Engineered cytokine/antibody fusion proteins improve delivery of IL-2 to pro-inflammatory cells and promote antitumor activity

. 2023 May 04 ; () : . [epub] 20230504

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37205604

Grantová podpora
K12 GM123914 NIGMS NIH HHS - United States
R01 EB029341 NIBIB NIH HHS - United States
R01 EB029455 NIBIB NIH HHS - United States
R21 CA249381 NCI NIH HHS - United States

Progress in cytokine engineering is driving therapeutic translation by overcoming the inherent limitations of these proteins as drugs. The interleukin-2 (IL-2) cytokine harbors great promise as an immune stimulant for cancer treatment. However, the cytokine's concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, its toxicity at high doses, and its short serum half-life have limited clinical application. One promising approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards the activation of immune effector cells (i.e., effector T cells and natural killer cells). Although this strategy shows therapeutic potential in preclinical cancer models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns about complex stability. Here, we introduce a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine's activities towards immune effector cells. We establish the optimal IC construction and further engineer the cytokine/antibody affinity to improve immune biasing function. We demonstrate that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2 without inducing toxicities associated with IL-2 administration. Collectively, this work presents a roadmap for the design and translation of immunomodulatory cytokine/antibody fusion proteins.

Aktualizováno

PubMed

Zobrazit více v PubMed

Boyman O., Sprent J., The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012). PubMed

Leonard W. J., Lin J.-X., O’Shea J. J., The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 50, 832–850 (2019). PubMed

Zhao Z., Zhang X., Su L., Xu L., Zheng Y., Sun J., Fine tuning subsets of CD4+ T cells by low-dosage of IL-2 and a new therapeutic strategy for autoimmune diseases. Int. Immunopharmacol. 56, 269–276 (2018). PubMed

Arenas-Ramirez N., Woytschak J., Boyman O., Interleukin-2: Biology, Design and Application. Trends Immunol. 36, 763–777 (2015). PubMed

Kim J.-H., Lee K.-J., Lee S.-W. , Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB Rep. 54, 21–30 (2021). PubMed PMC

Mitra S., Leonard W. J., Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J. Leukoc. Biol. 103, 643–655 (2018). PubMed

Siegel J. P., Puri R. K., Interleukin-2 toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 9, 694–704 (1991). PubMed

Donohue J. H., Rosenberg S. A., The fate of interleukin-2 after in vivo administration. J. Immunol. Baltim. Md 1950 130, 2203–2208 (1983). PubMed

Mortara L., Balza E., Bruno A., Poggi A., Orecchia P., Carnemolla B., Anti-cancer Therapies Employing IL-2 Cytokine Tumor Targeting: Contribution of Innate, Adaptive and Immunosuppressive Cells in the Anti-tumor Efficacy. Front. Immunol. 9 (2018), doi:10.3389/fimmu.2018.02905. PubMed DOI PMC

Silver A. B., Leonard E. K., Gould J. R., Spangler J. B., Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021). PubMed PMC

Roopenian D. C., Akilesh S., FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007). PubMed

Palata O., Hradilova Podzimkova N., Nedvedova E., Umprecht A., Sadilkova L., Palova Jelinkova L., Spisek R., Adkins I., Radiotherapy in Combination With Cytokine Treatment. Front. Oncol. 9 (2019), doi:10.3389/fonc.2019.00367. PubMed DOI PMC

Pol J. G., Caudana P., Paillet J., Piaggio E., Kroemer G., Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 217 (2019), doi:10.1084/jem.20191247. PubMed DOI PMC

Mohammad G. R. K. S., Ghahremanloo A., Soltani A., Fathi E., Hashemy S. I., Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J. Cell. Physiol. 235, 5449–5460 (2020). PubMed

Hashimoto M., Araki K., Cardenas M. A., Li P., Jadhav R. R., Kissick H. T., Hudson W. H., McGuire D. J., Obeng R. C., Wieland A., Lee J., McManus D. T., Ross J. L., Im S. J., Lee J., Lin J.-X., Hu B., West E. E., Scharer C. D., Freeman G. J., Sharpe A. H., Ramalingam S. S., Pellerin A., Teichgräber V., Greenleaf W. J., Klein C., Goronzy J. J., Umaña P., Leonard W. J., Smith K. A., Ahmed R., PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022). PubMed PMC

Wang X., Rickert M., Garcia K. C., Structure of the Quaternary Complex of Interleukin-2 with Its α, β, and γc Receptors. Science 310, 1159–1163 (2005). PubMed

Leonard W. J., Lin J.-X., Cytokine receptor signaling pathways. J. Allergy Clin. Immunol. 105, 877–888 (2000). PubMed

Malek T. R., The Biology of Interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008). PubMed

Mitra S., Ring A. M., Amarnath S., Spangler J. B., Li P., Ju W., Fischer S., Oh J., Spolski R., Weiskopf K., Kohrt H., Foley J. E., Rajagopalan S., Long E. O., Fowler D. H., Waldmann T. A., Garcia K. C., Leonard W. J., Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015). PubMed PMC

