Engineered cytokine/antibody fusion proteins improve delivery of IL-2 to pro-inflammatory cells and promote antitumor activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
K12 GM123914
NIGMS NIH HHS - United States
R01 EB029341
NIBIB NIH HHS - United States
R01 EB029455
NIBIB NIH HHS - United States
R21 CA249381
NCI NIH HHS - United States
PubMed
37205604
PubMed Central
PMC10187205
DOI
10.1101/2023.05.03.539272
PII: 2023.05.03.539272
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Progress in cytokine engineering is driving therapeutic translation by overcoming the inherent limitations of these proteins as drugs. The interleukin-2 (IL-2) cytokine harbors great promise as an immune stimulant for cancer treatment. However, the cytokine's concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, its toxicity at high doses, and its short serum half-life have limited clinical application. One promising approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards the activation of immune effector cells (i.e., effector T cells and natural killer cells). Although this strategy shows therapeutic potential in preclinical cancer models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns about complex stability. Here, we introduce a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine's activities towards immune effector cells. We establish the optimal IC construction and further engineer the cytokine/antibody affinity to improve immune biasing function. We demonstrate that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2 without inducing toxicities associated with IL-2 administration. Collectively, this work presents a roadmap for the design and translation of immunomodulatory cytokine/antibody fusion proteins.
Department of Biochemistry Faculty of Science Charles University; Prague Czech Republic
Department of Biology Johns Hopkins University; Baltimore USA
Department of Biomedical Engineering Johns Hopkins University School of Medicine; Baltimore USA
Department of Chemistry Johns Hopkins University; Baltimore USA
Department of Oncology Johns Hopkins University School of Medicine; Baltimore USA
Department of Ophthalmology Johns Hopkins University School of Medicine; Baltimore USA
Institute of Biotechnology of the Academy of Sciences of the Czech Republic; Vestec Czech Republic
Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine; Baltimore USA
Translational Tissue Engineering Center Johns Hopkins University School of Medicine Baltimore USA
Zobrazit více v PubMed
Boyman O., Sprent J., The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012). PubMed
Leonard W. J., Lin J.-X., O’Shea J. J., The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 50, 832–850 (2019). PubMed
Zhao Z., Zhang X., Su L., Xu L., Zheng Y., Sun J., Fine tuning subsets of CD4+ T cells by low-dosage of IL-2 and a new therapeutic strategy for autoimmune diseases. Int. Immunopharmacol. 56, 269–276 (2018). PubMed
Arenas-Ramirez N., Woytschak J., Boyman O., Interleukin-2: Biology, Design and Application. Trends Immunol. 36, 763–777 (2015). PubMed
Kim J.-H., Lee K.-J., Lee S.-W. , Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB Rep. 54, 21–30 (2021). PubMed PMC
Mitra S., Leonard W. J., Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J. Leukoc. Biol. 103, 643–655 (2018). PubMed
Siegel J. P., Puri R. K., Interleukin-2 toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 9, 694–704 (1991). PubMed
Donohue J. H., Rosenberg S. A., The fate of interleukin-2 after in vivo administration. J. Immunol. Baltim. Md 1950 130, 2203–2208 (1983). PubMed
