Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
27471617
PubMed Central
PMC4938376
DOI
10.1080/2162402x.2016.1149674
PII: 1149674
Knihovny.cz E-zdroje
- Klíčová slova
- Adenosine, IDO1, PGE2, Tregs, myeloid-derived suppressor cells, tumor-associated macrophages,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Gustave Roussy Cancer Campus Villejuif France
Gustave Roussy Cancer Campus Villejuif France; INSERM U1015 CICBT507 Villejuif France
Zobrazit více v PubMed
Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004; 4:839-49; PMID:15516957; http://dx.doi.org/10.1038/nrc1477 PubMed DOI
Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 2012; 9:498-509; PMID:22850752; http://dx.doi.org/10.1038/nrclinonc.2012.120 PubMed DOI
Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298-306; PMID:22419253; http://dx.doi.org/10.1038/nrc3245 PubMed DOI
Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7:139-47; PMID:17218951; http://dx.doi.org/10.1038/nrc2067 PubMed DOI
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13:714-26; PMID:24060863; http://dx.doi.org/10.1038/nrc3599 PubMed DOI
Di Mitri D, Toso A, Alimonti A. Tumor-infiltrating myeloid cells drive senescence evasion and chemoresistance in tumors. Oncoimmunology 2015; 4:e988473; PMID:26405613; http://dx.doi.org/10.4161/2162402X.2014.988473 PubMed DOI PMC
Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 2011; 71:5601-5; PMID:21846822; http://dx.doi.org/10.1158/0008-5472.CAN-11-1316 PubMed DOI
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14:1014-22; PMID:24048123; http://dx.doi.org/10.1038/ni.2703 PubMed DOI PMC
Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008; 8:618-31; PMID:18633355; http://dx.doi.org/10.1038/nrc2444 PubMed DOI
Tjin EP, Luiten RM. Tumor-infiltrating T-cells: important players in clinical outcome of advanced melanoma patients. Oncoimmunology 2014; 3:e954862; PMID:25941603; http://dx.doi.org/10.4161/21624011.2014.954862 PubMed DOI PMC
Issa-Nummer Y, Loibl S, von Minckwitz G, Denkert C. Tumor-infiltrating lymphocytes in breast cancer: A new predictor for responses to therapy. Oncoimmunology 2014; 3:e27926; PMID:25340002; http://dx.doi.org/10.4161/onci.27926 PubMed DOI PMC
Semeraro M, Rusakiewicz S, Zitvogel L, Kroemer G. Natural killer cell mediated immunosurveillance of pediatric neuroblastoma. Oncoimmunology 2015; 4:e1042202; PMID:26451315; http://dx.doi.org/10.1080/2162402X.2015.1042202 PubMed DOI PMC
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/10.1126/science.1203486 PubMed DOI
Kroemer G, Galluzzi L, Zitvogel L, Fridman WH. Colorectal cancer: the first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology 2015; 4:e1058597; PMID:26140250; http://dx.doi.org/10.1080/2162402X.2015.1058597 PubMed DOI PMC
Kallies A. T cell immunosurveillance controls B lymphoma development. Oncoimmunology 2014; 3:e28697; PMID:25050223; http://dx.doi.org/10.4161/onci.28697 PubMed DOI PMC
Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6:715-27; PMID:16977338; http://dx.doi.org/10.1038/nri1936 PubMed DOI
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3:991-8; PMID:12407406; http://dx.doi.org/10.1038/ni1102-991 PubMed DOI
Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK et al.. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012; 482:400-4; PMID:22318521; http://dx.doi.org/10.1038/nature10755 PubMed DOI PMC
Danelli L, Frossi B, Pucillo CE. Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment. Oncoimmunology 2015; 4:e1001232; PMID:26137400; http://dx.doi.org/10.1080/2162402X.2014.1001232 PubMed DOI PMC
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162-74; PMID:19197294; http://dx.doi.org/10.1038/nri2506 PubMed DOI PMC
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12:253-68; PMID:22437938; http://dx.doi.org/10.1038/nri3175 PubMed DOI PMC
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700; PMID:26140242; http://dx.doi.org/10.1080/2162402X.2015.1016700 PubMed DOI PMC
Pillarisetty VG. The pancreatic cancer microenvironment: an immunologic battleground. Oncoimmunology 2014; 3:e950171; PMID:25610740; http://dx.doi.org/10.4161/21624011.2014.950171 PubMed DOI PMC
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L et al.. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009 PubMed DOI PMC
Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, Kaur H, Bhatt ML, Bhadauria S. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014; 5:5350-68; PMID:25051364; http://dx.doi.org/10.18632/oncotarget.2110 PubMed DOI PMC
Balermpas P, Rodel F, Weiss C, Rodel C, Fokas E. Tumor-infiltrating lymphocytes favor the response to chemoradiotherapy of head and neck cancer. Oncoimmunology 2014; 3:e27403; PMID:24711959; http://dx.doi.org/10.4161/onci.27403 PubMed DOI PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015; 28:690-714; PMID:26678337; http://dx.doi.org/10.1016/j.ccell.2015.10.012 PubMed DOI
Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol 2015; 25:11-7; PMID:25481261; http://dx.doi.org/10.1016/j.semradonc.2014.07.005 PubMed DOI
Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M et al.. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014; 3:e28780; PMID:25083318; http://dx.doi.org/10.4161/onci.28780 PubMed DOI PMC
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM et al.. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520:373-7; PMID:25754329; http://dx.doi.org/10.1038/nature14292 PubMed DOI PMC
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014; 3:e28518; PMID:25071979; http://dx.doi.org/10.4161/onci.28518 PubMed DOI PMC
Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929; PMID:25941606; http://dx.doi.org/10.4161/21624011.2014.954929 PubMed DOI PMC
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al.. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179 PubMed DOI PMC
von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 2013; 12:51-63; PMID:23274471; http://dx.doi.org/10.1038/nrd3683 PubMed DOI
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252-64; PMID:22437870; http://dx.doi.org/10.1038/nrc3239 PubMed DOI PMC
Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 2015; 14:603-22; PMID:26228631; http://dx.doi.org/10.1038/nrd4596 PubMed DOI
Hardwick N, Chung V, Cristea M, Ellenhorn JD, Diamond DJ. Overcoming immunosuppression to enhance a p53MVA vaccine. Oncoimmunology 2014; 3:e958949; PMID:25941580; http://dx.doi.org/10.4161/21624011.2014.958949 PubMed DOI PMC
Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9:293-307; PMID:20380038; http://dx.doi.org/10.1038/nrd3203 PubMed DOI
O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 2013; 13:453-60; PMID:23681101; http://dx.doi.org/10.1038/nri3446 PubMed DOI
Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030 PubMed DOI PMC
Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7:95-106; PMID:17251916; http://dx.doi.org/10.1038/nrc2051 PubMed DOI
Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297 PubMed DOI PMC
Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814; PMID:26137403; http://dx.doi.org/10.1080/2162402X.2015.1008814 PubMed DOI PMC
Apetoh L, Smyth MJ, Drake CG, Abastado JP, Apte RN, Ayyoub M, Blay JY, Bonneville M, Butterfield LH, Caignard A et al.. Consensus nomenclature for CD8 T cell phenotypes in cancer. Oncoimmunology 2015; 4:e998538; PMID:26137416; http://dx.doi.org/10.1080/2162402X.2014.998538 PubMed DOI PMC
Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348:56-61; PMID:25838373; http://dx.doi.org/10.1126/science.aaa8172 PubMed DOI
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161:205-14; PMID:25860605; http://dx.doi.org/10.1016/j.cell.2015.03.030 PubMed DOI PMC
Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; PMID:25941597; http://dx.doi.org/10.4161/21624011.2014.967147 PubMed DOI PMC
Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C et al.. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212:139-48; PMID:25601652; http://dx.doi.org/10.1084/jem.20140559 PubMed DOI PMC
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L et al.. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940; PMID:25949870; http://dx.doi.org/10.4161/2162402X.2014.985940 PubMed DOI PMC
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; PMID:25941621; http://dx.doi.org/10.4161/21624011.2014.955691 PubMed DOI PMC
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI
Gujar SA, Clements D, Lee PW. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:24804161; http://dx.doi.org/10.4161/onci.27622 PubMed DOI PMC
Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8 T-cell responses and immune memory. Oncoimmunology 2015; 4:e1005521; PMID:26137402; http://dx.doi.org/10.1080/2162402X.2015.1005521 PubMed DOI PMC
Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 2015; 4:e954829; PMID:25949858; http://dx.doi.org/10.4161/21624011.2014.954829 PubMed DOI PMC
Xu M, Liu M, Du X, Li S, Li H, Li X, Li Y, Wang Y, Qin Z, Fu YX et al.. Intratumoral Delivery of IL-21 Overcomes Anti-Her2/Neu Resistance through Shifting Tumor-Associated Macrophages from M2 to M1 Phenotype. J Immunol 2015; 194:4997-5006; PMID:25876763; http://dx.doi.org/10.4049/jimmunol.1402603 PubMed DOI
Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; 24:319-33; PMID:23391812; http://dx.doi.org/10.1016/j.cytogfr.2013.01.005 PubMed DOI
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:23151605; http://dx.doi.org/10.1038/nrc3380 PubMed DOI
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R et al.. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866; PMID:26137404; http://dx.doi.org/10.1080/2162402X.2015.1008866 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:24800173; http://dx.doi.org/10.4161/onci.27878 PubMed DOI PMC
Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010; 70:6171-80; PMID:20631075; http://dx.doi.org/10.1158/0008-5472.CAN-10-0153 PubMed DOI PMC
Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 2009; 9:445-52; PMID:19461669; http://dx.doi.org/10.1038/nrc2639 PubMed DOI
Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol 2003; 81:247-65; PMID:12848846; http://dx.doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x PubMed DOI
Vonka V, Humlova Z, Klamova H, Kujovska-Krcmova L, Petrackova M, Hamsikova E, Krmencikova-Fliegl M, Duskova M, Roth Z. Kynurenine and uric acid levels in chronic myeloid leukemia patients. Oncoimmunology 2015; 4:e992646; PMID:25949913; http://dx.doi.org/10.4161/2162402X.2014.992646 PubMed DOI PMC
Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Herve C, Li XL, Heslan M, Usal C, Tesson L, Ménoret S et al.. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117:1096-106; PMID:17404623; http://dx.doi.org/10.1172/JCI28801 PubMed DOI PMC
Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000; 164:3596-9; PMID:10725715; http://dx.doi.org/10.4049/jimmunol.164.7.3596 PubMed DOI
Giannoni P, Pietra G, Travaini G, Quarto R, Shyti G, Benelli R, Ottaggio L, Mingari MC, Zupo S, Cutrona G et al.. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages. Haematologica 2014; 99:1078-87; PMID:24561793; http://dx.doi.org/10.3324/haematol.2013.091405 PubMed DOI PMC
Rani R, Jordan MB, Divanovic S, Herbert DR. IFN-gamma-driven IDO production from macrophages protects IL-4Ralpha-deficient mice against lethality during Schistosoma mansoni infection. Am J Pathol 2012; 180:2001-8; PMID:22426339; http://dx.doi.org/10.1016/j.ajpath.2012.01.013 PubMed DOI PMC
Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H, Takikawa O, Munn DH, Gendelman HE, Persidsky Y. Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 2005; 106:2382-90; PMID:15961516; http://dx.doi.org/10.1182/blood-2005-04-1403 PubMed DOI PMC
Yu J, Wang Y, Yan F, Zhang P, Li H, Zhao H, Yan C, Yan F, Ren X. Noncanonical NF-kappaB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J Immunol 2014; 193:2574-86; PMID:25063873; http://dx.doi.org/10.4049/jimmunol.1400833 PubMed DOI PMC
Vigneron N, van Baren N, Van den Eynde BJ. Expression profile of the human IDO1 protein, a cancer drug target involved in tumoral immune resistance. Oncoimmunology 2015; 4:e1003012; PMID:26155395; http://dx.doi.org/10.1080/2162402X.2014.1003012 PubMed DOI PMC
Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189:1363-72; PMID:10224276; http://dx.doi.org/10.1084/jem.189.9.1363 PubMed DOI PMC
Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281:1191-3; PMID:9712583; http://dx.doi.org/10.1126/science.281.5380.1191 PubMed DOI
Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9:1269-74; PMID:14502282; http://dx.doi.org/10.1038/nm934 PubMed DOI
Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by kynurenines. Adv Exp Med Biol 2003; 527:183-90; PMID:15206731; http://dx.doi.org/10.1007/978-1-4615-0135-0_21 PubMed DOI
Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH et al.. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 2007; 104:18619-24; PMID:18003900; http://dx.doi.org/10.1073/pnas.0709261104 PubMed DOI PMC
Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 2003; 171:1652-5; PMID:12902462; http://dx.doi.org/10.4049/jimmunol.171.4.1652 PubMed DOI
Baban B, Hansen AM, Chandler PR, Manlapat A, Bingaman A, Kahler DJ, Munn DH, Mellor AL. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 2005; 17:909-19; PMID:15967784; http://dx.doi.org/10.1093/intimm/dxh271 PubMed DOI
Molano A, Illarionov PA, Besra GS, Putterman C, Porcelli SA. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase. Immunol Lett 2008; 117:81-90; PMID:18272236; http://dx.doi.org/10.1016/j.imlet.2007.12.013 PubMed DOI PMC
Adikari SB, Lian H, Link H, Huang YM, Xiao BG. Interferon-gamma-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. Clin Exp Immunol 2004; 138:230-6; PMID:15498031; http://dx.doi.org/10.1111/j.1365-2249.2004.02585.x PubMed DOI PMC
Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R et al.. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297:1867-70; PMID:12228717; http://dx.doi.org/10.1126/science.1073514 PubMed DOI
Fallarino F, Orabona C, Vacca C, Bianchi R, Gizzi S, Asselin-Paturel C, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int Immunol 2005; 17:1429-38; PMID:16172135; http://dx.doi.org/10.1093/intimm/dxh321 PubMed DOI
Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 2004; 173:3748-54; PMID:15356121; http://dx.doi.org/10.4049/jimmunol.173.6.3748 PubMed DOI
Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117:2570-82; PMID:17710230; http://dx.doi.org/10.1172/JCI31911 PubMed DOI PMC
Derks RA, Jankowska-Gan E, Xu Q, Burlingham WJ. Dendritic cell type determines the mechanism of bystander suppression by adaptive T regulatory cells specific for the minor antigen HA-1. J Immunol 2007; 179:3443-51; PMID:17785778; http://dx.doi.org/10.4049/jimmunol.179.6.3443 PubMed DOI
Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004; 114:280-90; PMID:15254595; http://dx.doi.org/10.1172/JCI200421583 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994; PMID:25941578; http://dx.doi.org/10.4161/21624011.2014.957994 PubMed DOI PMC
Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013; 34:137-43; PMID:23103127; http://dx.doi.org/10.1016/j.it.2012.10.001 PubMed DOI PMC
Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, Sorenson EC, Popow R, Ariyan C, Rossi F et al.. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 2011; 17:1094-100; PMID:21873989; http://dx.doi.org/10.1038/nm.2438 PubMed DOI PMC
Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med 2015; 21:1128-38; PMID:26444637; http://dx.doi.org/10.1038/nm.3944 PubMed DOI
Quintas-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond–exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol 2009; 6:535-43; PMID:19652654; http://dx.doi.org/10.1038/nrclinonc.2009.112 PubMed DOI
Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 2002; 1:493-502; PMID:12120256; http://dx.doi.org/10.1038/nrd839 PubMed DOI
Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy. Clin Cancer Res 2015; 21:5427-33; PMID:26519060; http://dx.doi.org/10.1158/1078-0432.CCR-15-0420 PubMed DOI PMC
Qian F, Liao J, Villella J, Edwards R, Kalinski P, Lele S, Shrikant P, Odunsi K. Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation. Cancer Immunol Immunother 2012; 61:2013-20; PMID:22527253; http://dx.doi.org/10.1007/s00262-012-1265-x PubMed DOI PMC
Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11:312-9; PMID:15711557; http://dx.doi.org/10.1038/nm1196 PubMed DOI
Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007; 67:792-801; PMID:17234791; http://dx.doi.org/10.1158/0008-5472.CAN-06-2925 PubMed DOI
Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013; 210:1389-402; PMID:23752227; http://dx.doi.org/10.1084/jem.20130066 PubMed DOI PMC
Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L et al.. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20:5290-301; PMID:24691018; http://dx.doi.org/10.1158/1078-0432.CCR-14-0514 PubMed DOI PMC
Wainwright DA, Lesniak MS. Menage a trois: Sustained therapeutic anti-tumor immunity requires multiple partners in malignant glioma. Oncoimmunology 2014; 3:e28927; PMID:25057450; http://dx.doi.org/10.4161/onci.28927 PubMed DOI PMC
Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 2007; 67:7082-7; PMID:17671174; http://dx.doi.org/10.1158/0008-5472.CAN-07-1872 PubMed DOI
Cady SG, Sono M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys 1991; 291:326-33; PMID:1952947; http://dx.doi.org/10.1016/0003-9861(91)90142-6 PubMed DOI
Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H, Ismail-Khan R, Minton S, Vahanian NN, Link C et al.. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 2014; 5:8136-46; PMID:25327557; http://dx.doi.org/10.18632/oncotarget.2357 PubMed DOI PMC
Jackson E, Dees EC, Kauh JS, Harvey RD, Neuger A, Lush R, Antonia JS, Minton SE, Ismail-Khan R, Han HS et al.. A phase I study of indoximod in combination with docetaxel in metastatic solid tumors. J Clin Oncol 2013; 31:abstr 3026; PMID:23857967; http://dx.doi.org/10.1200/JCO.2012.47.1235 PubMed DOI
Colman H, Mott F, Spira AI, Johnson TS, Zakharia Y, Vahanian NN, Link CJ, Kennedy EP, Sadek RF, Munn D et al.. A phase 1b/2 study of the combination of the IDO pathway inhibitor indoximod and temozolomide for adult patients with temozolomide-refractory primary malignant brain tumors: Safety analysis and preliminary efficacy of the phase 1b component. ASCO Meeting Abstracts 2015; 33:2070
Soliman HH, Minton SE, Ismail-Khan R, Han HS, Janssen W, Vahanian NN et al.. A phase 2 study of Ad.p53 DC vaccine in combination with indoximod in metastatic solid tumors. J Clin Oncol 2013; 31:abstr 3069; http://dx.doi.org/10.1200/JCO.2013.49.9202 DOI
Zakharia Y, Johnson TS, Colman H, Vahanian NN, Link CJ, Kennedy E et al.. A phase I/II study of the combination of indoximod and temozolomide for adult patients with temozolomide-refractory primary malignant brain tumors. J Clin Oncol 2014; 32:abstr TPS2107
Jha GG, Miller JS. A randomized, double-blind phase 2 study of sipuleucel-T followed by indoximod or placebo in the treatment of patients with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. ASCO Meeting Abstracts 2014; 32:TPS5111
Soliman HH, Minton SE, Ismail-Khan R, Han HS, Vahanian NN, Ramsey WJ et al.. A phase 2 study of docetaxel in combination with indoximod in metastatic breast cancer. J Clin Oncol 2014; 32:abstr TPS3124
Kennedy E, Rossi GR, Vahanian NN, Link CJ. Phase 1/2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus ipilimumab for the treatment of unresectable stage 3 or 4 melanoma. ASCO Meeting Abstracts 2014; 32:TPS9117
Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW et al.. Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther 2010; 9:489-98; PMID:20124451; http://dx.doi.org/10.1158/1535-7163.MCT-09-0628 PubMed DOI
Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, Leffet L, Hansbury MJ, Thomas B, Rupar M et al.. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115:3520-30; PMID:20197554; http://dx.doi.org/10.1182/blood-2009-09-246124 PubMed DOI
Li M, Bolduc AR, Hoda MN, Gamble DN, Dolisca SB, Bolduc AK, Hoang K, Ashley C, McCall D, Rojiani AM et al.. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer 2014; 2:21; PMID:25054064; http://dx.doi.org/10.1186/2051-1426-2-21 PubMed DOI PMC
Mautino MR, Jaipuri FA, Waldo J, Kumar S, Adams J, Van Allen C et al.. NLG919, a novel indoleamine-2,3-dioxygenase (IDO)-pathway inhibitor drug candidate for cancer therapy. Cancer Res 2013; 73:491; http://dx.doi.org/10.1158/1538-7445.AM2013-491 DOI
Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Newton RC, Schaub R et al.. Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral inhibitor of indoleamine 2,3-dioxygenase (IDO1) INCB024360 in patients (pts) with advanced malignancies. ASCO Meeting Abstracts 2013; 31:3025
Newton RC, Scherle PA, Bowman K, Liu X, Beatty GL, O'Dwyer PJ et al.. Pharmacodynamic assessment of INCB024360, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), in advanced cancer patients. ASCO Meeting Abstracts 2012; 30:2500
Gibney GT, Hamid O, Gangadhar TC, Lutzky J, Olszanski AJ, Gajewski T et al.. Preliminary results from a phase 1/2 study of INCB024360 combined with ipilimumab (ipi) in patients (pts) with melanoma. ASCO Meeting Abstracts 2014; 32:3010
Tanaka M, Li X, Hikawa H, Suzuki T, Tsutsumi K, Sato M, Takikawa O, Suzuki H, Yokoyama Y. Synthesis and biological evaluation of novel tryptoline derivatives as indoleamine 2,3-dioxygenase (IDO) inhibitors. Bioorg Med Chem 2013; 21:1159-65; PMID:23337802; http://dx.doi.org/10.1016/j.bmc.2012.12.028 PubMed DOI
Gaspari P, Banerjee T, Malachowski WP, Muller AJ, Prendergast GC, DuHadaway J, Bennett S, Donovan AM. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2006; 49:684-92; PMID:16420054; http://dx.doi.org/10.1021/jm0508888 PubMed DOI PMC
Banerjee T, Duhadaway JB, Gaspari P, Sutanto-Ward E, Munn DH, Mellor AL, Malachowski WP, Prendergast GC, Muller AJ. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene 2008; 27:2851-7; PMID:18026137; http://dx.doi.org/10.1038/sj.onc.1210939 PubMed DOI
Pereira A, Vottero E, Roberge M, Mauk AG, Andersen RJ. Indoleamine 2,3-dioxygenase inhibitors from the Northeastern Pacific Marine Hydroid Garveia annulata. J Nat Prod 2006; 69:1496-9; PMID:17067170; http://dx.doi.org/10.1021/np060111x PubMed DOI
Kumar S, Malachowski WP, DuHadaway JB, LaLonde JM, Carroll PJ, Jaller D, Metz R, Prendergast GC, Muller AJ. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J Med Chem 2008; 51:1706-18; PMID:18318466; http://dx.doi.org/10.1021/jm7014155 PubMed DOI PMC
Volgraf M, Lumb JP, Brastianos HC, Carr G, Chung MK, Munzel M, Mauk AG, Andersen RJ, Trauner D. Biomimetic synthesis of the IDO inhibitors exiguamine A and B. Nat Chem Biol 2008; 4:535-7; PMID:18677305; http://dx.doi.org/10.1038/nchembio.107 PubMed DOI
