Trial Watch: Immunotherapy plus radiation therapy for oncological indications

. 2016 ; 5 (9) : e1214790. [epub] 20160725

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid27757313

Grantová podpora
R01 CA198533 NCI NIH HHS - United States
R01 CA201246 NCI NIH HHS - United States

Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.

Department of Radiation Oncology Weill Cornell Medical College New York NY USA

Group of Immune receptors of the Innate and Adaptive System Institut d'Investigacions Biomédiques August Pi i Sunyer Barcelona Spain

Gustave Roussy Cancer Campus Villejuif France

Gustave Roussy Cancer Campus Villejuif France; INSERM U1015 CICBT1428 Villejuif France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Gustave Roussy Cancer Campus Villejuif France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Gustave Roussy Cancer Campus Villejuif France; Department of Radiation Oncology Weill Cornell Medical College New York NY USA

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France; Metabolomics and Cell Biology Platforms Gustave Roussy Cancer Campus Villejuif France; Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 13 Center de Recherche des Cordeliers Paris France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Laboratory of Integrative Cancer Immunology Center de Recherche des Cordeliers Paris France

Sotio Prague Czech Republic; Department of Immunology 2nd Faculty of Medicine and University Hospital Motol Charles University Prague Czech Republic

Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; INSERM U970 Paris France; Paris Cardiovascular Research Center AP HP Paris France

Zobrazit více v PubMed

Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004; 4:737-47; PMID:15343280; http://dx.doi.org/10.1038/nrc1451 PubMed DOI

Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gerard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013; 10:52-60; PMID:23183635; http://dx.doi.org/10.1038/nrclinonc.2012.203 PubMed DOI

Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16:234-49; PMID:27009394; http://dx.doi.org/10.1038/nrc.2016.18 PubMed DOI

Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40; PMID:26122185; http://dx.doi.org/10.1038/nrclinonc.2015.120 PubMed DOI PMC

Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005; 104:1129-37; PMID:16080176; http://dx.doi.org/10.1002/cncr.21324 PubMed DOI

Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S et al.. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62:220-41; PMID:22700443; http://dx.doi.org/10.3322/caac.21149 PubMed DOI

Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 2016; 16:20-33; PMID:26678314; http://dx.doi.org/10.1038/nrc.2015.2 PubMed DOI

Perez-Mancera PA, Young AR, Narita M. Inside and out: the activities of senescence in cancer. Nat Rev Cancer 2014; 14:547-58; PMID:25030953; http://dx.doi.org/10.1038/nrc3773 PubMed DOI

Bolanos-Garcia VM. Formation of multiprotein assemblies in the nucleus: the spindle assembly checkpoint. Int Rev Cell Mol Biol 2014; 307:151-74; PMID:24380595; http://dx.doi.org/10.1016/B978-0-12-800046-5.00006-0 PubMed DOI

Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12:385-92; PMID:21527953; http://dx.doi.org/10.1038/nrm3115 PubMed DOI

Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol 2014; 16:728-36; PMID:25082195; http://dx.doi.org/10.1038/ncb3005 PubMed DOI

Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40; PMID:17667954; http://dx.doi.org/10.1038/nrm2233 PubMed DOI

Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 2004; 4:158-64; PMID:14964312; http://dx.doi.org/10.1038/nrc1277 PubMed DOI

Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9:351-60; PMID:19377507; http://dx.doi.org/10.1038/nrc2603 PubMed DOI PMC

Golden EB, Formenti SC. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology 2014; 3:e28133; PMID:24800177; http://dx.doi.org/10.4161/onci.28133 PubMed DOI PMC

Lehnert BE, Goodwin EH, Deshpande A. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 1997; 57:2164-71; PMID:9187116 PubMed

Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol 2002; 78:837-44; PMID:12428924; http://dx.doi.org/10.1080/09553000210149786 PubMed DOI

Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 2003; 63:8437-42; PMID:14679007 PubMed

Chou CH, Chen PJ, Lee PH, Cheng AL, Hsu HC, Cheng JC. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res 2007; 13:851-7; PMID:17289877; http://dx.doi.org/10.1158/1078-0432.CCR-06-2459 PubMed DOI

Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE. Alpha particles induce the production of interleukin-8 by human cells. Radiat Res 1999; 152:57-63; PMID:10381841; http://dx.doi.org/10.2307/3580049 PubMed DOI

Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 2000; 60:1290-8; PMID:10728689 PubMed

Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH, Demaria S. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015; 75:2232-42; PMID:25858148; http://dx.doi.org/10.1158/0008-5472.CAN-14-3511 PubMed DOI PMC

Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti SC et al.. TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 2011; 17:6754-65; PMID:22028490; http://dx.doi.org/10.1158/1078-0432.CCR-11-0544 PubMed DOI PMC

Young KH, Gough MJ, Crittenden M. Tumor immune remodeling by TGFbeta inhibition improves the efficacy of radiation therapy. Oncoimmunology 2015; 4:e955696; PMID:25949887; http://dx.doi.org/10.4161/21624011.2014.955696 PubMed DOI PMC

Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, Yu Z, Lieberman HB, Hei TK. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci U S A 2005; 102:14641-6; PMID:16203985; http://dx.doi.org/10.1073/pnas.0505473102 PubMed DOI PMC

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137 PubMed DOI PMC

Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2012; 2:88; PMID:22891162; http://dx.doi.org/10.3389/fonc.2012.00088 PubMed DOI PMC

Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014; 3:e28518; PMID:25071979; http://dx.doi.org/10.4161/onci.28518 PubMed DOI PMC

Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015; 28:690-714; PMID:26678337; http://dx.doi.org/10.1016/j.ccell.2015.10.012 PubMed DOI

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:23151605; http://dx.doi.org/10.1038/nrc3380 PubMed DOI

Formenti SC, Demaria S. Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 2012; 84:879-80; PMID:23078897; http://dx.doi.org/10.1016/j.ijrobp.2012.06.020 PubMed DOI PMC

Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J. The controversial abscopal effect. Cancer Treat Rev 2005; 31:159-72; PMID:15923088; http://dx.doi.org/10.1016/j.ctrv.2005.03.004 PubMed DOI

Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 2004; 58:862-70; PMID:14967443; http://dx.doi.org/10.1016/j.ijrobp.2003.09.012 PubMed DOI

Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 2009; 15:5379-88; PMID:19706802; http://dx.doi.org/10.1158/1078-0432.CCR-09-0265 PubMed DOI PMC

Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013; 1:365-72; PMID:24563870; http://dx.doi.org/10.1158/2326-6066.CIR-13-0115 PubMed DOI PMC

