15767; PubMed
b) Li M., Zheng M., Wu S., Tian C., Liu D., Weizmann Y., Jiang W., Wang G., Mao C., Nat. Commun. 2018, 9, 2196; PubMed PMC
c) Chidchob P., Offenbartl‐Stiegert D., McCarthy D., Luo X., Li J., Howorka S., Sleiman H. F., J. Am. Chem. Soc. 2019, 141, 1100; PubMed
d) Journot C. M. A., Ramakrishna V., Wallace M. I., Turberfield A. J., ACS Nano 2019, 13, 9973; PubMed PMC
e) Georgiou E., Cabello‐Garcia J., Xing Y., Howorka S., Small 2024, 20, e2404720; PubMed
f) Yang C., Fan J., Zhu H., Wang H., He Y., Liu J., Ding B., ChemBioChem 2025, 26, e202400991. PubMed
McKenzie L. K., El‐Khoury R., Thorpe J. D., Damha M. J., Hollenstein M., Chem. Soc. Rev. 2021, 50, 5126. PubMed
a) Huang P.‐J. J., Liu J., ChemistryOpen 2020, 9, 1046; PubMed PMC
b) Hollenstein M., Curr. Opin. Chem. Biol. 2019, 52, 93; PubMed
c) Yang M., Xie Y., Zhu L., Li X., Xu W., ACS Catal. 2024, 14, 16392;
d) Zhang Z., Wei W., Chen S., Yang J., Song D., Chen Y., Zhao Z., Chen J., Wang F., Wang J., Li Z., Liang Y., Yu H., J. Am. Chem. Soc. 2024, 146, 7052. PubMed
a) Lee S. E., Sidorov A., Gourlain T., Mignet N., Thorpe S. J., Brazier J. A., Dickman M. J., Hornby D. P., Grasby J. A., Williams D. M., Nucleic Acids Res. 2001, 29, 1565; PubMed PMC
b) Gourlain T., Sidorov A., Mignet N., Thorpe S. J., Lee S. E., Grasby J. A., Williams D. M., Nucleic Acids Res. 2001, 29, 1898; PubMed PMC
c) Lermer L., Roupioz Y., Ting R., Perrin D. M., J. Am. Chem. Soc. 2002, 124, 9960; PubMed
d) Ting R., Thomas J. M., Lermer L., Perrin D. M., Nucleic Acids Res. 2004, 32, 6660; PubMed PMC
e) Sidorov A. V., Grasby J. A., Williams D. M., Nucleic Acids Res. 2004, 32, 1591. PubMed PMC
a) Hollenstein M., Hipolito C. J., Lam C. H., Perrin D. M., ChemBioChem 2009, 10, 1988; PubMed
b) Hollenstein M., Hipolito C. J., Lam C. H., Perrin D. M., Nucleic Acids Res. 2009, 37, 1638. PubMed PMC
Lam C. H., Hipolito C. J., Hollenstein M., Perrin D. M., Org. Biomol. Chem. 2011, 9, 6949. PubMed
Zhou C., Avins J. L., Klauser P. C., Brandsen B. M., Lee Y., Silverman S. K., J. Am. Chem. Soc. 2016, 138, 2106. PubMed PMC
a) Chan K. Y., Kinghorn A. B., Hollenstein M., Tanner J. A., ChemBioChem 2022, 23, e202200006; PubMed
b) Ji D., Feng H., Liew S. W., Kwok C. K., Trends Biotechnol. 2023, 41, 1360. PubMed
a) Davies D. R., Gelinas A. D., Zhang C., Rohloff J. C., Carter J. D., O'Connell D., Waugh S. M., Wolk S. K., Mayfield W. S., Burgin A. B., Edwards T. E., Stewart L. J., Gold L., Janjic N., Jarvis T. C., Proc. Natl. Acad. Sci. USA 2012, 109, 19971; PubMed PMC
b) Imaizumi Y., Kasahara Y., Fujita H., Kitadume S., Ozaki H., Endoh T., Kuwahara M., Sugimoto N., J. Am. Chem. Soc. 2013, 135, 9412; PubMed
c) Rohloff J. C., Gelinas A. D., Jarvis T. C., Ochsner U. A., Schneider D. J., Gold L., Janjic N., Mol. Ther. Nucleic Acids 2014, 3, e201; PubMed PMC
d) Gupta S., Drolet D. W., Wolk S. K., Waugh S. M., Rohloff J. C., Carter J. D., Mayfield W. S., Otis M. R., Fowler C. R., Suzuki T., Hirota M., Ishikawa Y., Schneider D. J., Janjic N., Nucleic Acid Ther. 2017, 27, 345; PubMed PMC
e) Cheung Y.‐W., Röthlisberger P., Mechaly A. E., Weber P., Levi‐Acobas F., Lo Y., Wong A. W. C., Kinghorn A. B., Haouz A., Savage G. P., Hollenstein M., Tanner J. A., Proc. Natl. Acad. Sci. USA 2020, 117, 16790; PubMed PMC