Mortara L., Balza E., Bruno A., Poggi A., Orecchia P., Carnemolla B., Anti-cancer Therapies Employing IL-2 Cytokine Tumor Targeting: Contribution of Innate, Adaptive and Immunosuppressive Cells in the Anti-tumor Efficacy. Front. Immunol. 9 (2018), doi:10.3389/fimmu.2018.02905. PubMed DOI PMC
Silver A. B., Leonard E. K., Gould J. R., Spangler J. B., Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021). PubMed PMC
Roopenian D. C., Akilesh S., FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007). PubMed
Palata O., Hradilova Podzimkova N., Nedvedova E., Umprecht A., Sadilkova L., Palova Jelinkova L., Spisek R., Adkins I., Radiotherapy in Combination With Cytokine Treatment. Front. Oncol. 9 (2019), doi:10.3389/fonc.2019.00367. PubMed DOI PMC
Pol J. G., Caudana P., Paillet J., Piaggio E., Kroemer G., Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 217 (2019), doi:10.1084/jem.20191247. PubMed DOI PMC
Mohammad G. R. K. S., Ghahremanloo A., Soltani A., Fathi E., Hashemy S. I., Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J. Cell. Physiol. 235, 5449–5460 (2020). PubMed
Hashimoto M., Araki K., Cardenas M. A., Li P., Jadhav R. R., Kissick H. T., Hudson W. H., McGuire D. J., Obeng R. C., Wieland A., Lee J., McManus D. T., Ross J. L., Im S. J., Lee J., Lin J.-X., Hu B., West E. E., Scharer C. D., Freeman G. J., Sharpe A. H., Ramalingam S. S., Pellerin A., Teichgräber V., Greenleaf W. J., Klein C., Goronzy J. J., Umaña P., Leonard W. J., Smith K. A., Ahmed R., PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022). PubMed PMC
Wang X., Rickert M., Garcia K. C., Structure of the Quaternary Complex of Interleukin-2 with Its α, β, and γc Receptors. Science 310, 1159–1163 (2005). PubMed
Leonard W. J., Lin J.-X., Cytokine receptor signaling pathways. J. Allergy Clin. Immunol. 105, 877–888 (2000). PubMed
Malek T. R., The Biology of Interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008). PubMed
Mitra S., Ring A. M., Amarnath S., Spangler J. B., Li P., Ju W., Fischer S., Oh J., Spolski R., Weiskopf K., Kohrt H., Foley J. E., Rajagopalan S., Long E. O., Fowler D. H., Waldmann T. A., Garcia K. C., Leonard W. J., Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015). PubMed PMC
Chen X., Ai X., Wu C., Wang H., Zeng G., Yang P., Liu G., A novel human IL-2 mutein with minimal systemic toxicity exerts greater antitumor efficacy than wild-type IL-2. Cell Death Dis. 9, 1–12 (2018). PubMed PMC
Silva D.-A., Yu S., Ulge U. Y., Spangler J. B., Jude K. M., Labão-Almeida C., Ali L. R., Quijano-Rubio A., Ruterbusch M., Leung I., Biary T., Crowley S. J., Marcos E., Walkey C. D., Weitzner B. D., Pardo-Avila F., Castellanos J., Carter L., Stewart L., Riddell S. R., Pepper M., Bernardes G. J. L., Dougan M., Garcia K. C., Baker D., De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). PubMed PMC
Boyman O., Kovar M., Rubinstein M. P., Surh C. D., Sprent J., Selective Stimulation of T Cell Subsets with Antibody-Cytokine Immune Complexes. Science 311, 1924–1927 (2006). PubMed
Krieg C., Létourneau S., Pantaleo G., Boyman O., Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl. Acad. Sci. 107, 11906–11911 (2010). PubMed PMC
Létourneau S., van Leeuwen E. M. M., Krieg C., Martin C., Pantaleo G., Sprent J., Surh C. D., Boyman O., IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc. Natl. Acad. Sci. 107, 2171–2176 (2010). PubMed PMC
Spangler J. B., Tomala J., Luca V. C., Jude K. M., Dong S., Ring A. M., Votavova P., Pepper M., Kovar M., Garcia K. C., Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity 42, 815–825 (2015). PubMed PMC