Hiniker SM, Chen DS, Knox SJ. Abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:2035; author reply -6; PMID:22621637; http://dx.doi.org/10.1056/NEJMc1203984 PubMed DOI

Siva S, Macmanus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 2015; 356(1):82-90; PMID:24125863; http://dx.doi.org/10.1016/j.canlet.2013.09.018 PubMed DOI

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91:1071-121; PMID:21742796; http://dx.doi.org/10.1152/physrev.00038.2010 PubMed DOI PMC

Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307:58-62; PMID:15637262; http://dx.doi.org/10.1126/science.1104819 PubMed DOI

Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A et al.. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011; 30:83-95; PMID:21249423; http://dx.doi.org/10.1007/s10555-011-9281-4 PubMed DOI

Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929; PMID:25941606; http://dx.doi.org/10.4161/21624011.2014.954929 PubMed DOI PMC

Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:24319634; http://dx.doi.org/10.4161/onci.25595 PubMed DOI PMC

Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ 2012; 345:e7765; PMID:23212681; http://dx.doi.org/10.1136/bmj.e7765 PubMed DOI

DeVita VT Jr., Lawrence TS, Rosenberg SA. Cancer: Principles & Practice of Oncology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins, 2008.

Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol 2014; 11:637-48; PMID:25265912; http://dx.doi.org/10.1038/nrclinonc.2014.159 PubMed DOI PMC

Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 2007; 17:131-40; PMID:17395043; http://dx.doi.org/10.1016/j.semradonc.2006.11.009 PubMed DOI

Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4:529-36; PMID:12965273; http://dx.doi.org/10.1016/S1470-2045(03)01191-4 PubMed DOI

Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, Langer C, Murphy B, Cumberlin R, Coleman CN et al.. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13:176-81; PMID:12903007; http://dx.doi.org/10.1016/S1053-4296(03)00031-6 PubMed DOI

Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21:109-22; PMID:2032882; http://dx.doi.org/10.1016/0360-3016(91)90171-Y PubMed DOI

Jereczek-Fossa BA, Marsiglia HR, Orecchia R. Radiotherapy-related fatigue. Crit Rev Oncol Hematol 2002; 41:317-25; PMID:11880207; http://dx.doi.org/10.1016/S1040-8428(01)00143-3 PubMed DOI

Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH. Radiation and inflammation. Semin Radiat Oncol 2015; 25:4-10; PMID:25481260; http://dx.doi.org/10.1016/j.semradonc.2014.07.007 PubMed DOI PMC

Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, Purdy JA, Applegate K, Yahalom J, Constine LS et al.. Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 2012; 104:357-70; PMID:22312134; http://dx.doi.org/10.1093/jnci/djr533 PubMed DOI PMC

Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD, Stovall M, Ron E. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 2011; 12:353-60; PMID:21454129; http://dx.doi.org/10.1016/S1470-2045(11)70061-4 PubMed DOI PMC

Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 2009; 91:4-15; discussion 1-3; PMID:19201045; http://dx.doi.org/10.1016/j.radonc.2008.12.016 PubMed DOI

Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P. Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 2011; 17:222-8; PMID:21047979; http://dx.doi.org/10.1158/1078-0432.CCR-10-1402 PubMed DOI

Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010; 76:S10-9; PMID:20171502; http://dx.doi.org/10.1016/j.ijrobp.2009.07.1754 PubMed DOI PMC

Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42; PMID:19148183; http://dx.doi.org/10.1038/nrc2587 PubMed DOI PMC

Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, Cohen GI, Emami B, Gradishar WJ, Mitchell RB et al.. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27:127-45; PMID:19018081; http://dx.doi.org/10.1200/JCO.2008.17.2627 PubMed DOI

Schuchter LM, Hensley ML, Meropol NJ, Winer EP. 2002 update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2002; 20:2895-903; PMID:12065567; http://dx.doi.org/10.1200/JCO.2002.04.178 PubMed DOI

Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, Eschwege F, Zhang J, Russell L, Oster W et al.. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000; 18:3339-45; PMID:11013273 PubMed

Pouget JP, Navarro-Teulon I, Bardies M, Chouin N, Cartron G, Pelegrin A, Azria D. Clinical radioimmunotherapy–the role of radiobiology. Nat Rev Clin Oncol 2011; 8:720-34; PMID:22064461; http://dx.doi.org/10.1038/nrclinonc.2011.160 PubMed DOI

Huang EY, Wang FS, Chen YM, Chen YF, Wang CC, Lin IH, Huang YJ, Yang KD. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3sigma-mediated nuclear p53 accumulation. Oncotarget 2014; 5:9756-69; PMID:25230151; http://dx.doi.org/10.18632/oncotarget.2386 PubMed DOI PMC

Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2012; 2:153; PMID:23112958; http://dx.doi.org/10.3389/fonc.2012.00153 PubMed DOI PMC

Fenton-Kerimian M, Maisonet O, Formenti SC. Changes in breast radiotherapy: prone positioning and hypofractionation. Clin J Oncol Nurs 2013; 17:550-3; PMID:24080055; http://dx.doi.org/10.1188/13.CJON.550-553 PubMed DOI

Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC. The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 2014; 182:170-81; PMID:24937779; http://dx.doi.org/10.1667/RR13500.1 PubMed DOI PMC

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; PMID:25941621; http://dx.doi.org/10.4161/21624011.2014.955691 PubMed DOI PMC

Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013; 105:256-65; PMID:23291374; http://dx.doi.org/10.1093/jnci/djs629 PubMed DOI PMC

Crittenden M, Kohrt H, Levy R, Jones J, Camphausen K, Dicker A, Demaria S, Formenti S. Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 2015; 25:54-64; PMID:25481267; http://dx.doi.org/10.1016/j.semradonc.2014.07.003 PubMed DOI PMC

Formenti SC. Immunological aspects of local radiotherapy: clinical relevance. Discov Med 2010; 9:119-24; PMID:20193637 PubMed

Bernstein MB, Krishnan S, Hodge JW, Chang JY. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol 2016; 13(8):516-24; PMID:26951040; http://dx.doi.org/10.1038/nrclinonc.2016.30 PubMed DOI PMC

Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814; PMID:26137403; http://dx.doi.org/10.1080/2162402X.2015.1008814 PubMed DOI PMC

Mayor S. Radiation in combination with immune-checkpoint inhibitors. Lancet Oncol 2015; 16:e162; PMID:25773169; http://dx.doi.org/10.1016/S1470-2045(15)70118-X PubMed DOI

Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol 2015; 16:e498-509; PMID:26433823; http://dx.doi.org/10.1016/S1470-2045(15)00007-8 PubMed DOI

