Radiotherapy in Combination With Cytokine Treatment

. 2019 ; 9 () : 367. [epub] 20190522

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31179236

Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-α, IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-α used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.

Zobrazit více v PubMed

Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, et al. . Trial watch: anticancer radioimmunotherapy. Oncoimmunology. (2013) 2:e25595. 10.4161/onci.25595 PubMed DOI PMC

Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. (2016) 4:51. 10.1186/s40425-016-0156-7 PubMed DOI PMC

Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, et al. . Trial watch: radioimmunotherapy for oncological indications. Oncoimmunology. (2014) 3:e954929. 10.4161/21624011.2014.954929 PubMed DOI PMC

Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ. (2012) 345:e7765. 10.1136/bmj.e7765 PubMed DOI

Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. (2012) 2:153. 10.3389/fonc.2012.00153 PubMed DOI PMC

Beckmann GK, Hoppe F, Pfreundner L, Flentje MP. Hyperfractionated accelerated radiotherapy in combination with weekly cisplatin for locally advanced head and neck cancer. Head Neck. (2005) 27:36–43. 10.1002/hed.20111 PubMed DOI

Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol. (2012) 24:112–24. 10.1016/j.clon.2011.11.004 PubMed DOI

Frazier JL, Batra S, Kapor S, Vellimana A, Gandhi R, Carson KA, et al. . Stereotactic radiosurgery in the management of brain metastases: an institutional retrospective analysis of survival. Int J Radiat Oncol Biol Phys. (2010) 76:1486–92. 10.1016/j.ijrobp.2009.03.028 PubMed DOI

Agency IAE, Zubizarreta E. Radiotherapy in Cancer Care: Facing the Global Challenge. International Atomic Energy Agency Vienna: (2017).

Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. (2018) 39:644–55. 10.1016/j.it.2018.06.001 PubMed DOI PMC

Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. (2016) 40:25–37. 10.1016/j.currproblcancer.2015.10.001 PubMed DOI

Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. . Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. (2012) 366:925–31. 10.1056/NEJMoa1112824 PubMed DOI PMC

Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, et al. . In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. (2010) 28:4324–32. 10.1200/JCO.2010.28.9793 PubMed DOI PMC

Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. . Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. (2015) 16:795–803. 10.1016/S1470-2045(15)00054-6 PubMed DOI

Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. (2015) 41:503–10. 10.1016/j.ctrv.2015.03.011 PubMed DOI PMC

Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. (2014) 54:289–96. 10.1016/j.molcel.2014.03.040 PubMed DOI

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. (2012) 12:860–75. 10.1038/nrc3380 PubMed DOI

Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. . STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. (2014) 41:843–52. 10.1016/j.immuni.2014.10.019 PubMed DOI PMC

Mothersill C, Seymour C. Radiation-induced bystander effects: past history and future directions. Radiat Res. (2001) 155:759–67. 10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2 PubMed DOI

Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. (2018) 10:1758834017742575. 10.1177/1758834017742575 PubMed DOI PMC

Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, et al. . Barriers to radiation-induced in situ tumor vaccination. Front Immunol. (2017) 8:229. 10.3389/fimmu.2017.00229 PubMed DOI PMC

Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. (2008) 8:425–37. 10.1038/nrc2397 PubMed DOI PMC

Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. (2008) 134:587–98. 10.1016/j.cell.2008.06.032 PubMed DOI PMC

Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. . DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. (2017) 8:15618. 10.1038/ncomms15618 PubMed DOI PMC

Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. (2014) 74:665–74. 10.1158/0008-5472.CAN-13-0992 PubMed DOI

Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. . PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. (2014) 211:781–90. 10.1084/jem.20131916 PubMed DOI PMC

Voron T, Marcheteau E, Pernot S, Colussi O, Tartour E, Taieb J, et al. . Control of the immune response by pro-angiogenic factors. Front Oncol. (2014) 4:70. 10.3389/fonc.2014.00070 PubMed DOI PMC

Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, et al. . Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. (2011) 71:7433–41. 10.1158/0008-5472.CAN-11-2104 PubMed DOI

Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. . Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. (2008) 181:3099–107. 10.4049/jimmunol.181.5.3099 PubMed DOI PMC

Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. . The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. (2011) 71:2488–96. 10.1158/0008-5472.CAN-10-2820 PubMed DOI PMC

Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. (2005) 174:7516–23. 10.4049/jimmunol.174.12.7516 PubMed DOI

Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. . Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res. (2017) 23:137–48. 10.1158/1078-0432.CCR-16-0870 PubMed DOI PMC

Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. . CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. (2013) 73:2782–94. 10.1158/0008-5472.CAN-12-3981 PubMed DOI PMC

Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. (2010) 120:694–705. 10.1172/JCI40283 PubMed DOI PMC

Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. (2005) 436:1186–90. 10.1038/nature03884 PubMed DOI PMC

Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. . Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. (2006) 203:1259–71. 10.1084/jem.20052494 PubMed DOI PMC

Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol. (2016) 29:7–16. 10.1016/j.coph.2016.04.001 PubMed DOI

Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, et al. . Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med. (2007) 204:49–55. 10.1084/jem.20062056 PubMed DOI PMC

Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front Oncol. (2014) 4:1. 10.3389/fonc.2014.00001 PubMed DOI PMC

Tommelein J, De Vlieghere E, Verset L, Melsens E, Leenders J, Descamps B, et al. . Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation. Cancer Res. (2018) 78:659–70. 10.1158/0008-5472.CAN-17-0524 PubMed DOI

Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV, et al. . IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep. (2017) 19:225–34. 10.1016/j.celrep.2017.03.046 PubMed DOI PMC

Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, et al. . Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. (2003) 170:6338–47. 10.4049/jimmunol.170.12.6338 PubMed DOI

Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, et al. . Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. (2006) 166:839–48. 10.1667/RR0695.1 PubMed DOI

Barcellos-Hoff MH, Cucinotta FA. New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability. Sci Signal. (2014) 7:re5. 10.1126/scisignal.2005474 PubMed DOI

Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, et al. . TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. (2015) 75:2232–42. 10.1158/0008-5472.CAN-14-3511 PubMed DOI PMC

Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, et al. . Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. (2016) 5:e1214790. 10.1080/2162402X.2016.1214790 PubMed DOI PMC

Tang C, Welsh JW, De Groot P, Massarelli E, Chang JY, Hess KR, et al. . Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. (2017) 23:1388–96. 10.1158/1078-0432.CCR-16-1432 PubMed DOI PMC

Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. (2016) 5:e1163462. 10.1080/2162402X.2016.1163462 PubMed DOI PMC

Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. (2017) 190:159–68. 10.1016/j.imlet.2017.08.010 PubMed DOI PMC

Vacchelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, et al. . Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. (2016) 5:e1115942. 10.1080/2162402X.2015.1115942 PubMed DOI PMC

Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. (2017) 10:a028472. 10.1101/cshperspect.a028472 PubMed DOI PMC

Safwat A, Schmidt H, Bastholt L, Fode K, Larsen S, Aggerholm N, et al. . A phase II trial of low-dose total body irradiation and subcutaneous Interleukin-2 in metastatic melanoma. Radiother Oncol. (2005) 77:143–7. 10.1016/j.radonc.2005.09.008 PubMed DOI

Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, et al. . Phase 1 study of stereotactic body radiotherapy and interleukin-2–tumor and immunological responses. Sci Transl Med. (2012) 4:137ra174. 10.1126/scitranslmed.3003649 PubMed DOI

Lange JR, Raubitschek AA, Pockaj BA, Spencer WF, Lotze MT, Topalian SL, et al. . A pilot study of the combination of interleukin-2-based immunotherapy and radiation therapy. J Immunother. (1992) 12:265–71. 10.1097/00002371-199211000-00007 PubMed DOI

Ridolfi L, De Rosa F, Ridolfi R, Gentili G, Valmorri L, Scarpi E, et al. . Radiotherapy as an immunological booster in patients with metastatic melanoma or renal cell carcinoma treated with high-dose Interleukin-2: evaluation of biomarkers of immunologic and therapeutic response. J Transl Med. (2014) 12:262. 10.1186/s12967-014-0262-6 PubMed DOI PMC

Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, et al. . Trial watch: immunostimulatory cytokines. Oncoimmunology. (2013) 2:e24850. 10.4161/onci.24850 PubMed DOI PMC

Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM, et al. . Phase I/II study of oncolytic HSVGM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. (2010) 16:4005–15. 10.1158/1078-0432.CCR-10-0196 PubMed DOI

Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, et al. . Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res. (2005) 11:3353–62. 10.1158/1078-0432.CCR-04-2062 PubMed DOI

Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. . A cancer research UK first time in human phase I trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. (2016) 22:4776–85. 10.1158/1078-0432.CCR-16-0506 PubMed DOI PMC

Basu P, Jenson AB, Majhi T, Choudhury P, Mandal R, Banerjee D, et al. . Phase 2 randomized controlled trial of radiation therapy plus concurrent interferon-alpha and retinoic acid versus cisplatin for stage III cervical carcinoma. Int J Radiat Oncol Biol Phys. (2016) 94:102–10. 10.1016/j.ijrobp.2015.09.040 PubMed DOI

Picozzi VJ, Abrams RA, Decker PA, Traverso W, O'reilly EM, Greeno E, et al. . Multicenter phase II trial of adjuvant therapy for resected pancreatic cancer using cisplatin, 5-fluorouracil, and interferon-alfa-2b-based chemoradiation: ACOSOG Trial Z05031. Ann Oncol. (2011) 22:348–54. 10.1093/annonc/mdq384 PubMed DOI PMC

Posner MC, Gooding WE, Landreneau RJ, Rosenstein MM, Clarke MR, Peterson MS, et al. . Preoperative chemoradiotherapy for carcinoma of the esophagus and gastroesophageal junction. Cancer J Sci Am. (1998) 4:237–46. PubMed

Nukui Y, Picozzi VJ, Traverso LW. Interferon-based adjuvant chemoradiation therapy improves survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am J Surg. (2000) 179:367–71. 10.1016/S0002-9610(00)00369-X PubMed DOI

Mundt AJ, Vijayakumar S, Nemunaitis J, Sandler A, Schwartz H, Hanna N, et al. . A Phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res. (2004) 10:5747–53. 10.1158/1078-0432.CCR-04-0296 PubMed DOI

Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C, et al. . TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol. (2004) 22:592–601. 10.1200/JCO.2004.01.227 PubMed DOI

Seiwert TY, Darga T, Haraf D, Blair EA, Stenson K, Cohen EE, et al. A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFerade Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation. Ann Oncol. (2013) 24:769–76. 10.1093/annonc/mds523 PubMed DOI PMC

Chang KJ, Reid T, Senzer N, Swisher S, Pinto H, Hanna N, et al. . Phase I evaluation of TNFerade biologic plus chemoradiotherapy before esophagectomy for locally advanced resectable esophageal cancer. Gastrointest Endosc. (2012) 75:1139–1146 e1132. 10.1016/j.gie.2012.01.042 PubMed DOI PMC

Herman JM, Wild AT, Wang H, Tran PT, Chang KJ, Taylor GE, et al. . Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J Clin Oncol. (2013) 31:886–94. 10.1200/JCO.2012.44.7516 PubMed DOI PMC

Mcloughlin JM, Mccarty TM, Cunningham C, Clark V, Senzer N, Nemunaitis J, et al. . TNFerade, an adenovector carrying the transgene for human tumor necrosis factor alpha, for patients with advanced solid tumors: surgical experience and long-term follow-up. Ann Surg Oncol. (2005) 12:825–30. 10.1245/ASO.2005.03.023 PubMed DOI

Hecht JR, Farrell JJ, Senzer N, Nemunaitis J, Rosemurgy A, Chung T, et al. . EUS or percutaneously guided intratumoral TNFerade biologic with 5-fluorouracil and radiotherapy for first-line treatment of locally advanced pancreatic cancer: a phase I/II study. Gastrointest Endosc. (2012) 75:332–8. 10.1016/j.gie.2011.10.007 PubMed DOI PMC

Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. (2014) 25:377–90. 10.1016/j.cytogfr.2014.07.018 PubMed DOI

Rosenzwajg M, Lorenzon R, Cacoub P, Pham HP, Pitoiset F, El Soufi K, et al. . Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. (2019) 78:209–17. 10.1136/annrheumdis-2018-214229 PubMed DOI

Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol. (2015) 36:763–77. 10.1016/j.it.2015.10.003 PubMed DOI

Cameron RB, Spiess PJ, Rosenberg SA. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J Exp Med. (1990) 171:249–63. 10.1084/jem.171.1.249 PubMed DOI PMC

Safwat A, Aggerholm N, Roitt I, Overgaard J, Hokland M. Low-dose total body irradiation augments the therapeutic effect of interleukin-2 in a mouse model for metastatic malignant melanoma. J Exp Ther Oncol. (2003) 3:161–8. 10.1046/j.1359-4117.2003.01093.x PubMed DOI

Safwat A, Aggerholm N, Roitt I, Overgaard J, Hokland M. Tumour burden and interleukin-2 dose affect the interaction between low-dose total body irradiation and interleukin 2. Eur J Cancer. (2004) 40:1412–7. 10.1016/j.ejca.2004.01.037 PubMed DOI

List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol Adv Appl. (2013) 5:29–45. 10.2147/CPAA.S49231 PubMed DOI PMC

Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, et al. . NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. (2016) 22:680–90. 10.1158/1078-0432.CCR-15-1631 PubMed DOI

Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, et al. . Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood. (2002) 99:1659–65. 10.1182/blood.V99.5.1659 PubMed DOI

Gillies SD, Lan Y, Hettmann T, Brunkhorst B, Sun Y, Mueller SO, et al. . A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin Cancer Res. (2011) 17:3673–85. 10.1158/1078-0432.CCR-10-2921 PubMed DOI

Rekers NH, Zegers CM, Germeraad WT, Dubois L, Lambin P. Long-lasting antitumor effects provided by radiotherapy combined with the immunocytokine L19-IL2. Oncoimmunology. (2015) 4:e1021541. 10.1080/2162402X.2015.1021541 PubMed DOI PMC

Zegers CML, Rekers NH, Quaden DHF, Lieuwes NG, Yaromina A, Germeraad WTV, et al. . Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res. (2015) 21:1151–60. 10.1158/1078-0432.CCR-14-2676 PubMed DOI

Rekers NH, Olivo Pimentel V, Yaromina A, Lieuwes NG, Biemans R, Zegers CML, et al. . The immunocytokine L19-IL2: an interplay between radiotherapy and long-lasting systemic anti-tumour immune responses. Oncoimmunology. (2018) 7:e1414119. 10.1080/2162402X.2017.1414119 PubMed DOI PMC

Van Den Heuvel MM, Verheij M, Boshuizen R, Belderbos J, Dingemans A-MC, De Ruysscher D, et al. . NHS-IL2 combined with radiotherapy: preclinical rationale and phase Ib trial results in metastatic non-small cell lung cancer following first-line chemotherapy. J Transl Med. (2015) 13:32. 10.1186/s12967-015-0397-0 PubMed DOI PMC

Stonier SW, Schluns KS. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett. (2010) 127:85–92. 10.1016/j.imlet.2009.09.009 PubMed DOI PMC

Waldmann TA. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J Invest Dermatol Symp Proc. (2013) 16:S28–S30. 10.1038/jidsymp.2013.8 PubMed DOI

Mlecnik B, Bindea G, Angell HK, Sasso MS, Obenauf AC, Fredriksen T, et al. . Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med. (2014) 6: 228ra237. 10.1126/scitranslmed.3007240 PubMed DOI

Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. (2012) 33:35–41. 10.1016/j.tips.2011.09.004 PubMed DOI PMC

Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al. . Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. (2015) 33:74–82. 10.1200/JCO.2014.57.3329 PubMed DOI PMC

Miller JS, Morishima C, Mcneel DG, Patel MR, Kohrt HEK, Thompson JA, et al. . A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res. (2018) 24:1525–35. 10.1158/1078-0432.CCR-17-2451 PubMed DOI PMC

Pilones K, Aryankalayil J, Formenti S, Demaria S. Intratumoral IL-15 potentiates radiation-induced anti-tumor immunity. J Immunother Cancer. (2015) 3:P239 10.1186/2051-1426-3-S2-P239 DOI

Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, et al. . IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget. (2016) 7:16130–45. 10.18632/oncotarget.7470 PubMed DOI PMC

Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, et al. . Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res. (2016) 4:49–60. 10.1158/2326-6066.CIR-15-0093-T PubMed DOI PMC

Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, et al. . Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin Cancer Res. (2018) 24:5552–61. 10.1158/1078-0432.CCR-18-0945 PubMed DOI PMC

Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, et al. . ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. (2018) 19:694–704. 10.1016/S1470-2045(18)30148-7 PubMed DOI PMC

Mathios D, Park C-K, Marcus WD, Alter S, Rhode PR, Jeng EK, et al. . Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model. Int J Cancer. (2016) 138:187–94. 10.1002/ijc.29686 PubMed DOI PMC

Barreda DR, Hanington PC, Belosevic M. Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol. (2004) 28:509–54. 10.1016/j.dci.2003.09.010 PubMed DOI

Choi K-J, Kim J-H, Lee Y-S, Kim J, Suh B-S, Kim H, et al. . Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther. (2006) 13:1010–20. 10.1038/sj.gt.3302759 PubMed DOI

Kaufman HL, Ruby CE, Hughes T, Slingluff CLJr. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer. (2014) 2:11. 10.1186/2051-1426-2-11 PubMed DOI PMC

Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. . Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. (2004) 58:862–70. 10.1016/j.ijrobp.2003.09.012 PubMed DOI

Shi F, Wang X, Teng F, Kong L, Yu J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy. Cancer Biol Ther. (2017) 18:137–41. 10.1080/15384047.2016.1276133 PubMed DOI PMC

Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, et al. . Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. (1998) 58:2489–99. PubMed

Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. (2016) 16:131–44. 10.1038/nrc.2016.14 PubMed DOI

Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. (2015) 15:471–85. 10.1038/nri3865 PubMed DOI PMC

Musella M, Manic G, De Maria R, Vitale I, Sistigu A. Type-I-interferons in infection and cancer: unanticipated dynamics with therapeutic implications. Oncoimmunology. (2017) 6:e1314424. 10.1080/2162402X.2017.1314424 PubMed DOI PMC

Borden EC. Gene regulation and clinical roles for interferons in neoplastic diseases. Oncologist. (1998) 3:198–203. PubMed

Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. (2005) 5:375–86. 10.1038/nri1604 PubMed DOI

Wadler S, Wersto R, Weinberg V, Thompson D, Schwartz EL. Interaction of fluorouracil and interferon in human colon cancer cell lines: cytotoxic and cytokinetic effects. Cancer Res. (1990) 50:5735–9. PubMed

Ismail A, Van Groeningen CJ, Hardcastle A, Ren Q, Aherne GW, Geoffroy F, et al. . Modulation of fluorouracil cytotoxicity by interferon-alpha and -gamma. Mol Pharmacol. (1998) 53:252–61. 10.1124/mol.53.2.252 PubMed DOI

Holsti LR, Mattson K, Niiranen A, Standertskiold-Nordenstam CG, Stenman S, Sovijarvi A, et al. . Enhancement of radiation effects by alpha interferon in the treatment of small cell carcinoma of the lung. Int J Radiat Oncol Biol Phys. (1987) 13:1161–6. 10.1016/0360-3016(87)90189-1 PubMed DOI

Sischy B, Doggett RL, Krall JM, Taylor DG, Sause WT, Lipsett JA, et al. . Definitive irradiation and chemotherapy for radiosensitization in management of anal carcinoma: interim report on Radiation Therapy Oncology Group study no. 8314. J Natl Cancer Inst. (1989) 81:850–6. 10.1093/jnci/81.11.850 PubMed DOI

Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. (2014) 88:986–97. 10.1016/j.ijrobp.2013.08.035 PubMed DOI PMC

Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. (1975) 72:3666–70. 10.1073/pnas.72.9.3666 PubMed DOI PMC

Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. (2003) 66:1403–8. 10.1016/S0006-2952(03)00490-8 PubMed DOI

Hallahan DE, Beckett MA, Kufe D, Weichselbaum RR. The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys. (1990) 19:69–74. 10.1016/0360-3016(90)90136-8 PubMed DOI

Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, Wilmore D, et al. . Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst. (1988) 80:1039–44. 10.1093/jnci/80.13.1039 PubMed DOI

Kemeny N, Childs B, Larchian W, Rosado K, Kelsen D. A phase II trial of recombinant tumor necrosis factor in patients with advanced colorectal carcinoma. Cancer. (1990) 66:659–63. 10.1002/1097-0142(19900815)66:4<659::AID-CNCR2820660410>3.0.CO;2-2 PubMed DOI

Lejeune F, Lienard D, Eggermont A, Schraffordt Koops H, Kroon B, Gerain J, et al. . Clinical experience with high-dose tumor necrosis factor alpha in regional therapy of advanced melanoma. Circ Shock. (1994) 43:191–7. PubMed

Eggermont AM, Schraffordt Koops H, Klausner JM, Schlag PM, Kroon BB, Ben-Ari G, et al. . Isolated limb perfusion with high-dose tumor necrosis factor-alpha for locally advanced extremity soft tissue sarcomas. Cancer Treat Res. (1997) 91:189–203. 10.1007/978-1-4615-6121-7_13 PubMed DOI

Kircheis R, Wagner E. Technology evaluation: TNFerade, GenVec. Curr Opin Mol Ther. (2003) 5:437–47. PubMed

Kali A. TNFerade, an innovative cancer immunotherapeutic. Indian J Pharmacol. (2015) 47:479–83. 10.4103/0253-7613.165190 PubMed DOI PMC

Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR, et al. . TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. Cancer Gene Ther. (2002) 9:951–7. 10.1038/sj.cgt.7700518 PubMed DOI

Sharma A, Mani S, Hanna N, Guha C, Vikram B, Weichselbaum RR, et al. Clinical protocol. An open-label, phase I, dose-escalation study of tumor necrosis factor-alpha (TNFerade Biologic) gene transfer with radiation therapy for locally advanced, recurrent, or metastatic solid tumors. Hum Gene Ther. (2001) 12:1109–31. 10.1089/104303401750214320 PubMed DOI

Citrin D, Camphausen K, Wood BJ, Quezado M, Denobile J, Pingpank JF, et al. A pilot feasibility study of TNFerade biologic with capecitabine and radiation therapy followed by surgical resection for the treatment of rectal cancer. Oncology. (2010) 79:382–8. 10.1159/000323488 PubMed DOI PMC

Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. (1996) 87:3877–82. PubMed

Smyth MJ, Taniguchi M, Street SE. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol. (2000) 165:2665–70. 10.4049/jimmunol.165.5.2665 PubMed DOI

Lu X. Impact of IL-12 in Cancer. Curr Cancer Drug Targets. (2017) 17:682–97. 10.2174/1568009617666170427102729 PubMed DOI

Lasek W, Zagozdzon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. (2014) 63:419–35. 10.1007/s00262-014-1523-1 PubMed DOI PMC

Berraondo P, Etxeberria I, Ponz-Sarvise M, Melero I. Revisiting interleukin-12 as a cancer immunotherapy agent. Clin Cancer Res. (2018) 24:2716–8. 10.1158/1078-0432.CCR-18-0381 PubMed DOI

Xian J, Yang H, Lin Y, Liu S. Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. (2005) 131:1079–85. 10.1001/archotol.131.12.1079 PubMed DOI

Kim W, Seong J, Oh HJ, Koom WS, Choi K-J, Yun C-O. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res. (2011) 52:646–54. 10.1269/jrr.10185 PubMed DOI

Teicher BA, Ara G, Buxton D, Leonard J, Schaub RG. Optimal scheduling of interleukin-12 and fractionated radiation therapy in the murine Lewis lung carcinoma. Radiat Oncol Investig. (1998) 6:71–80. 10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E PubMed DOI

Fallon J, Tighe R, Kradjian G, Guzman W, Bernhardt A, Neuteboom B, et al. . The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget. (2014) 5:1869–84. 10.18632/oncotarget.1853 PubMed DOI PMC

Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. Trends Cancer. (2016) 2:286–94. 10.1016/j.trecan.2016.05.002 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...