Kamimura D., Sawa Y., Sato M., Agung E., Hirano T., Murakami M., IL-2 In Vivo Activities and Antitumor Efficacy Enhanced by an Anti-IL-2 mAb. J. Immunol. 177, 306–314 (2006). PubMed
Arenas-Ramirez N., Zou C., Popp S., Zingg D., Brannetti B., Wirth E., Calzascia T., Kovarik J., Sommer L., Zenke G., Woytschak J., Regnier C. H., Katopodis A., Boyman O., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016). PubMed
Sahin D., Arenas-Ramirez N., Rath M., Karakus U., Hümbelin M., van Gogh M., Borsig L., Boyman O., An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 11 (2020), doi:10.1038/s41467-020-20220-1. PubMed DOI PMC
Lee J.-Y., Lee E., Hong S.-W., Kim D., Eunju O., Sprent J., Im S.-H., Lee Y. J., Surh C. D., TCB2, a new anti-human interleukin-2 antibody, facilitates heterodimeric IL-2 receptor signaling and improves anti-tumor immunity. OncoImmunology 9, 1681869 (2020). PubMed PMC
Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M., TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J. Immunol. Baltim. Md 1950 134, 1623–1630 (1985). PubMed
Kuziel W. A., Ju G., Grdina T. A., Greene W. C., Unexpected effects of the IL-2 receptor alpha subunit on high affinity IL-2 receptor assembly and function detected with a mutant IL-2 analog. J. Immunol. 150, 3357–3365 (1993). PubMed
Boder E. T., Wittrup K. D., Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997). PubMed
Whitlow M., Howard A. J., Wood J. F., Voss E. W. Jr, Hardman K. D., 1.85 Å structure of anti-fluorescein 4–4-20 Fab. Protein Eng. Des. Sel. 8, 749–761 (1995). PubMed
Tomala J., Chmelova H., Strohalm J., Ulbrich K., Sirova M., Rihova B., Kovar M., Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that of N -(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity. Int. J. Cancer 129, 2002–2012 (2011). PubMed
Tomala J., Kovarova J., Kabesova M., Votavova P., Chmelova H., Dvorakova B., Rihova B., Kovar M., Chimera of IL-2 Linked to Light Chain of anti-IL-2 mAb Mimics IL-2/anti-IL-2 mAb Complexes Both Structurally and Functionally. ACS Chem. Biol. 8, 871–876 (2013). PubMed
Levin A. M., Bates D. L., Ring A. M., Krieg C., Lin J. T., Su L., Moraga I., Raeber M. E., Bowman G. R., Novick P., Pande V. S., Fathman C. G., Boyman O., Garcia K. C., Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine.’ Nature 484, 529–533 (2012). PubMed PMC
Hémar A., Subtil A., Lieb M., Morelon E., Hellio R., Dautry-Varsat A., Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J. Cell Biol. 129, 55–64 (1995). PubMed PMC
Lo M., Kim H. S., Tong R. K., Bainbridge T. W., Vernes J.-M., Zhang Y., Lin Y. L., Chung S., Dennis M. S., Zuchero Y. J. Y., Watts R. J., Couch J. A., Meng Y. G., Atwal J. K., Brezski R. J., Spiess C., Ernst J. A., Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice *. J. Biol. Chem. 292, 3900–3908 (2017). PubMed PMC
Kobayashi M., Kojima K., Murayama K., Amano Y., Koyama T., Ogama N., Takeshita T., Fukuhara T., Tanaka N., MK-6, a novel not-α IL-2, elicits a potent antitumor activity by improving the effector to regulatory T cell balance. Cancer Sci. 112, 4478–4489 (2021). PubMed PMC
Klein C., Waldhauer I., Nicolini V. G., Freimoser-Grundschober A., Nayak T., Vugts D. J., Dunn C., Bolijn M., Benz J., Stihle M., Lang S., Roemmele M., Hofer T., van Puijenbroek E., Wittig D., Moser S., Ast O., Brünker P., Gorr I. H., Neumann S., de Vera Mudry M. C., Hinton H., Crameri F., Saro J., Evers S., Gerdes C., Bacac M., van Dongen G., Moessner E., Umaña P., Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. OncoImmunology 6, e1277306 (2017). PubMed PMC