Vanpouille-Box C, Pilones KA, Wennerberg E, Formenti SC, Demaria S. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 2015; 33:7415-22; PMID:26148880; http://dx.doi.org/10.1016/j.vaccine.2015.05.105 PubMed DOI PMC

Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang SC, Liu M, Jure-Kunkel M, Zagzag D, Demaria S, Formenti SC. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 2010; 173:426-32; PMID:20334514; http://dx.doi.org/10.1667/RR1904.1 PubMed DOI PMC

Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030 PubMed DOI PMC

Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, Miller W, Payne R, Glenn L, Bageac A et al.. Phase 1 study of stereotactic body radiotherapy and interleukin-2–tumor and immunological responses. Sci Transl Med 2012; 4:137ra74; PMID:22674552; http://dx.doi.org/10.1126/scitranslmed.3003649 PubMed DOI

Yasuda K, Nirei T, Tsuno NH, Nagawa H, Kitayama J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci 2011; 102:1257-63; PMID:21443690; http://dx.doi.org/10.1111/j.1349-7006.2011.01940.x PubMed DOI

Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185; PMID:24800178; http://dx.doi.org/10.4161/onci.28185 PubMed DOI PMC

Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G et al.. Trial Watch: peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411; PMID:26137405; http://dx.doi.org/10.4161/2162402X.2014.974411 PubMed DOI PMC

Buckel L, Advani SJ, Frentzen A, Zhang Q, Yu YA, Chen NG, Ehrig K, Stritzker J, Mundt AJ, Szalay AA. Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium. Int J Cancer 2013; 133:2989-99; PMID:23729266; http://dx.doi.org/10.1002/ijc.28296 PubMed DOI

Iinuma H, Fukushima R, Inaba T, Tamura J, Inoue T, Ogawa E, Horikawa M, Ikeda Y, Matsutani N, Takeda K et al.. Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. J Transl Med 2014; 12:84; PMID:24708624; http://dx.doi.org/10.1186/1479-5876-12-84 PubMed DOI PMC

Mondini M, Nizard M, Tran T, Mauge L, Loi M, Clemenson C, Dugue D, Maroun P, Louvet E, Adam J et al.. Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer. Mol Cancer Ther 2015; 14:1336-45; PMID:25833837; http://dx.doi.org/10.1158/1535-7163.MCT-14-1015 PubMed DOI

Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994; PMID:25941578; http://dx.doi.org/10.4161/21624011.2014.957994 PubMed DOI PMC

Zamarin D, Postow MA. Immune checkpoint modulation: rational design of combination strategies. Pharmacol Ther 2015; 150:23-32; PMID:25583297; http://dx.doi.org/10.1016/j.pharmthera.2015.01.003 PubMed DOI

Aranda F, Buque A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R et al.. Trial Watch: adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673; PMID:26451319; http://dx.doi.org/10.1080/2162402X.2015.1046673 PubMed DOI PMC

Wei S, Egenti MU, Teitz-Tennenbaum S, Zou W, Chang AE. Effects of tumor irradiation on host T-regulatory cells and systemic immunity in the context of adoptive T-cell therapy in mice. J Immunother 2013; 36:124-32; PMID:23377667; http://dx.doi.org/10.1097/CJI.0b013e31828298e6 PubMed DOI PMC

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L et al.. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013; 24:589-602; PMID:24209604; http://dx.doi.org/10.1016/j.ccr.2013.09.014 PubMed DOI

Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L et al.. Trial Watch: oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:25097804; http://dx.doi.org/10.4161/onci.28694 PubMed DOI PMC

Kyula JN, Khan AA, Mansfield D, Karapanagiotou EM, McLaughlin M, Roulstone V, Zaidi S, Pencavel T, Touchefeu Y, Seth R et al.. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-alpha signaling. Oncogene 2014; 33:1700-12; PMID:23624923; http://dx.doi.org/10.1038/onc.2013.112 PubMed DOI

Chen RF, Li YY, Li LT, Cheng Q, Jiang G, Zheng JN. Novel oncolytic adenovirus sensitizes renal cell carcinoma cells to radiotherapy via mitochondrial apoptotic cell death. Mol Med Rep 2015; 11:2141-6; PMID:25411768; http://dx.doi.org/10.3892/mmr.2014.2987 PubMed DOI

Wang W, Chen MN, Cheng K, Zhan LL, Zhang J. Cytotoxic effect of a combination of bluetongue virus and radiation on prostate cancer. Exp Ther Med 2014; 8:635-41; PMID:25009632; http://dx.doi.org/10.3892/etm.2014.1751 PubMed DOI PMC

Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al.. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179 PubMed DOI PMC

Dovedi SJ, Melis MH, Wilkinson RW, Adlard AL, Stratford IJ, Honeychurch J, Illidge TM. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood 2013; 121:251-9; PMID:23086756; http://dx.doi.org/10.1182/blood-2012-05-432393 PubMed DOI

Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014; 5:5439-52; PMID:24978137; http://dx.doi.org/10.18632/oncotarget.2118 PubMed DOI PMC

Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H et al.. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159:499-513; PMID:25417103; http://dx.doi.org/10.1016/j.cell.2014.09.051 PubMed DOI PMC

Leder K, Pitter K, Laplant Q, Hambardzumyan D, Ross BD, Chan TA, Holland EC, Michor F. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 2014; 156:603-16; PMID:24485463; http://dx.doi.org/10.1016/j.cell.2013.12.029 PubMed DOI PMC

O'Brien S, Golubovskaya VM, Conroy J, Liu S, Wang D, Liu B, Cance WG. FAK inhibition with small molecule inhibitor Y15 decreases viability, clonogenicity, and cell attachment in thyroid cancer cell lines and synergizes with targeted therapeutics. Oncotarget 2014; 5:7945-59; PMID:25277206; http://dx.doi.org/10.18632/oncotarget.2381 PubMed DOI PMC

Tavora B, Reynolds LE, Batista S, Demircioglu F, Fernandez I, Lechertier T, Lees DM, Wong PP, Alexopoulou A, Elia G et al.. Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 2014; 514:112-6; PMID:25079333; http://dx.doi.org/10.1038/nature13541 PubMed DOI PMC

Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8:275-83; PMID:17380161; http://dx.doi.org/10.1038/nrm2147 PubMed DOI

Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299-303; PMID:9153396; http://dx.doi.org/10.1038/387299a0 PubMed DOI

Pant V, Lozano G. Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. Oncotarget 2014; 5:1149-56; PMID:24658419; http://dx.doi.org/10.18632/oncotarget.1797 PubMed DOI PMC