f) Mulholland C., Jestřábová I., Sett A., Ondruš M., Sýkorová V., Manzanares C. L., Šimončík O., Muller P., Hocek M., Commun. Chem. 2023, 6, 65; PubMed PMC
g) Niogret G., Bouvier‐Müller A., Figazzolo C., Joyce J. M., Bonhomme F., England P., Mayboroda O., Pellarin R., Gasser G., Tucker J. H. R., Tanner J. A., Savage G. P., Hollenstein M., ChemBioChem 2024, 25, e202300539. PubMed
Gawande B. N., Rohloff J. C., Carter J. D., von Carlowitz I., Zhang C., Schneider D. J., Janjic N., Proc. Natl. Acad. Sci. USA 2017, 114, 2898. PubMed PMC
a) Hocek M., Acc. Chem. Res. 2019, 52, 1730; PubMed
b) Pichon M., Hollenstein M., Commun. Chem. 2024, 7, 138; PubMed PMC
c) Bizat P. N., Sabat N., Hollenstein M., ChemBioChem 2025, 26, e202400987. PubMed
a) Jäger S., Famulok M., Angew. Chem., Int. Ed. 2004, 43, 3337; PubMed
b) Jäger S., Rasched G., Kornreich‐Leshem H., Engeser M., Thum O., Famulok M., J. Am. Chem. Soc. 2005, 127, 15071; PubMed
c) Eremeeva E., Abramov M., Margamuljana L., Rozenski J., Pezo V., Marlière P., Herdewijn P., Angew. Chem., Int. Ed. 2016, 55, 7515; PubMed
d) Yang H., Eremeeva E., Abramov M., Herdewijn P., Angew. Chem., Int. Ed. 2021, 60, 4175. PubMed
Kodr D., Yenice C. P., Simonova A., Saftić D. P., Pohl R., Sýkorová V., Ortiz M., Havran L., Fojta M., Lesnikowski Z. J., O'Sullivan C. K., Hocek M., J. Am. Chem. Soc. 2021, 143, 7124. PubMed
Ondruš M., Sýkorová V., Bednárová L., Pohl R., Hocek M., Nucleic Acids Res. 2020, 48, 11982. PubMed PMC
Kuprikova N., Ondruš M., Bednárová L., Riopedre‐Fernandez M., Poštová Slavětínská L., Sýkorová V., Hocek M., Nucleic Acids Res. 2023, 51, 11428. PubMed PMC
Kuprikova N., Ondruš M., Bednárová L., Kraus T., Poštová Slavětínská L., Sýkorová V., Hocek M., Nucleic Acids Res. 2025, 53, gkaf155. PubMed PMC
Krömer M., Poštová Slavětínská L., Hocek M., Chem. ‐ Eur. J. 2024, 30, e202402318. PubMed
Ondruš M., Sýkorová V., Hocek M., Chem. Commun. 2022, 58, 11248. PubMed
Brunderová M., Havlíček V., Matyašovský J., Pohl R., Poštová Slavětínská L., Krömer M., Hocek M., Nat. Commun. 2024, 15, 3054. PubMed PMC
Hollenstein M., Org. Biomol. Chem. 2013, 11, 5162. PubMed
Hollenstein M., Chem. ‐ Eur. J. 2012, 18, 13320. PubMed
Macíčková‐Cahová H., Pohl R., Horáková P., Havran L., Špaček J., Fojta M., Hocek M., Chem. ‐ Eur. J. 2011, 17, 5833. PubMed
Held H. A., Benner S. A., Nucleic Acids Res. 2002, 30, 3857. PubMed PMC
Mitra R. D., Shendure J., Olejnik J., Krzymanska‐Olejnik E., Church G. M., Anal. Biochem. 2003, 320, 55. PubMed
Bornemann B., Marx A., Bioorg. Med. Chem. 2006, 14, 6235. PubMed
Gracias F., Pohl R., Sýkorová V., Hocek M., Commun. Chem. 2024, 7, 256. PubMed PMC
Capek P., Cahová H., Pohl R., Hocek M., Gloeckner C., Marx A., Chem. ‐ Eur. J. 2007, 13, 6196. PubMed
Sýkorová V., Tichý M., Hocek M., ChemBioChem 2022, 23, e202100608. PubMed
Benati C. L., Calestani G., Leardini R., Minozzi M., Nanni D., Spagnolo P., Strazzari S., Org. Lett. 2003, 5, 1313. PubMed
Kovács T., Ötvös L., Tetrahedron Lett. 1988, 29, 4525.
Betz K. N., Chiappini N. D., Bois J. Du, Org. Lett. 2020, 22, 1687. PubMed