Chen X., Ai X., Wu C., Wang H., Zeng G., Yang P., Liu G., A novel human IL-2 mutein with minimal systemic toxicity exerts greater antitumor efficacy than wild-type IL-2. Cell Death Dis. 9, 1–12 (2018). PubMed PMC

Silva D.-A., Yu S., Ulge U. Y., Spangler J. B., Jude K. M., Labão-Almeida C., Ali L. R., Quijano-Rubio A., Ruterbusch M., Leung I., Biary T., Crowley S. J., Marcos E., Walkey C. D., Weitzner B. D., Pardo-Avila F., Castellanos J., Carter L., Stewart L., Riddell S. R., Pepper M., Bernardes G. J. L., Dougan M., Garcia K. C., Baker D., De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). PubMed PMC

Boyman O., Kovar M., Rubinstein M. P., Surh C. D., Sprent J., Selective Stimulation of T Cell Subsets with Antibody-Cytokine Immune Complexes. Science 311, 1924–1927 (2006). PubMed

Krieg C., Létourneau S., Pantaleo G., Boyman O., Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl. Acad. Sci. 107, 11906–11911 (2010). PubMed PMC

Létourneau S., van Leeuwen E. M. M., Krieg C., Martin C., Pantaleo G., Sprent J., Surh C. D., Boyman O., IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc. Natl. Acad. Sci. 107, 2171–2176 (2010). PubMed PMC

Spangler J. B., Tomala J., Luca V. C., Jude K. M., Dong S., Ring A. M., Votavova P., Pepper M., Kovar M., Garcia K. C., Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity 42, 815–825 (2015). PubMed PMC

Kamimura D., Sawa Y., Sato M., Agung E., Hirano T., Murakami M., IL-2 In Vivo Activities and Antitumor Efficacy Enhanced by an Anti-IL-2 mAb. J. Immunol. 177, 306–314 (2006). PubMed

Arenas-Ramirez N., Zou C., Popp S., Zingg D., Brannetti B., Wirth E., Calzascia T., Kovarik J., Sommer L., Zenke G., Woytschak J., Regnier C. H., Katopodis A., Boyman O., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016). PubMed

Sahin D., Arenas-Ramirez N., Rath M., Karakus U., Hümbelin M., van Gogh M., Borsig L., Boyman O., An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 11 (2020), doi:10.1038/s41467-020-20220-1. PubMed DOI PMC

Lee J.-Y., Lee E., Hong S.-W., Kim D., Eunju O., Sprent J., Im S.-H., Lee Y. J., Surh C. D., TCB2, a new anti-human interleukin-2 antibody, facilitates heterodimeric IL-2 receptor signaling and improves anti-tumor immunity. OncoImmunology 9, 1681869 (2020). PubMed PMC

Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M., TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J. Immunol. Baltim. Md 1950 134, 1623–1630 (1985). PubMed

Kuziel W. A., Ju G., Grdina T. A., Greene W. C., Unexpected effects of the IL-2 receptor alpha subunit on high affinity IL-2 receptor assembly and function detected with a mutant IL-2 analog. J. Immunol. 150, 3357–3365 (1993). PubMed

Boder E. T., Wittrup K. D., Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997). PubMed

Whitlow M., Howard A. J., Wood J. F., Voss E. W. Jr, Hardman K. D., 1.85 Å structure of anti-fluorescein 4–4-20 Fab. Protein Eng. Des. Sel. 8, 749–761 (1995). PubMed

Tomala J., Chmelova H., Strohalm J., Ulbrich K., Sirova M., Rihova B., Kovar M., Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that of N -(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity. Int. J. Cancer 129, 2002–2012 (2011). PubMed

Tomala J., Kovarova J., Kabesova M., Votavova P., Chmelova H., Dvorakova B., Rihova B., Kovar M., Chimera of IL-2 Linked to Light Chain of anti-IL-2 mAb Mimics IL-2/anti-IL-2 mAb Complexes Both Structurally and Functionally. ACS Chem. Biol. 8, 871–876 (2013). PubMed

Levin A. M., Bates D. L., Ring A. M., Krieg C., Lin J. T., Su L., Moraga I., Raeber M. E., Bowman G. R., Novick P., Pande V. S., Fathman C. G., Boyman O., Garcia K. C., Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine.’ Nature 484, 529–533 (2012). PubMed PMC

Hémar A., Subtil A., Lieb M., Morelon E., Hellio R., Dautry-Varsat A., Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J. Cell Biol. 129, 55–64 (1995). PubMed PMC

Lo M., Kim H. S., Tong R. K., Bainbridge T. W., Vernes J.-M., Zhang Y., Lin Y. L., Chung S., Dennis M. S., Zuchero Y. J. Y., Watts R. J., Couch J. A., Meng Y. G., Atwal J. K., Brezski R. J., Spiess C., Ernst J. A., Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice *. J. Biol. Chem. 292, 3900–3908 (2017). PubMed PMC