Tollini LA, Jin A, Park J, Zhang Y. Regulation of p53 by Mdm2 E3 ligase function is dispensable in embryogenesis and development, but essential in response to DNA damage. Cancer Cell 2014; 26:235-47; PMID:25117711; http://dx.doi.org/10.1016/j.ccr.2014.06.006 PubMed DOI PMC

Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, Lazareva N, Pulin A, Zhavoronkov A, Roumiantsev S et al.. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2015; 6:26876-85; PMID:26337087; http://dx.doi.org/10.18632/oncotarget.4946 PubMed DOI PMC

Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O'Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ et al.. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 2015; 518:258-62; PMID:25642963; http://dx.doi.org/10.1038/nature14184 PubMed DOI PMC

Vendetti FP, Lau A, Schamus S, Conrads TP, O'Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 2015; 6:44289-305; PMID:26517239; http://dx.doi.org/10.18632/oncotarget.6247 PubMed DOI PMC

Moding EJ, Castle KD, Perez BA, Oh P, Min HD, Norris H, Ma Y, Cardona DM, Lee CL, Kirsch DG. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med 2015; 7:278ra34; PMID:25761890; http://dx.doi.org/10.1126/scitranslmed.aaa4214 PubMed DOI PMC

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M et al.. Brain tumour cells interconnect to a functional and resistant network. Nature 2015; 528:93-8; PMID:26536111; http://dx.doi.org/10.1038/nature16071 PubMed DOI

Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007; 25:4066-74; PMID:17827455; http://dx.doi.org/10.1200/JCO.2007.12.7878 PubMed DOI

Reid T, Oronsky B, Scicinski J, Scribner CL, Knox SJ, Ning S, Peehl DM, Korn R, Stirn M, Carter CA et al.. Safety and activity of RRx-001 in patients with advanced cancer: a first-in-human, open-label, dose-escalation phase 1 study. Lancet Oncol 2015; 16:1133-42; PMID:26296952; http://dx.doi.org/10.1016/S1470-2045(15)00089-3 PubMed DOI

Tombal B, Borre M, Rathenborg P, Werbrouck P, Van Poppel H, Heidenreich A, Iversen P, Braeckman J, Heracek J, Baskin-Bey E et al.. Enzalutamide monotherapy in hormone-naive prostate cancer: primary analysis of an open-label, single-arm, phase 2 study. Lancet Oncol 2014; 15:592-600; PMID:24739897; http://dx.doi.org/10.1016/S1470-2045(14)70129-9 PubMed DOI

Tarish FL, Schultz N, Tanoglidi A, Hamberg H, Letocha H, Karaszi K, Hamdy FC, Granfors T, Helleday T. Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair. Sci Transl Med 2015; 7:312re11; PMID:26537259; http://dx.doi.org/10.1126/scitranslmed.aac5671 PubMed DOI

Yumimoto K, Nakayama KI. Fbxw7 suppresses cancer metastasis by inhibiting niche formation. Oncoimmunology 2015; 4:e1022308; PMID:26405580; http://dx.doi.org/10.1080/2162402X.2015.1022308 PubMed DOI PMC

Sakai K, Kazama S, Nagai Y, Murono K, Tanaka T, Ishihara S, Sunami E, Tomida S, Nishio K, Watanabe T. Chemoradiation provides a physiological selective pressure that increases the expansion of aberrant TP53 tumor variants in residual rectal cancerous regions. Oncotarget 2014; 5:9641-9; PMID:25275295; http://dx.doi.org/10.18632/oncotarget.2438 PubMed DOI PMC

Wang L, Ye X, Liu Y, Wei W, Wang Z. Aberrant regulation of FBW7 in cancer. Oncotarget 2014; 5:2000-15; PMID:24899581; http://dx.doi.org/10.18632/oncotarget.1859 PubMed DOI PMC

Beckta JM, Dever SM, Gnawali N, Khalil A, Sule A, Golding SE, Rosenberg E, Narayanan A, Kehn-Hall K, Xu B et al.. Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining. Oncotarget 2015; 6:27674-87; PMID:26320175; http://dx.doi.org/10.18632/oncotarget.4876 PubMed DOI PMC

Zhang Q, Karnak D, Tan M, Lawrence TS, Morgan MA, Sun Y. FBXW7 facilitates nonhomologous end-joining via K63-linked polyubiquitylation of XRCC4. Mol Cell 2016; 61:419-33; PMID:26774286; http://dx.doi.org/10.1016/j.molcel.2015.12.010 PubMed DOI PMC

Dovedi SJ, Illidge TM. The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade. Oncoimmunology 2015; 4:e1016709; PMID:26140246; http://dx.doi.org/10.1080/2162402X.2015.1016709 PubMed DOI PMC

Huang L, Li L, Lemos H, Chandler PR, Pacholczyk G, Baban B, Barber GN, Hayakawa Y, McGaha TL, Ravishankar B et al.. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J Immunol 2013; 191:3509-13; PMID:23986532; http://dx.doi.org/10.4049/jimmunol.1301419 PubMed DOI PMC

Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV et al.. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630; PMID:25636800; http://dx.doi.org/10.1126/science.aaa2630 PubMed DOI

Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol 2015; 15:405-14; PMID:26027717; http://dx.doi.org/10.1038/nri3845 PubMed DOI

Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124:687-95; PMID:24382348; http://dx.doi.org/10.1172/JCI67313 PubMed DOI PMC

Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T et al.. STING-dependent cytosolic DNA Sensing promotes radiation-induced Type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014; 41:843-52; PMID:25517616; http://dx.doi.org/10.1016/j.immuni.2014.10.019 PubMed DOI PMC

Salaroglio IC, Campia I, Kopecka J, Gazzano E, Orecchia S, Ghigo D, Riganti C. Zoledronic acid overcomes chemoresistance and immunosuppression of malignant mesothelioma. Oncotarget 2015; 6:1128-42; PMID:25544757; http://dx.doi.org/10.18632/oncotarget.2731 PubMed DOI PMC

Bowman RL, Joyce JA. Therapeutic targeting of tumor-associated macrophages and microglia in glioblastoma. Immunotherapy 2014; 6:663-6; PMID:25041027; http://dx.doi.org/10.2217/imt.14.48 PubMed DOI

Comito G, Segura CP, Taddei ML, Lanciotti M, Serni S, Morandi A, Chiarugi P, Giannoni E. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 2016; PMID:27223431; http://dx.doi.org/10.18632/oncotarget.9497 PubMed DOI PMC

Hattori Y, Shibuya K, Kojima K, Miatmoko A, Kawano K, Ozaki K, Yonemochi E. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin. Int J Oncol 2015; 47:211-9; PMID:25955490; http://dx.doi.org/10.3892/ijo.2015.2991 PubMed DOI