Merchant R., Galligan C., Munegowda M. A., Pearce L. B., Lloyd P., Smith P., Merchant F., To M. D., Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J. Immunother. Cancer 10, e003155 (2022). PubMed PMC
Hsu E. J., Cao X., Moon B., Bae J., Sun Z., Liu Z., Fu Y.-X., A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12, 2768 (2021). PubMed PMC
Hernandez R., Põder J., LaPorte K. M., Malek T. R., Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022). PubMed
Waldhauer I., Gonzalez-Nicolini V., Freimoser-Grundschober A., Nayak T. K., Fahrni L., Hosse R. J., Gerrits D., Geven E. J. W., Sam J., Lang S., Bommer E., Steinhart V., Husar E., Colombetti S., Van Puijenbroek E., Neubauer M., Cline J. M., Garg P. K., Dugan G., Cavallo F., Acuna G., Charo J., Teichgräber V., Evers S., Boerman O. C., Bacac M., Moessner E., Umaña P., Klein C., Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. mAbs 13, 1913791 (2021). PubMed PMC
Sharma M., Khong H., Fa’ak F., Bentebibel S.-E., Janssen L. M. E., Chesson B. C., Creasy C. A., Forget M.-A., Kahn L. M. S., Pazdrak B., Karki B., Hailemichael Y., Singh M., Vianden C., Vennam S., Bharadwaj U., Tweardy D. J., Haymaker C., Bernatchez C., Huang S., Rajapakshe K., Coarfa C., Hurwitz M. E., Sznol M., Hwu P., Hoch U., Addepalli M., Charych D. H., Zalevsky J., Diab A., Overwijk W. W., Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020). PubMed PMC
Ptacin J. L., Caffaro C. E., Ma L., San Jose Gall K. M., Aerni H. R., Acuff N. V., Herman R. W., Pavlova Y., Pena M. J., Chen D. B., Koriazova L. K., Shawver L. K., Joseph I. B., Milla M. E., An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021). PubMed PMC
Ross S. H., Cantrell D. A., Signaling and Function of Interleukin-2 in T Lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018). PubMed PMC
Fallon E. M., Lauffenburger D. A., Computational Model for Effects of Ligand/Receptor Binding Properties on Interleukin-2 Trafficking Dynamics and T Cell Proliferation Response. Biotechnol. Prog. 16, 905–916 (2000). PubMed
Spangler J. B., Moraga I., Mendoza J. L., Garcia K. C., Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annu. Rev. Immunol. 33, 139–167 (2015). PubMed PMC
Reyes R. M., Deng Y., Zhang D., Ji N., Mukherjee N., Wheeler K., Gupta H. B., Padron A. S., Kancharla A., Zhang C., Garcia M., Kornepati A. V. R., Boyman O., Conejo-Garcia J. R., Svatek R. S., Curiel T. J., CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J. Immunother. Cancer 9, e002051 (2021). PubMed PMC
Spangler J., Tomala J., Leff M. I., Ludwig S., Leonard E. K., Methods and materials for targeted expansion of immune effector cells (2020) (available at https://patents.google.com/patent/WO2020264321A1/en?q=leonard%2c+ludwig&inventor=Spangler%2c&oq=Spangler%2c+leonard%2c+ludwig).
Chao G., Lau W. L., Hackel B. J., Sazinsky S. L., Lippow S. M., Wittrup K. D., Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006). PubMed
Vaněk O., Celadova P., Skořepa O., Bláha J., Kalousková B., Dvorská A., Poláchová E., Pucholtová H., Kavan D., Pompach P., Hofbauerová K., Kopecký V., Mesci A., Voigt S., Carlyle J. R., Production of recombinant soluble dimeric C-type lectin-like receptors of rat natural killer cells. Sci. Rep. 9, 17836 (2019). PubMed PMC
Hayes D., Laue T., Philo J., Program Sednterp: sedimentation interpretation program (1995).
Schuck P., Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 78, 1606–1619 (2000). PubMed PMC
Brautigam C. A., in Methods in Enzymology, (Elsevier, 2015), vol. 562, pp. 109–133. PubMed