Kobayashi M., Kojima K., Murayama K., Amano Y., Koyama T., Ogama N., Takeshita T., Fukuhara T., Tanaka N., MK-6, a novel not-α IL-2, elicits a potent antitumor activity by improving the effector to regulatory T cell balance. Cancer Sci. 112, 4478–4489 (2021). PubMed PMC

Klein C., Waldhauer I., Nicolini V. G., Freimoser-Grundschober A., Nayak T., Vugts D. J., Dunn C., Bolijn M., Benz J., Stihle M., Lang S., Roemmele M., Hofer T., van Puijenbroek E., Wittig D., Moser S., Ast O., Brünker P., Gorr I. H., Neumann S., de Vera Mudry M. C., Hinton H., Crameri F., Saro J., Evers S., Gerdes C., Bacac M., van Dongen G., Moessner E., Umaña P., Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. OncoImmunology 6, e1277306 (2017). PubMed PMC

Merchant R., Galligan C., Munegowda M. A., Pearce L. B., Lloyd P., Smith P., Merchant F., To M. D., Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J. Immunother. Cancer 10, e003155 (2022). PubMed PMC

Hsu E. J., Cao X., Moon B., Bae J., Sun Z., Liu Z., Fu Y.-X., A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12, 2768 (2021). PubMed PMC

Hernandez R., Põder J., LaPorte K. M., Malek T. R., Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022). PubMed

Waldhauer I., Gonzalez-Nicolini V., Freimoser-Grundschober A., Nayak T. K., Fahrni L., Hosse R. J., Gerrits D., Geven E. J. W., Sam J., Lang S., Bommer E., Steinhart V., Husar E., Colombetti S., Van Puijenbroek E., Neubauer M., Cline J. M., Garg P. K., Dugan G., Cavallo F., Acuna G., Charo J., Teichgräber V., Evers S., Boerman O. C., Bacac M., Moessner E., Umaña P., Klein C., Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. mAbs 13, 1913791 (2021). PubMed PMC

Sharma M., Khong H., Fa’ak F., Bentebibel S.-E., Janssen L. M. E., Chesson B. C., Creasy C. A., Forget M.-A., Kahn L. M. S., Pazdrak B., Karki B., Hailemichael Y., Singh M., Vianden C., Vennam S., Bharadwaj U., Tweardy D. J., Haymaker C., Bernatchez C., Huang S., Rajapakshe K., Coarfa C., Hurwitz M. E., Sznol M., Hwu P., Hoch U., Addepalli M., Charych D. H., Zalevsky J., Diab A., Overwijk W. W., Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020). PubMed PMC

Ptacin J. L., Caffaro C. E., Ma L., San Jose Gall K. M., Aerni H. R., Acuff N. V., Herman R. W., Pavlova Y., Pena M. J., Chen D. B., Koriazova L. K., Shawver L. K., Joseph I. B., Milla M. E., An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021). PubMed PMC

Ross S. H., Cantrell D. A., Signaling and Function of Interleukin-2 in T Lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018). PubMed PMC

Fallon E. M., Lauffenburger D. A., Computational Model for Effects of Ligand/Receptor Binding Properties on Interleukin-2 Trafficking Dynamics and T Cell Proliferation Response. Biotechnol. Prog. 16, 905–916 (2000). PubMed

Spangler J. B., Moraga I., Mendoza J. L., Garcia K. C., Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annu. Rev. Immunol. 33, 139–167 (2015). PubMed PMC

Reyes R. M., Deng Y., Zhang D., Ji N., Mukherjee N., Wheeler K., Gupta H. B., Padron A. S., Kancharla A., Zhang C., Garcia M., Kornepati A. V. R., Boyman O., Conejo-Garcia J. R., Svatek R. S., Curiel T. J., CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J. Immunother. Cancer 9, e002051 (2021). PubMed PMC

Spangler J., Tomala J., Leff M. I., Ludwig S., Leonard E. K., Methods and materials for targeted expansion of immune effector cells (2020) (available at https://patents.google.com/patent/WO2020264321A1/en?q=leonard%2c+ludwig&inventor=Spangler%2c&oq=Spangler%2c+leonard%2c+ludwig).

Chao G., Lau W. L., Hackel B. J., Sazinsky S. L., Lippow S. M., Wittrup K. D., Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006). PubMed

Vaněk O., Celadova P., Skořepa O., Bláha J., Kalousková B., Dvorská A., Poláchová E., Pucholtová H., Kavan D., Pompach P., Hofbauerová K., Kopecký V., Mesci A., Voigt S., Carlyle J. R., Production of recombinant soluble dimeric C-type lectin-like receptors of rat natural killer cells. Sci. Rep. 9, 17836 (2019). PubMed PMC

Hayes D., Laue T., Philo J., Program Sednterp: sedimentation interpretation program (1995).

Schuck P., Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 78, 1606–1619 (2000). PubMed PMC

Brautigam C. A., in Methods in Enzymology, (Elsevier, 2015), vol. 562, pp. 109–133. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...