Riganti C, Castella B, Kopecka J, Campia I, Coscia M, Pescarmona G, Bosia A, Ghigo D, Massaia M. Zoledronic acid restores doxorubicin chemosensitivity and immunogenic cell death in multidrug-resistant human cancer cells. PLoS One 2013; 8:e60975; PMID:23593363; http://dx.doi.org/10.1371/journal.pone.0060975 PubMed DOI PMC

Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L et al.. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): an open-label, randomised, phase 3 factorial trial. Lancet Oncol 2014; 15:1076-89; PMID:25130995; http://dx.doi.org/10.1016/S1470-2045(14)70328-6 PubMed DOI

Hervieu A, Rebe C, Vegran F, Chalmin F, Bruchard M, Vabres P, Apetoh L, Ghiringhelli F, Mignot G. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J Invest Dermatol 2013; 133:499-508; PMID:22951720; http://dx.doi.org/10.1038/jid.2012.273 PubMed DOI

Iannello A, Raulet DH. Immunosurveillance of senescent cancer cells by natural killer cells. Oncoimmunology 2014; 3:e27616; PMID:24800169; http://dx.doi.org/10.4161/onci.27616 PubMed DOI PMC

Joncker NT, Raulet DH. Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol Rev 2008; 224:85-97; PMID:18759922; http://dx.doi.org/10.1111/j.1600-065X.2008.00658.x PubMed DOI PMC

Raulet DH, Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 2009; 9:568-80; PMID:19629084; http://dx.doi.org/10.1038/nri2604 PubMed DOI PMC

Ruocco MG, Pilones KA, Kawashima N, Cammer M, Huang J, Babb JS, Liu M, Formenti SC, Dustin ML, Demaria S. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clin Invest 2012; 122:3718-30; PMID:22945631; http://dx.doi.org/10.1172/JCI61931 PubMed DOI PMC

Vantourout P, Willcox C, Turner A, Swanson CM, Haque Y, Sobolev O, Grigoriadis A, Tutt A, Hayday A. Immunological visibility: posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci Transl Med 2014; 6:231ra49; PMID:24718859; http://dx.doi.org/10.1126/scitranslmed.3007579 PubMed DOI PMC

Surace L, Lysenko V, Fontana AO, Cecconi V, Janssen H, Bicvic A, Okoniewski M, Pruschy M, Dummer R, Neefjes J et al.. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity 2015; 42:767-77; PMID:25888260; http://dx.doi.org/10.1016/j.immuni.2015.03.009 PubMed DOI

Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM et al.. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520:373-7; PMID:25754329; http://dx.doi.org/10.1038/nature14292 PubMed DOI PMC

Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J et al.. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 2015; 16:795-803; PMID:26095785; http://dx.doi.org/10.1016/S1470-2045(15)00054-6 PubMed DOI

Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C et al.. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 2014; 232:199-209; PMID:24122236; http://dx.doi.org/10.1002/path.4287 PubMed DOI PMC

Anitei MG, Zeitoun G, Mlecnik B, Marliot F, Haicheur N, Todosi AM, Kirilovsky A, Lagorce C, Bindea G, Ferariu D et al.. Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin Cancer Res 2014; 20:1891-9; PMID:24691640; http://dx.doi.org/10.1158/1078-0432.CCR-13-2830 PubMed DOI

Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. Int Rev Cell Mol Biol 2014; 313:145-78; PMID:25376492; http://dx.doi.org/10.1016/B978-0-12-800177-6.00005-0 PubMed DOI

Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L et al.. Trial Watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940; PMID:25949870; http://dx.doi.org/10.4161/2162402X.2014.985940 PubMed DOI PMC

Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C et al.. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337-45; PMID:15269313; http://dx.doi.org/10.1056/NEJMoa033025 PubMed DOI

de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F et al.. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 2007; 67:6253-62; PMID:17616683; http://dx.doi.org/10.1158/0008-5472.CAN-07-0538 PubMed DOI

Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297 PubMed DOI PMC

Luke JJ, Ott PA. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. Oncotarget 2015; 6:3479-92; PMID:25682878; http://dx.doi.org/10.18632/oncotarget.2980 PubMed DOI PMC

Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C et al.. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 2009; 27:925-32; PMID:19749770; http://dx.doi.org/10.1038/nbt.1564 PubMed DOI PMC

Kortylewski M, Kuo YH. Push and release: TLR9 activation plus STAT3 blockade for systemic antitumor immunity. Oncoimmunology 2014; 3:e27441; PMID:24800162; http://dx.doi.org/10.4161/onci.27441 PubMed DOI PMC

Moreira D, Zhang Q, Hossain DM, Nechaev S, Li H, Kowolik CM, D'Apuzzo M, Forman S, Jones J, Pal SK et al.. TLR9 signaling through NF-kappaB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget 2015; 6:17302-13; PMID:26046794; http://dx.doi.org/10.18632/oncotarget.4029 PubMed DOI PMC

Golden EB, Chachoua A, Fenton-Kerimian M, Demaria S, Formenti SC. Abscopal responses in patients with refractory metastatic NSCLC treated with concurrent radiotherapy and CTLA-4 immune checkpoint blockade: evidence for the in situ vaccination hypothesis of radiotherapy. Cancer Research 2015; 75:S244; http://dx.doi.org/10.1158/1538-7445.AM2015-244 DOI

Khodadoust MS, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky R, Levy R. Phase I/II study of intratumoral injection of SD-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. ASCO Annual Meeting, 2015

Wei H, Zhao L, Hellstrom I, Hellstrom KE, Guo Y. Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy. Oncoimmunology 2014; 3:e28248; PMID:25050196; http://dx.doi.org/10.4161/onci.28248 PubMed DOI PMC

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E et al.. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4):2006-17; PMID:25399552; http://dx.doi.org/2503486210.1056/NEJMoa1412082 PubMed DOI

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ et al.. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372(4):311-9; PMID:25482239; http://dx.doi.org/2503486210.1056/NEJMoa1411087 PubMed DOI PMC

Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC et al.. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384:1109-17; PMID:25034862; http://dx.doi.org/10.1016/S0140-6736(14)60958-2 PubMed DOI

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V et al.. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515:568-71; PMID:25428505; http://dx.doi.org/10.1038/nature13954 PubMed DOI PMC

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L et al.. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372:2018-28; PMID:25891174; http://dx.doi.org/10.1056/NEJMoa1501824 PubMed DOI

Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M et al.. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372:2521-32; PMID:25891173; http://dx.doi.org/10.1056/NEJMoa1503093 PubMed DOI

Kroemer G, Galluzzi L. Combinatorial immunotherapy with checkpoint blockers solves the problem of metastatic melanoma-An exclamation sign with a question mark. Oncoimmunology 2015; 4:e1058037; PMID:26140249; http://dx.doi.org/10.1080/2162402X.2015.1058037 PubMed DOI PMC

Segal NH, Kemeny NE, Cercek A, Reidy DL, Raasch PJ, Warren P, Hrabovsky AE, Campbell N, Shia J, Goodman KA et al.. Non-randomized phase II study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients. ASCO Annual Meeting, 2016

Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL et al.. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015; 33:1325-33; PMID:25584002; http://dx.doi.org/10.1200/JCO.2014.57.4244 PubMed DOI PMC

Brower V. New approaches tackle rising pancreatic cancer rates. J Natl Cancer Inst 2014; 106; PMID:25535299; http://dx.doi.org/2541528310.1093/jnci/dju417 PubMed DOI

Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, Wamwea A, Bigelow E, Lutz E, Liu L et al.. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 2015; 38:1-11; PMID:25415283; http://dx.doi.org/10.1097/CJI.0000000000000062 PubMed DOI PMC

Kroemer G, Galluzzi L. Immunotherapy of hematological cancers: PD-1 blockade for the treatment of Hodgkin's lymphoma. Oncoimmunology 2015; 4:e1008853; PMID:26155425; http://dx.doi.org/10.1080/2162402X.2015.1008853 PubMed DOI PMC

Palucka K, Banchereau J. SnapShot: cancer vaccines. Cell 2014; 157:516-e1; PMID:24725415; http://dx.doi.org/10.1016/j.cell.2014.03.044 PubMed DOI

Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258 PubMed DOI PMC

Kolstad A, Olweus J. “In situ” vaccination for systemic effects in follicular lymphoma. Oncoimmunology 2015; 4:e1014773; PMID:26140239; http://dx.doi.org/10.1080/2162402X.2015.1014773 PubMed DOI PMC

Bol KF, Figdor CG, Aarntzen EH, Welzen ME, van Rossum MM, Blokx WA, van de Rakt MW, Scharenborg NM, de Boer AJ, Pots JM et al.. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 2015; 4:e1019197; PMID:26405571; http://dx.doi.org/10.1080/2162402X.2015.1019197 PubMed DOI PMC

Ueno H, Palucka AK, Banchereau J. The expanding family of dendritic cell subsets. Nat Biotechnol 2010; 28:813-5; PMID:20697407; http://dx.doi.org/10.1038/nbt0810-813 PubMed DOI

Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, Zurawski G, Palucka K, Banchereau J, Oh S. Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 2011; 23:21-7; PMID:21277223; http://dx.doi.org/10.1016/j.smim.2011.01.004 PubMed DOI PMC

Deng L, Liang H, Burnette B, Weicheslbaum RR, Fu YX. Radiation and anti-PD-L1 antibody combinatorial therapy induces T cell-mediated depletion of myeloid-derived suppressor cells and tumor regression. Oncoimmunology 2014; 3:e28499; PMID:25050217; http://dx.doi.org/10.4161/onci.28499 PubMed DOI PMC

More Benefits for Checkpoint Inhibitors in NSCLC Cancer Discov 2015; 5:OF2; PMID:26511141; http://dx.doi.org/2484383310.1158/2159-8290.CD-NB2015-148 PubMed DOI

Chawla A, Philips AV, Alatrash G, Mittendorf E. Immune checkpoints: a therapeutic target in triple negative breast cancer. Oncoimmunology 2014; 3:e28325; PMID:24843833; http://dx.doi.org/10.4161/onci.28325 PubMed DOI PMC

Garon EB. Current perspectives in immunotherapy for non-small cell lung cancer. Semin Oncol 2015; 42 Suppl 2:S11-8; PMID:26477470; http://dx.doi.org/10.1053/j.seminoncol.2015.09.019 PubMed DOI

Scarpace SL. Metastatic squamous cell non-small-cell lung cancer (NSCLC): disrupting the drug treatment paradigm with immunotherapies. Drugs Context 2015; 4:212289; PMID:26576187; http://dx.doi.org/10.7573/dic.212289 PubMed DOI PMC

Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, Schlom J. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 2015; 3:1148-57; PMID:26014098; http://dx.doi.org/10.1158/2326-6066.CIR-15-0059 PubMed DOI PMC

Reichert JM. Antibodies to watch in 2016. MAbs 2016; 8:197-204; PMID:26651519; http://dx.doi.org/10.1080/19420862.2015.1125583 PubMed DOI PMC

Robert L, Harview C, Emerson R, Wang X, Mok S, Homet B, Comin-Anduix B, Koya RC, Robins H, Tumeh PC et al.. Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes. Oncoimmunology 2014; 3:e29244; PMID:25083336; http://dx.doi.org/10.4161/onci.29244 PubMed DOI PMC

Calabro L, Maio M. Immune checkpoint blockade in malignant mesothelioma: a novel therapeutic strategy against a deadly disease? Oncoimmunology 2014; 3:e27482; PMID:24734215; http://dx.doi.org/10.4161/onci.27482 PubMed DOI PMC

Zielinski CC. A phase I study of MEDI4736, NNT-PD-L1 antibody in patients with advanced solid tumors. Transl Lung Cancer Res 2014; 3:406-7; PMID:25806335; http://dx.doi.org/10.3978/j.issn.2218-6751.2014.08.07 PubMed DOI PMC

Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol 2015; 42:474-83; PMID:25965366; http://dx.doi.org/10.1053/j.seminoncol.2015.02.007 PubMed DOI

Lee SM, Chow LQ. A new addition to the PD-1 checkpoint inhibitors for non-small cell lung cancer-the anti-PDL1 antibody-MEDI4736. Transl Lung Cancer Res 2014; 3:408-10; PMID:25806336; http://dx.doi.org/10.3978/j.issn.2218-6751.2014.11.10 PubMed DOI PMC

Creelan BC. Update on immune checkpoint inhibitors in lung cancer. Cancer Control 2014; 21:80-9; PMID:24357746 PubMed

Papadopoulos KP, Crittenden MR, Johnson ML, Lockhart AC, Moore KN, Falchook GS, Formenti S, Carvajal RD, Leidner RS, Naing A et al.. A first-in-human study of REGN2810, a monoclonal, fully human antibody to programmed death-1 (PD-1), in combination with immunomodulators including hypofractionated radiotherapy (hfRT). ASCO Annual Meeting, 2016

Ruggeri L, Urbani E, Andre P, Mancusi A, Tosti A, Topini F, Blery M, Animobono L, Romagne F, Wagtmann N et al.. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 2016; 101:626-33; PMID:26721894; http://dx.doi.org/10.3324/haematol.2015.135301 PubMed DOI PMC

Zhang Y, Lv G, Lou X, Peng D, Qu X, Yang X, Ayana DA, Guo H, Jiang Y. NKG2A expression and impaired function of NK cells in patients with new onset of Graves' disease. Int Immunopharmacol 2015; 24:133-9; PMID:25281394; http://dx.doi.org/10.1016/j.intimp.2014.09.020 PubMed DOI

Demaria S, Pilones KA, Formenti SC, Dustin ML. Exploiting the stress response to radiation to sensitize poorly immunogenic tumors to anti-CTLA-4 treatment. Oncoimmunology 2013; 2:e23127; PMID:23802063; http://dx.doi.org/10.4161/onci.23127 PubMed DOI PMC

Prica A, Buckstein R. Myelodysplastic syndrome successfully treated with adalimumab. J Clin Oncol 2015; 33:e4-6; PMID:24567429; http://dx.doi.org/10.1200/JCO.2013.49.4948 PubMed DOI

Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautes-Fridman C, Ma Y, Tartour E, Zitvogel L et al.. Trial Watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009 PubMed DOI PMC

Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014; 30C:24-31; PMID:24950501; http://dx.doi.org/2594992310.1016/j.coi.2014.05.009 PubMed DOI

Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S. The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ. Oncoimmunology 2015; 4:e995559; PMID:25949923; http://dx.doi.org/10.1080/2162402X.2014.995559 PubMed DOI PMC

Cannarile MA, Ries CH, Hoves S, Ruttinger D. Targeting tumor-associated macrophages in cancer therapy and understanding their complexity. Oncoimmunology 2014; 3:e955356; PMID:25941615; http://dx.doi.org/10.4161/21624011.2014.955356 PubMed DOI PMC

Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK et al.. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 2011; 79:1236-43; PMID:21368745; http://dx.doi.org/10.1038/ki.2011.33 PubMed DOI PMC

Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA, Lawrence DP. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 2014; 9:e90353; PMID:24618589; http://dx.doi.org/10.1371/journal.pone.0090353 PubMed DOI PMC

Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700; PMID:26140242; http://dx.doi.org/10.1080/2162402X.2015.1016700 PubMed DOI PMC

Chen X, Wakefield LM, Oppenheim JJ. Synergistic antitumor effects of a TGFbeta inhibitor and cyclophosphamide. Oncoimmunology 2014; 3:e28247; PMID:25050195; http://dx.doi.org/10.4161/onci.28247 PubMed DOI PMC

He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ et al.. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. J Immunol 2013; 191:4174-83; PMID:24026078; http://dx.doi.org/10.4049/jimmunol.1300409 PubMed DOI

Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology 2014; 3:e27255; PMID:24605266; http://dx.doi.org/10.4161/onci.27255 PubMed DOI PMC

Ruf M, Moch H, Schraml P. Interaction of tumor cells with infiltrating lymphocytes via CD70 and CD27 in clear cell renal cell carcinoma. Oncoimmunology 2015; 4:e1049805; PMID:26587319; http://dx.doi.org/10.1080/2162402X.2015.1049805 PubMed DOI PMC

Ramakrishna V, Sundarapandiyan K, Zhao B, Bylesjo M, Marsh HC, Keler T. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J Immunother Cancer 2015; 3:37; PMID:26500773; http://dx.doi.org/10.1186/s40425-015-0080-2 PubMed DOI PMC

Cho HI, Jung SH, Sohn HJ, Celis E, Kim TG. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects. Oncoimmunology 2015; 4:e1043504; PMID:26451316; http://dx.doi.org/10.1080/2162402X.2015.1043504 PubMed DOI PMC

Rainone V, Martelli C, Ottobrini L, Biasin M, Borelli M, Lucignani G, Trabattoni D, Clerici M. Immunological characterization of whole tumour lysate-loaded dendritic cells for cancer immunotherapy. PLoS One 2016; 11:e0146622; PMID:26795765; http://dx.doi.org/10.1371/journal.pone.0146622 PubMed DOI PMC

Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 2014; 5:e1257; PMID:24874729; http://dx.doi.org/10.1038/cddis.2013.428 PubMed DOI PMC

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869-83; PMID:21892204; http://dx.doi.org/10.1038/onc.2011.384 PubMed DOI

Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12:829-46; PMID:24113830; http://dx.doi.org/10.1038/nrd4145 PubMed DOI

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al.. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360:765-73; PMID:19228619; http://dx.doi.org/10.1056/NEJMoa0808710 PubMed DOI PMC

Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y et al.. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324:261-5; PMID:19359588; http://dx.doi.org/10.1126/science.1170944 PubMed DOI PMC

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P et al.. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508; PMID:25537519; http://dx.doi.org/10.18632/oncotarget.2998 PubMed DOI PMC

Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS et al.. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33:2780-8; PMID:26014293; http://dx.doi.org/10.1200/JCO.2014.58.3377 PubMed DOI

Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, Nabors LB, Markiewicz M, Agee BS, Coleman JM et al.. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014; 22:1048-55; PMID:24572293; http://dx.doi.org/10.1038/mt.2014.22 PubMed DOI PMC

Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G et al.. Trial Watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:25050207; http://dx.doi.org/10.4161/onci.28344 PubMed DOI PMC

Matzner P, Sorski L, Shaashua L, Elbaz E, Lavon H, Melamed R, Rosenne E, Gotlieb N, Benbenishty A, Reed SG et al.. Perioperative treatment with the new synthetic TLR-4 agonist GLA-SE reduces cancer metastasis without adverse effects. Int J Cancer 2016; 138:1754-64; PMID:26453448; http://dx.doi.org/10.1002/ijc.29885 PubMed DOI PMC

Orr MT, Duthie MS, Windish HP, Lucas EA, Guderian JA, Hudson TE, Shaverdian N, O'Donnell J, Desbien AL, Reed SG et al.. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 2013; 43:2398-408; PMID:23716300; http://dx.doi.org/10.1002/eji.201243124 PubMed DOI PMC

Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008; 27:161-7; PMID:18176597; http://dx.doi.org/10.1038/sj.onc.1210911 PubMed DOI

Mella M, Kauppila JH, Karihtala P, Lehenkari P, Jukkola-Vuorinen A, Soini Y, Auvinen P, Vaarala MH, Ronkainen H, Kauppila S et al.. Tumor infiltrating CD8+ T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma. Oncoimmunology 2015; 4:e1002726; PMID:26155410; http://dx.doi.org/10.1080/2162402X.2014.1002726 PubMed DOI PMC

van Seters M, van Beurden M, ten Kate FJ, Beckmann I, Ewing PC, Eijkemans MJ, Kagie MJ, Meijer CJ, Aaronson NK, Kleinjan A et al.. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N Engl J Med 2008; 358:1465-73; PMID:18385498; http://dx.doi.org/10.1056/NEJMoa072685 PubMed DOI

Henriques L, Palumbo M, Guay MP, Bahoric B, Basik M, Kavan P, Batist G. Imiquimod in the treatment of breast cancer skin metastasis. J Clin Oncol 2014; 32:e22-5; PMID:24419128; http://dx.doi.org/10.1200/JCO.2012.46.4883 PubMed DOI

Smyth EC, Flavin M, Pulitzer MP, Gardner GJ, Costantino PD, Chi DS, Bogatch K, Chapman PB, Wolchok JD, Schwartz GK et al.. Treatment of locally recurrent mucosal melanoma with topical imiquimod. J Clin Oncol 2011; 29:e809-11; PMID:22010009; http://dx.doi.org/10.1200/JCO.2011.36.8829 PubMed DOI

Dewan MZ, Vanpouille-Box C, Kawashima N, DiNapoli S, Babb JS, Formenti SC, Adams S, Demaria S. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 2012; 18:6668-78; PMID:23048078; http://dx.doi.org/10.1158/1078-0432.CCR-12-0984 PubMed DOI PMC

Demaria S, Vanpouille-Box C, Formenti SC, Adams S. The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2013; 2:e25997; PMID:24404422; http://dx.doi.org/10.4161/onci.25997 PubMed DOI PMC

Garaci E, Pica F, Matteucci C, Gaziano R, D'Agostini C, Miele MT, Camerini R, Palamara AT, Favalli C, Mastino A et al.. Historical review on thymosin alpha1 in oncology: preclinical and clinical experiences. Expert Opin Biol Ther 2015; 15 Suppl 1:S31-9; PMID:26096345; http://dx.doi.org/10.1517/14712598.2015.1017466 PubMed DOI

De Sanctis R, Marrari A, Santoro A. Trabectedin for the treatment of soft tissue sarcomas. Expert Opin Pharmacother 2016; 17(11):1569-77; PMID:27328277; http://dx.doi.org/10.1080/14656566.2016.1204295 PubMed DOI

Gordon EM, Sankhala KK, Chawla N, Chawla SP. Trabectedin for soft tissue sarcoma: current status and future perspectives. Adv Ther 2016; 33(7):1055-71; PMID:27234989; http://dx.doi.org/10.1007/s12325-016-0344-3 PubMed DOI PMC

Kawai A, Araki N, Sugiura H, Ueda T, Yonemoto T, Takahashi M, Morioka H, Hiraga H, Hiruma T, Kunisada T et al.. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol 2015; 16:406-16; PMID:25795406; http://dx.doi.org/10.1016/S1470-2045(15)70098-7 PubMed DOI

Jia XH, Du Y, Mao D, Wang ZL, He ZQ, Qiu JD, Ma XB, Shang WT, Ding D, Tian J. Zoledronic acid prevents the tumor-promoting effects of mesenchymal stem cells via MCP-1 dependent recruitment of macrophages. Oncotarget 2015; 6:26018-28; PMID:26305552; http://dx.doi.org/10.18632/oncotarget.4658 PubMed DOI PMC

Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase vaccination. Oncoimmunology 2015; 4:e983770; PMID:25949864; http://dx.doi.org/10.4161/2162402X.2014.983770 PubMed DOI PMC

Park SY, Kim MJ, Park SA, Kim JS, Min KN, Kim DK, Lim W, Nam JS, Sheen YY. Combinatorial TGF-beta attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells. Oncotarget 2015; 6:37526-43; PMID:26462028; http://dx.doi.org/10.18632/oncotarget.6063 PubMed DOI PMC

Park CY, Min KN, Son JY, Park SY, Nam JS, Kim DK, Sheen YY. An novel inhibitor of TGF-beta type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition. Cancer Lett 2014; 351:72-80; PMID:24887560; http://dx.doi.org/10.1016/j.canlet.2014.05.006 PubMed DOI

Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 2015; 14:603-22; PMID:26228631; http://dx.doi.org/10.1038/nrd4596 PubMed DOI

Li ZL, Ye SB, OuYang LY, Zhang H, Chen YS, He J, Chen QY, Qian CN, Zhang XS, Cui J et al.. COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncoimmunology 2015; 4:e1044712; PMID:26451317; http://dx.doi.org/10.1080/2162402X.2015.1044712 PubMed DOI PMC

Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E et al.. Trial Watch: small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5(6):e1149674; PMID:27471617; http://dx.doi.org/1124024910.1080/2162402X.2016.1149674 PubMed DOI PMC

Bieri S, Helg C, Chapuis B, Miralbell R. Total body irradiation before allogeneic bone marrow transplantation: is more dose better? Int J Radiat Oncol Biol Phys 2001; 49:1071-7; PMID:11240249; http://dx.doi.org/10.1016/S0360-3016(00)01491-7 PubMed DOI

Derer A, Frey B, Fietkau R, Gaipl US. Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 2016; 65:779-86; PMID:26590829; http://dx.doi.org/10.1007/s00262-015-1771-8 PubMed DOI PMC

Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011; 32:157-64; PMID:21334975; http://dx.doi.org/10.1016/j.it.2011.01.005 PubMed DOI

Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Formenti SC. Combinations of immunotherapy and radiation in cancer therapy. Front Oncol 2014; 4:325; PMID:25506582; http://dx.doi.org/10.3389/fonc.2014.00325 PubMed DOI PMC

Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 2015; 1:1325-32; PMID:26270858; http://dx.doi.org/10.1001/jamaoncol.2015.2756 PubMed DOI

Vanpouille-Box CI, Aryankalayil M, Pilones KA, Formenti SC, Coleman N, Demaria S. Fractionated but not single dose radiation is an optimal adjuvant for in situ tumor vaccination. Cancer Res 2015; 75:S2493; http://dx.doi.org/10.1158/1538-7445.AM2015-2493 DOI

Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. Int Rev Cell Mol Biol 2015; 317:267-330; PMID:26008788; http://dx.doi.org/10.1016/bs.ircmb.2015.03.001 PubMed DOI

Nicholson JM, Cimini D. Link between aneuploidy and chromosome instability. Int Rev Cell Mol Biol 2015; 315:299-317; PMID:25708466; http://dx.doi.org/10.1016/bs.ircmb.2014.11.002 PubMed DOI

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...