Brastianos HC, Vottero E, Patrick BO, Van Soest R, Matainaho T, Mauk AG, Andersen RJ. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J Am Chem Soc 2006; 128:16046-7; PMID:17165752; http://dx.doi.org/10.1021/ja067211+ PubMed DOI
Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B et al.. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012; 109:2497-502; PMID:22308364; http://dx.doi.org/10.1073/pnas.1113873109 PubMed DOI PMC
Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 2011; 11:201-12; PMID:21331080; http://dx.doi.org/10.1038/nri2938 PubMed DOI PMC
Michaud M, Xie X, Bravo-San Pedro JM, Zitvogel L, White E, Kroemer G. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 2014; 3:e944047; PMID:25610726; http://dx.doi.org/10.4161/21624011.2014.944047 PubMed DOI PMC
Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 2014; 3:e968434; PMID:25964865; http://dx.doi.org/10.4161/21624011.2014.968434 PubMed DOI PMC
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K et al.. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41; PMID:23562161; http://dx.doi.org/10.1016/j.immuni.2013.03.003 PubMed DOI
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E et al.. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170-8; PMID:19767732; http://dx.doi.org/10.1038/nm.2028 PubMed DOI
Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med 2013; 19:355-67; PMID:23601906; http://dx.doi.org/10.1016/j.molmed.2013.03.005 PubMed DOI PMC
Beavis PA, Slaney CY, Milenkovski N, Henderson MA, Loi S, Stagg J, Kershaw MH, Darcy PK. CD73: A potential biomarker for anti-PD-1 therapy. Oncoimmunology 2015; 4:e1046675; PMID:26451321; http://dx.doi.org/10.1080/2162402X.2015.1046675 PubMed DOI PMC
Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013; 13:842-57; PMID:24226193; http://dx.doi.org/10.1038/nrc3613 PubMed DOI
Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M et al.. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257-65; PMID:17502665; http://dx.doi.org/10.1084/jem.20062512 PubMed DOI PMC
Cekic C, Day YJ, Sag D, Linden J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res 2014; 74:7250-9; PMID:25377469; http://dx.doi.org/10.1158/0008-5472.CAN-13-3583 PubMed DOI PMC
Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha S, Wang JC, Hyrien O, Burack WR, Mosmann TR, Quataert SA, Bernstein SH. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol 2009; 183:6157-66; PMID:19864600; http://dx.doi.org/10.4049/jimmunol.0900475 PubMed DOI PMC
Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 2012; 3:190; PMID:22783261; http://dx.doi.org/10.3389/fimmu.2012.00190 PubMed DOI PMC
Bergamin LS, Braganhol E, Figueiro F, Casali EA, Zanin RF, Sevigny J, Battastini AM. Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. J Cell Biochem 2015; 116:721-9; PMID:25546398; http://dx.doi.org/10.1002/jcb.25018 PubMed DOI
Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM Jr, Gause WC, Leibovich SJ et al.. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 2012; 26:376-86; PMID:21926236; http://dx.doi.org/10.1096/fj.11-190934 PubMed DOI PMC
Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, Dikov MM, Feoktistov I. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol 2011; 187:6120-9; PMID:22039302; http://dx.doi.org/10.4049/jimmunol.1101225 PubMed DOI PMC
Morello S, Miele L. Targeting the adenosine A2b receptor in the tumor microenvironment overcomes local immunosuppression by myeloid-derived suppressor cells. Oncoimmunology 2014; 3:e27989; PMID:25101221; http://dx.doi.org/10.4161/onci.27989 PubMed DOI PMC
Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I et al.. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822-31; PMID:18559975; http://dx.doi.org/10.1182/blood-2008-02-136325 PubMed DOI PMC
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15:2024-52; PMID:24477263; http://dx.doi.org/10.3390/ijms15022024 PubMed DOI PMC
Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I, Bronte V, Di Virgilio F, Pistoia V, Raffaghello L. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 2014; 5:e1135; PMID:24651438; http://dx.doi.org/10.1038/cddis.2014.109 PubMed DOI PMC
Chadet S, Ivanes F, Benoist L, Salmon-Gandonniere C, Guibon R, Velge-Roussel F, Babuty D, Baron C, Roger S, Angoulvant D. Hypoxia/Reoxygenation Inhibits P2Y11 Receptor Expression and Its Immunosuppressive Activity in Human Dendritic Cells. J Immunol 2015; 195:651-60; PMID:26078273; http://dx.doi.org/10.4049/jimmunol.1500197 PubMed DOI
Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2016; 13:143-58; PMID:26598942; http://dx.doi.org/2615539710.1038/nrclinonc.2015.209 PubMed DOI
Bonnefoy N, Bastid J, Alberici G, Bensussan A, Eliaou JF. CD39: A complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology 2015; 4:e1003015; PMID:26155397; http://dx.doi.org/10.1080/2162402X.2014.1003015 PubMed DOI PMC
Baqi Y, Weyler S, Iqbal J, Zimmermann H, Muller CE. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 2009; 5:91-106; PMID:18528783; http://dx.doi.org/10.1007/s11302-008-9103-5 PubMed DOI PMC
Lecka J, Gillerman I, Fausther M, Salem M, Munkonda MN, Brosseau JP, Cadot C, Martín-Satué M, d'Orléans-Juste P, Rousseau E et al.. 8-BuS-ATP derivatives as specific NTPDase1 inhibitors. Br J Pharmacol 2013; 169:179-96; PMID:23425137; http://dx.doi.org/10.1111/bph.12135 PubMed DOI PMC
Knapp K, Zebisch M, Pippel J, El-Tayeb A, Muller CE, Strater N. Crystal structure of the human ecto-5′-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure 2012; 20:2161-73; PMID:23142347; http://dx.doi.org/10.1016/j.str.2012.10.001 PubMed DOI
Krasteva M, Barth A. Structures of the Ca2+-ATPase complexes with ATP, AMPPCP and AMPPNP. An FTIR study. Biochim Biophys Acta 2007; 1767:114-23; PMID:17157262; http://dx.doi.org/10.1016/j.bbabio.2006.11.003 PubMed DOI
Bhattarai S, Freundlieb M, Pippel J, Meyer A, Abdelrahman A, Fiene A, Lee SY, Zimmermann H, Yegutkin GG, Sträter N et al.. alpha,beta-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective ecto-5′-Nucleotidase (CD73) Inhibitors. J Med Chem 2015; 58:6248-63; PMID:26147331; http://dx.doi.org/10.1021/acs.jmedchem.5b00802 PubMed DOI
Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, Arra C, Cicala C, Pinto A, Morello S. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol 2012; 189:2226-33; PMID:22826317; http://dx.doi.org/10.4049/jimmunol.1200744 PubMed DOI PMC
Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ, Darcy PK. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 2013; 110:14711-6; PMID:23964122; http://dx.doi.org/10.1073/pnas.1308209110 PubMed DOI PMC
Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, Shin T, Curiel TJ, Zhang B. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 2010; 70:2245-55; PMID:20179192; http://dx.doi.org/10.1158/0008-5472.CAN-09-3109 PubMed DOI PMC
Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, Smyth MJ. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 2011; 71:2892-900; PMID:21292811; http://dx.doi.org/10.1158/0008-5472.CAN-10-4246 PubMed DOI
Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemela J, Laurila JP, Elima K, Jalkanen S, Salmi M. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 2011; 41:1231-41; PMID:21469131; http://dx.doi.org/10.1002/eji.201041292 PubMed DOI
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G et al.. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:22174255; http://dx.doi.org/10.1126/science.1208347 PubMed DOI
Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, Zhang B. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 2011; 121:2371-82; PMID:21537079; http://dx.doi.org/10.1172/JCI45559 PubMed DOI PMC
Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, Kalyanaraman B, Dwinell MB, Auchampach JA, Williams CL. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 2013; 6:ra39; PMID:23716716; http://dx.doi.org/10.1126/scisignal.2003374. PubMed DOI PMC
Zhou X, Zhi X, Zhou P, Chen S, Zhao F, Shao Z, Ou Z, Yin L. Effects of ecto-5′-nucleotidase on human breast cancer cell growth in vitro and in vivo. Oncol Rep 2007; 17:1341-6; PMID:17487388; http://dx.doi.org/10.3892/or.17.6.1341 PubMed DOI
Bastid J, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P et al.. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 2015; 3:254-65; PMID:25403716; http://dx.doi.org/10.1158/2326-6066.CIR-14-0018 PubMed DOI
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 2011; 187:676-83; PMID:21677139; http://dx.doi.org/10.4049/jimmunol.1003884 PubMed DOI
Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 2014; 4:172-81; PMID:24660106 PubMed PMC
Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh TK et al.. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non-small cell lung cancer. Clin Cancer Res 2003; 9:3303-11; PMID:12960116 PubMed
Villalona-Calero MA, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T, Young D, Murgo AJ, Jensen R, Yeh TK, Wei Y et al.. Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small-cell lung cancer: a phase II study. Ann Oncol 2008; 19:1903-9; PMID:18632723; http://dx.doi.org/10.1093/annonc/mdn412 PubMed DOI PMC
George S, Dreicer R, Au JJ, Shen T, Rini BI, Roman S, Cooney MM, Mekhail T, Elson P, Wientjes GM et al.. Phase I/II trial of 5-fluorouracil and a noncytotoxic dose level of suramin in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 2008; 6:79-85; PMID:18824429; http://dx.doi.org/10.3816/CGC.2008.n.012 PubMed DOI PMC
Lam ET, Au JL, Otterson GA, Guillaume Wientjes M, Chen L, Shen T, Wei Y, Li X, Bekaii-Saab T, Murgo AJ et al.. Phase I trial of non-cytotoxic suramin as a modulator of docetaxel and gemcitabine therapy in previously treated patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2010; 66:1019-29; PMID:20107799; http://dx.doi.org/10.1007/s00280-010-1252-x PubMed DOI PMC
Lustberg MB, Pant S, Ruppert AS, Shen T, Wei Y, Chen L, Brenner L, Shiels D, Jensen RR, Berger M et al.. Phase I/II trial of non-cytotoxic suramin in combination with weekly paclitaxel in metastatic breast cancer treated with prior taxanes. Cancer Chemother Pharmacol 2012; 70:49-56; PMID:22729159; http://dx.doi.org/10.1007/s00280-012-1887-x PubMed DOI PMC
Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R et al.. NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-car bonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J Pharmacol Exp Ther 2010; 332:238-47; PMID:19815812; http://dx.doi.org/10.1124/jpet.109.157750 PubMed DOI
Mittal D, Young A, Stannard K, Yong M, Teng MW, Allard B, Stagg J, Smyth MJ. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res 2014; 74:3652-8; PMID:24986517; http://dx.doi.org/10.1158/0008-5472.CAN-14-0957 PubMed DOI
Young A, Mittal D, Stannard K, Yong M, Teng MW, Allard B, Stagg J, Smyth MJ. Co-blockade of immune checkpoints and adenosine A receptor suppresses metastasis. Oncoimmunology 2014; 3:e958952; PMID:25941583; http://dx.doi.org/10.4161/21624011.2014.958952 PubMed DOI PMC
Vorovenci RJ, Antonini A. The efficacy of oral adenosine A2A antagonist istradefylline for the treatment of moderate to severe Parkinson's disease. Expert Rev Neurother 2015; 15:1383-90; PMID:26630457; http://dx.doi.org/10.1586/14737175.2015.1113131 PubMed DOI
Jenner P. An overview of adenosine A2A receptor antagonists in Parkinson's disease. Int Rev Neurobiol 2014; 119:71-86; PMID:25175961; http://dx.doi.org/10.1016/B978-0-12-801022-8.00003-9 PubMed DOI
Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt D. Preladenant as an Adjunctive Therapy With Levodopa in Parkinson Disease: Two Randomized Clinical Trials and Lessons Learned. JAMA Neurol 2015; 72:1491-500; PMID:26523919; http://dx.doi.org/10.1001/jamaneurol.2015.2268 PubMed DOI
Factor SA, Wolski K, Togasaki DM, Huyck S, Cantillon M, Ho TW, Hauser RA, Pourcher E. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson's disease. Mov Disord 2013; 28:817-20; PMID:23589371; http://dx.doi.org/10.1002/mds.25395 PubMed DOI
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 2013; 12:265-86; PMID:23535933; http://dx.doi.org/10.1038/nrd3955 PubMed DOI PMC
Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 2013; 15:1400-9; PMID:24403862; http://dx.doi.org/10.1593/neo.131748 PubMed DOI PMC
Kaji W, Tanaka S, Tsukimoto M, Kojima S. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells. J Toxicol Sci 2014; 39:191-8; PMID:24646699; http://dx.doi.org/10.2131/jts.39.191 PubMed DOI
Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015; 6:27478-89; PMID:26317647; http://dx.doi.org/10.18632/oncotarget.4393 PubMed DOI PMC
Ochoa-Cortes F, Linan-Rico A, Jacobson KA, Christofi FL. Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 2014; 20:1259-87; PMID:24859298; http://dx.doi.org/10.1097/MIB.0000000000000047 PubMed DOI PMC
Polosa R, Blackburn MR. Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol Sci 2009; 30:528-35; PMID:19762093; http://dx.doi.org/10.1016/j.tips.2009.07.005 PubMed DOI PMC
Kalla RV, Zablocki J. Progress in the discovery of selective, high affinity A(2B) adenosine receptor antagonists as clinical candidates. Purinergic Signal 2009; 5:21-9; PMID:18568423; http://dx.doi.org/10.1007/s11302-008-9119-x PubMed DOI PMC
Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 2006; 66:6683-91; PMID:16818642; http://dx.doi.org/10.1158/0008-5472.CAN-06-0425 PubMed DOI
Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol 2015; 15:511-23; PMID:26139350; http://dx.doi.org/10.1038/nri3859 PubMed DOI PMC
Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O'Sullivan B, He Z, Peng Y, Tan AC et al.. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 2011; 17:860-6; PMID:21725296; http://dx.doi.org/10.1038/nm.2385 PubMed DOI PMC
Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 2010; 3:ra13; PMID:20179271; http://dx.doi.org/10.1126/scisignal.2000634. PubMed DOI PMC
Li ZL, Ye SB, OuYang LY, Zhang H, Chen YS, He J, Chen QY, Qian CN, Zhang XS, Cui J et al.. COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncoimmunology 2015; 4:e1044712; PMID:26451317; http://dx.doi.org/10.1080/2162402X.2015.1044712 PubMed DOI PMC
Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20:607-15; PMID:24793239; http://dx.doi.org/10.1038/nm.3541 PubMed DOI PMC
Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA et al.. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 2015; 162:1257-70; PMID:26343581; http://dx.doi.org/10.1016/j.cell.2015.08.015 PubMed DOI PMC
O'Brien AJ, Fullerton JN, Massey KA, Auld G, Sewell G, James S, Newson J, Karra E, Winstanley A, Alazawi W et al.. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med 2014; 20:518-23; PMID:24728410; http://dx.doi.org/10.1038/nm.3516 PubMed DOI PMC
Gonnermann D, Oberg HH, Kellner C, Peipp M, Sebens S, Kabelitz D, Wesch D. Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against gammadelta T cell cytotoxicity. Oncoimmunology 2015; 4:e988460; PMID:25949900; http://dx.doi.org/10.4161/2162402X.2014.988460 PubMed DOI PMC
Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol 2010; 80:838-45; PMID:20470757; http://dx.doi.org/10.1016/j.bcp.2010.05.002 PubMed DOI
Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother 2011; 60:1577-86; PMID:21681369; http://dx.doi.org/10.1007/s00262-011-1064-9 PubMed DOI PMC
Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 2014; 20:4096-106; PMID:24907113; http://dx.doi.org/10.1158/1078-0432.CCR-14-0635 PubMed DOI
Holt DM, Ma X, Kundu N, Collin PD, Fulton AM. Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. J Immunother 2012; 35:179-88; PMID:22306906; http://dx.doi.org/10.1097/CJI.0b013e318247a5e9 PubMed DOI PMC
Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One 2012; 7:e46342; PMID:23029485; http://dx.doi.org/10.1371/journal.pone.0046342 PubMed DOI PMC
Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118:5498-505; PMID:21972293; http://dx.doi.org/10.1182/blood-2011-07-365825 PubMed DOI PMC
Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P. PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 2011; 71:7463-70; PMID:22025564; http://dx.doi.org/10.1158/0008-5472.CAN-11-2449 PubMed DOI PMC
Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 2007; 67:4507-13; PMID:17483367; http://dx.doi.org/10.1158/0008-5472.CAN-06-4174 PubMed DOI
Ma X, Holt D, Kundu N, Reader J, Goloubeva O, Take Y, Fulton AM. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology 2013; 2:e22647; PMID:23482441; http://dx.doi.org/10.4161/onci.22647 PubMed DOI PMC
Sokolowska M, Chen LY, Liu Y, Martinez-Anton A, Qi HY, Logun C, Alsaaty S, Park YH, Kastner DL, Chae JJ et al.. Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages. J Immunol 2015; 194:5472-87; PMID:25917098; http://dx.doi.org/10.4049/jimmunol.1401343 PubMed DOI PMC
Antonopoulos C, Dubyak GR. Chemotherapy engages multiple pathways leading to IL-1beta production by myeloid leukocytes. Oncoimmunology 2014; 3:e27499; PMID:24800164; http://dx.doi.org/10.4161/onci.27499 PubMed DOI PMC
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137 PubMed DOI PMC
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S et al.. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20; PMID:21760595; http://dx.doi.org/10.1038/cdd.2011.96 PubMed DOI PMC
Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol 2014; 16:728-36; PMID:25082195; http://dx.doi.org/10.1038/ncb3005 PubMed DOI
Franchi F, Angiolillo DJ. Novel antiplatelet agents in acute coronary syndrome. Nat Rev Cardiol 2015; 12:30-47; PMID:25286881; http://dx.doi.org/10.1038/nrcardio.2014.156 PubMed DOI
Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K et al.. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 2012; 367:1596-606; PMID:23094721; http://dx.doi.org/10.1056/NEJMoa1207756 PubMed DOI PMC
Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 2012; 13:518-27; PMID:22440112; http://dx.doi.org/10.1016/S1470-2045(12)70112-2 PubMed DOI
Walsh DA, McWilliams DF. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat Rev Rheumatol 2014; 10:581-92; PMID:24861185; http://dx.doi.org/10.1038/nrrheum.2014.64 PubMed DOI
Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR, Okada H. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 2011; 71:2664-74; PMID:21324923; http://dx.doi.org/10.1158/0008-5472.CAN-10-3055 PubMed DOI PMC
Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 2010; 10:464; PMID:20804550; http://dx.doi.org/10.1186/1471-2407-10-464 PubMed DOI PMC
Zeytin HE, Patel AC, Rogers CJ, Canter D, Hursting SD, Schlom J, Greiner JW. Combination of a poxvirus-based vaccine with a cyclooxygenase-2 inhibitor (celecoxib) elicits antitumor immunity and long-term survival in CEA.Tg/MIN mice. Cancer Res 2004; 64:3668-78; PMID:15150127; http://dx.doi.org/10.1158/0008-5472.CAN-03-3878 PubMed DOI
Kundu N, Walser TC, Ma X, Fulton AM. Cyclooxygenase inhibitors modulate NK activities that control metastatic disease. Cancer Immunol Immunother 2005; 54:981-7; PMID:15891886; http://dx.doi.org/10.1007/s00262-005-0669-2 PubMed DOI PMC
Kosaka A, Ohkuri T, Okada H. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells. Cancer Immunol Immunother 2014; 63:847-57; PMID:24878890; http://dx.doi.org/10.1007/s00262-014-1561-8 PubMed DOI PMC
Hahn T, Alvarez I, Kobie JJ, Ramanathapuram L, Dial S, Fulton A, Besselsen D, Walker E, Akporiaye ET. Short-term dietary administration of celecoxib enhances the efficacy of tumor lysate-pulsed dendritic cell vaccines in treating murine breast cancer. Int J Cancer 2006; 118:2220-31; PMID:16331615; http://dx.doi.org/10.1002/ijc.21616 PubMed DOI
Carlson LM, Rasmuson A, Idborg H, Segerstrom L, Jakobsson PJ, Sveinbjornsson B, Kogner P. Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis 2013; 34:1081-8; PMID:23349014; http://dx.doi.org/10.1093/carcin/bgt009 PubMed DOI
Majumder M, Xin X, Liu L, Girish GV, Lala PK. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci 2014; 105:1142-51; PMID:24981602; http://dx.doi.org/10.1111/cas.12475 PubMed DOI PMC
Ahn B, Kohanbash G, Ohkuri T, Kosaka A, Chen X, Ikeura M, Wang TC, Okada H. Histamine deficiency promotes accumulation of immunosuppressive immature myeloid cells and growth of murine gliomas. Oncoimmunology 2015; 4:e1047581; PMID:26451324; http://dx.doi.org/10.1080/2162402X.2015.1047581 PubMed DOI PMC
Burdette-Radoux S, Holmes CE, Khan FB, Dittus K, Wilson KM, Wood M. Low-dose metronomic cyclophosphamide/methotrexate (LDCM) and aspirin for patients without pathologic complete response (pCR) after neoadjuvant treatment for stage II-III breast cancer. ASCO Meeting Abstracts 2013; 31:163
Burdette-Radoux S, Holmes CE, Khan FB, Dittus K, Wilson KM, Wood ME. Low-dose metronomic cyclophosphamide/methotrexate (LDCM) and aspirin for patients who fail to achieve pathologic complete response (pCR) after neoadjuvant treatment for stage II-III breast cancer. ASCO Meeting Abstracts 2013; 31:e12000
Kim JW, Marte JL, Bilusic M, Singh NK, Heery CR, Madan RA et al.. Safety profile of poxviral vaccines: NCI experience. ASCO Meeting Abstracts 2013; 31:85
Kim JW, Marte JL, Singh NK, Heery CR, Madan RA, Pazdur M et al.. Safety profile of recombinant poxviral TRICOM vaccines. ASCO Meeting Abstracts 2013; 31:e16036
Ellebaek E, Engell-Noerregaard L, Iversen TZ, Froesig TM, Munir S, Hadrup SR et al.. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol Immunother 2012; 61:1791-804; PMID:22426890; http://dx.doi.org/10.1007/s00262-012-1242-4 PubMed DOI PMC
af Forselles KJ, Root J, Clarke T, Davey D, Aughton K, Dack K, Pullen N.. In vitro and in vivo characterization of PF-04418948, a novel, potent and selective prostaglandin EP(2) receptor antagonist. Br J Pharmacol 2011; 164:1847-56; PMID:21595651; http://dx.doi.org/10.1111/j.1476-5381.2011.01495.x PubMed DOI PMC
Birrell MA, Maher SA, Buckley J, Dale N, Bonvini S, Raemdonck K, Pullen N, Giembycz MA, Belvisi MG. Selectivity profiling of the novel EP2 receptor antagonist, PF-04418948, in functional bioassay systems: atypical affinity at the guinea pig EP2 receptor. Br J Pharmacol 2013; 168:129-38; PMID:22747912; http://dx.doi.org/10.1111/j.1476-5381.2012.02088.x PubMed DOI PMC
Kundu N, Ma X, Holt D, Goloubeva O, Ostrand-Rosenberg S, Fulton AM. Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Res Treat 2009; 117:235-42; PMID:18792778; http://dx.doi.org/10.1007/s10549-008-0180-5 PubMed DOI PMC
Antonova M, Wienecke T, Maubach K, Thomas E, Olesen J, Ashina M. The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the prostaglandin E2 human model of headache. J Headache Pain 2011; 12:551-9; PMID:21681585; http://dx.doi.org/10.1007/s10194-011-0358-9 PubMed DOI PMC
West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15:615-29; PMID:26358393; http://dx.doi.org/10.1038/nri3896 PubMed DOI
Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 2015; 15:409-25; PMID:26105538; http://dx.doi.org/10.1038/nrc3958 PubMed DOI PMC
Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol 2015; 15:405-14; PMID:26027717; http://dx.doi.org/10.1038/nri3845 PubMed DOI
Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 2013; 13:788-99; PMID:24132110; http://dx.doi.org/10.1038/nrc3603 PubMed DOI PMC
Chen X, Wakefield LM, Oppenheim JJ. Synergistic antitumor effects of a TGFbeta inhibitor and cyclophosphamide. Oncoimmunology 2014; 3:e28247; PMID:25050195; http://dx.doi.org/10.4161/onci.28247 PubMed DOI PMC
Lonning S, Mannick J, McPherson JM. Antibody targeting of TGF-beta in cancer patients. Curr Pharm Biotechnol 2011; 12:2176-89; PMID:21619535; http://dx.doi.org/10.2174/138920111798808392 PubMed DOI
Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA, Lawrence DP. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 2014; 9:e90353; PMID:24618589; http://dx.doi.org/10.1371/journal.pone.0090353 PubMed DOI PMC
Kashyap MK, Kumar D, Jones H, Amaya-Chanaga CI, Choi MY, Melo-Cardenas J, Ale-Ali A, Kuhne MR, Sabbatini P, Cohen LJ et al.. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 2015; 7:2809-22; PMID:26646452; http://dx.doi.org/2364021010.18632/oncotarget.6465. PubMed DOI PMC
O'Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13:412-24; PMID:23640210; http://dx.doi.org/10.1038/nrc3521 PubMed DOI PMC
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13:227-42; PMID:23470321; http://dx.doi.org/10.1038/nri3405 PubMed DOI PMC
Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL et al.. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013; 110:20212-7; PMID:24277834; http://dx.doi.org/10.1073/pnas.1320318110 PubMed DOI PMC
Yan M, Jene N, Byrne D, Millar EK, O'Toole SA, McNeil CM, Bates GJ, Harris AL, Banham AH, Sutherland RL et al.. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res 2011; 13:R47; PMID:21521526; http://dx.doi.org/2338278610.1186/bcr2869. PubMed DOI PMC
Debnath B, Xu S, Grande F, Garofalo A, Neamati N. Small molecule inhibitors of CXCR4. Theranostics 2013; 3:47-75; PMID:23382786; http://dx.doi.org/10.7150/thno.5376 PubMed DOI PMC
de Nigris F, Schiano C, Infante T, Napoli C. CXCR4 inhibitors: tumor vasculature and therapeutic challenges. Recent Pat Anticancer Drug Discov 2012; 7:251-64; PMID:22376154; http://dx.doi.org/10.2174/157489212801820039 PubMed DOI
Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM et al.. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381:661-6; PMID:8649511; http://dx.doi.org/10.1038/381661a0 PubMed DOI
Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272:872-7; PMID:8629022; http://dx.doi.org/10.1126/science.272.5263.872 PubMed DOI
Zhang L, Huang Y, He T, Cao Y, Ho DD. HIV-1 subtype and second-receptor use. Nature 1996; 383:768; PMID:8892998; http://dx.doi.org/10.1038/383768a0 PubMed DOI
Peled A, Wald O, Burger J. Development of novel CXCR4-based therapeutics. Expert Opin Investig Drugs 2012; 21:341-53; PMID:22283809; http://dx.doi.org/10.1517/13543784.2012.656197 PubMed DOI
Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, Calandra G, DiPersio JF. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22:1095-102; PMID:15020611; http://dx.doi.org/10.1200/JCO.2004.07.131 PubMed DOI
Devine SM, Vij R, Rettig M, Todt L, McGlauchlen K, Fisher N, Devine H, Link DC, Calandra G, Bridger G et al.. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008; 112:990-8; PMID:18426988; http://dx.doi.org/10.1182/blood-2007-12-130179 PubMed DOI
Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL et al.. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113:4341-51; PMID:19139079; http://dx.doi.org/10.1182/blood-2008-10-186668 PubMed DOI PMC
Sison EA, Magoon D, Li L, Annesley CE, Rau RE, Small D, Brown P. Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget 2014; 5:8947-58; PMID:25333254; http://dx.doi.org/10.18632/oncotarget.2407 PubMed DOI PMC
Byrne SN, Sarchio SN. AMD3100 protects from UV-induced skin cancer. Oncoimmunology 2014; 3:e27562; PMID:24744978; http://dx.doi.org/10.4161/onci.27562 PubMed DOI PMC
Cho BS, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T, Protopopova M, Cortes J, Marszalek JR, Peng SB et al.. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 2015; 126:222-32; PMID:26031918; http://dx.doi.org/10.1182/blood-2015-02-628677 PubMed DOI PMC
Hainsworth JD, Mace JR, Reeves JA, Crane EJ, Hamid O, Stille JR et al.. Randomized phase II study of sunitinib + CXCR4 inhibitor LY2510924 versus sunitinib alone in first-line treatment of patients with metastatic renal cell carcinoma. ASCO Meeting Abstracts 2015; 33:4547
Salgia R, Weaver RW, McCleod M, Stille JR, Yan SB, Roberson S et al.. Evaluation of CXCR4 expression on tumor and circulating tumor cells (CTCs) as predictive response marker for CXCR4 antagonist LY2510924 in combination with carboplatin-etoposide in extensive-disease small cell lung cancer (ED-SCLC). ASCO Meeting Abstracts 2015; 33:7567
Stille JR, Flynt A, Peek VL, Gross S, Keij J, Connelly MC et al.. CXCR4 expression and circulating tumor cell (CTC) counts evaluated as prognostic markers in extensive disease small cell lung cancer (ED-SCLC) patients (pts). ASCO Meeting Abstracts 2015; 33:e18558
Ziarek JJ, Liu Y, Smith E, Zhang G, Peterson FC, Chen J, Yu Y, Chen Y, Volkman BF, Li R. Fragment-based optimization of small molecule CXCL12 inhibitors for antagonizing the CXCL12/CXCR4 interaction. Curr Top Med Chem 2012; 12:2727-40; PMID:23368099; http://dx.doi.org/10.2174/1568026611212240003 PubMed DOI PMC
Liang Z, Zhan W, Zhu A, Yoon Y, Lin S, Sasaki M, Klapproth JM, Yang H, Grossniklaus HE, Xu J et al.. Development of a unique small molecule modulator of CXCR4. PLoS One 2012; 7:e34038; PMID:22485156; http://dx.doi.org/10.1371/journal.pone.0034038 PubMed DOI PMC
Gravina GL, Mancini A, Muzi P, Ventura L, Biordi L, Ricevuto E, Pompili S, Mattei C, Di Cesare E, Jannini EA et al.. CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models. Prostate 2015; 75:1227-46; PMID:26073897; http://dx.doi.org/10.1002/pros.23007 PubMed DOI
Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci U S A 2013; 110:E1291-300; PMID:23509246; http://dx.doi.org/10.1073/pnas.1220580110 PubMed DOI PMC
Drenckhan A, Kurschat N, Dohrmann T, Raabe N, Koenig AM, Reichelt U, Kaifi JT, Izbicki JR, Gros SJ. Effective inhibition of metastases and primary tumor growth with CTCE-9908 in esophageal cancer. J Surg Res 2013; 182:250-6; PMID:23117118; http://dx.doi.org/10.1016/j.jss.2012.09.035 PubMed DOI
Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ, Alsawafi Y, Mourskaia AA, Siegel PM, Salvucci O et al.. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 2011; 129:225-32; PMID:20830712; http://dx.doi.org/10.1002/ijc.25665 PubMed DOI
Porvasnik S, Sakamoto N, Kusmartsev S, Eruslanov E, Kim WJ, Cao W, Urbanek C, Wong D, Goodison S, Rosser CJ. Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 2009; 69:1460-9; PMID:19588526; http://dx.doi.org/10.1002/pros.21008 PubMed DOI
Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, Cook KR, Lucci A. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 2009; 155:231-6; PMID:19482312; http://dx.doi.org/10.1016/j.jss.2008.06.044 PubMed DOI
Sison EA, Magoon D, Li L, Annesley CE, Romagnoli B, Douglas GJ, Tuffin G, Zimmermann J, Brown P. POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL. Oncotarget 2015; 6:30902-18; PMID:26360610; http://dx.doi.org/10.18632/oncotarget.5094 PubMed DOI PMC
Xie J. The hedgehog's trick for escaping immunosurveillance: The molecular mechanisms driving myeloid-derived suppressor cell recruitment in hedgehog signaling-dependent tumors. Oncoimmunology 2014; 3:e29180; PMID:25054089; http://dx.doi.org/10.4161/onci.29180 PubMed DOI PMC
Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, Mitchem JB, Plambeck-Suess SM, Worley LA, Goetz BD et al.. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013; 19:3404-15; PMID:23653148; http://dx.doi.org/10.1158/1078-0432.CCR-13-0525 PubMed DOI PMC
Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN et al.. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 2012; 72:876-86; PMID:22174368; http://dx.doi.org/10.1158/0008-5472.CAN-11-1792 PubMed DOI PMC
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475:222-5; PMID:21654748; http://dx.doi.org/10.1038/nature10138 PubMed DOI PMC
Sato Y, Shimizu K, Shinga J, Hidaka M, Kawano F, Kakimi K, Yamasaki S, Asakura M, Fujii SI. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology 2015; 4:e995541; PMID:25949922; http://dx.doi.org/10.1080/2162402X.2014.995541 PubMed DOI PMC
Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14 PD-L1 phenotype in prostate cancer. Oncoimmunology 2014; 3:e955331; PMID:25941611; http://dx.doi.org/10.4161/21624011.2014.955331 PubMed DOI PMC
Lanca T, Costa MF, Goncalves-Sousa N, Rei M, Grosso AR, Penido C, Silva-Santos B. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic gammadelta T lymphocytes to tumor beds. J Immunol 2013; 190:6673-80; PMID:23686489; http://dx.doi.org/10.4049/jimmunol.1300434 PubMed DOI
Ma Y, Mattarollo SR, Adjemian S, Yang H, Aymeric L, Hannani D, Portela Catani JP, Duret H, Teng MW, Kepp O et al.. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2014; 74:436-45; PMID:24302580; http://dx.doi.org/10.1158/0008-5472.CAN-13-1265 PubMed DOI
Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology 2014; 3:e27663; PMID:24800170; http://dx.doi.org/10.4161/onci.27663 PubMed DOI PMC
Iannello A, Raulet DH. Immunosurveillance of senescent cancer cells by natural killer cells. Oncoimmunology 2014; 3:e27616; PMID:24800169; http://dx.doi.org/10.4161/onci.27616 PubMed DOI PMC
Schwarz MK, Wells TN. New therapeutics that modulate chemokine networks. Nat Rev Drug Discov 2002; 1:347-58; PMID:12120410; http://dx.doi.org/10.1038/nrd795 PubMed DOI
Kalliomaki J, Attal N, Jonzon B, Bach FW, Huizar K, Ratcliffe S, Eriksson B, Janecki M, Danilov A, Bouhassira D et al.. A randomized, double-blind, placebo-controlled trial of a chemokine receptor 2 (CCR2) antagonist in posttraumatic neuralgia. Pain 2013; 154:761-7; PMID:23523116; http://dx.doi.org/10.1016/j.pain.2013.02.003 PubMed DOI
de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, Potarca A, Tesar V, Heerspink HJ, Schall TJ. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol 2015; 3:687-96; PMID:26268910; http://dx.doi.org/10.1016/S2213-8587(15)00261-2 PubMed DOI
Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, Baumgart T, Ertl LS, Pennell A, Seitz L et al.. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol 2013; 305:F1288-97; PMID:23986513; http://dx.doi.org/10.1152/ajprenal.00316.2013 PubMed DOI PMC
Sullivan TJ, Miao Z, Zhao BN, Ertl LS, Wang Y, Krasinski A, Walters MJ, Powers JP, Dairaghi DJ, Baumgart T et al.. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism 2013; 62:1623-32; PMID:23953944; http://dx.doi.org/10.1016/j.metabol.2013.06.008 PubMed DOI
Min SH, Wang Y, Gonsiorek W, Anilkumar G, Kozlowski J, Lundell D, Fine JS, Grant EP. Pharmacological targeting reveals distinct roles for CXCR2/CXCR1 and CCR2 in a mouse model of arthritis. Biochem Biophys Res Commun 2010; 391:1080-6; PMID:20004647; http://dx.doi.org/10.1016/j.bbrc.2009.12.025 PubMed DOI
Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP et al.. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381:667-73; PMID:8649512; http://dx.doi.org/10.1038/381667a0 PubMed DOI
Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272:1955-8; PMID:8658171; http://dx.doi.org/10.1126/science.272.5270.1955 PubMed DOI
Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, Cerwenka A.. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 2012; 189:5602-11; PMID:23152559; http://dx.doi.org/10.4049/jimmunol.1201018 PubMed DOI
Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS, Linehan DC. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009; 182:1746-55; PMID:19155524; http://dx.doi.org/10.4049/jimmunol.182.3.1746 PubMed DOI PMC
Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2014; 352:36-53; PMID:24141062; http://dx.doi.org/10.1016/j.canlet.2013.10.006 PubMed DOI
Ochoa-Callejero L, Perez-Martinez L, Rubio-Mediavilla S, Oteo JA, Martinez A, Blanco JR. Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model. PLoS One 2013; 8:e53992; PMID:23326556; http://dx.doi.org/10.1371/journal.pone.0053992 PubMed DOI PMC
Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, Pestell RG. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 2012; 72:3839-50; PMID:22637726; http://dx.doi.org/10.1158/0008-5472.CAN-11-3917 PubMed DOI
Frankenberger C, Rabe D, Bainer R, Sankarasharma D, Chada K, Krausz T, Gilad Y, Becker L, Rosner MR. Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages. Cancer Res 2015; 75:4063-73; PMID:26238785; http://dx.doi.org/10.1158/0008-5472.CAN-14-3394 PubMed DOI PMC
Chawla A, Philips AV, Alatrash G, Mittendorf E. Immune checkpoints: A therapeutic target in triple negative breast cancer. Oncoimmunology 2014; 3:e28325; PMID:24843833; http://dx.doi.org/10.4161/onci.28325 PubMed DOI PMC
Opar A. New HIV drug classes on the horizon. Nat Rev Drug Discov 2007; 6:258-9; PMID:17457997; http://dx.doi.org/10.1038/nrd2294 PubMed DOI
Fatkenheuer G, Nelson M, Lazzarin A, Konourina I, Hoepelman AI, Lampiris H, Hirschel B, Tebas P, Raffi F, Trottier B et al.. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med 2008; 359:1442-55; PMID:18832245; http://dx.doi.org/10.1056/NEJMoa0803154 PubMed DOI
Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol 2014; 11:536-47; PMID:24958183; http://dx.doi.org/10.1038/nrclinonc.2014.102 PubMed DOI PMC
Reshef R, Luger SM, Hexner EO, Loren AW, Frey NV, Nasta SD, Goldstein SC, Stadtmauer EA, Smith J, Bailey S et al.. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med 2012; 367:135-45; PMID:22784116; http://dx.doi.org/10.1056/NEJMoa1201248 PubMed DOI PMC
Stellbrink HJ. Novel compounds for the treatment of HIV type-1 infection. Antivir Chem Chemother 2009; 19:189-200; PMID:19483267; http://dx.doi.org/10.1177/095632020901900502 PubMed DOI
Rotstein DM, Gabriel SD, Manser N, Filonova L, Padilla F, Sankuratri S, Ji C, deRosier A, Dioszegi M, Heilek G et al.. Synthesis, SAR and evaluation of [1,4′]-bipiperidinyl-4-yl-imidazolidin-2-one derivatives as novel CCR5 antagonists. Bioorg Med Chem Lett 2010; 20:3219-22; PMID:20457517; http://dx.doi.org/10.1016/j.bmcl.2010.04.077 PubMed DOI
Rotstein DM, Gabriel SD, Makra F, Filonova L, Gleason S, Brotherton-Pleiss C, Setti LQ, Trejo-Martin A, Lee EK, Sankuratri S et al.. Spiropiperidine CCR5 antagonists. Bioorg Med Chem Lett 2009; 19:5401-6; PMID:19674898; http://dx.doi.org/10.1016/j.bmcl.2009.07.122 PubMed DOI
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V et al.. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19:1264-72; PMID:24056773; http://dx.doi.org/10.1038/nm.3337 PubMed DOI PMC
Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015; 27:462-72; PMID:25858805; http://dx.doi.org/10.1016/j.ccell.2015.02.015 PubMed DOI PMC
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA et al.. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011; 1:54-67; PMID:22039576; http://dx.doi.org/10.1158/2159-8274.CD-10-0028 PubMed DOI PMC
Cavnar MJ, DeMatteo RP. Sarcoma response to targeted therapy dynamically polarizes tumor-associated macrophages. Oncoimmunology 2014; 3:e28463; PMID:25050212; http://dx.doi.org/10.4161/onci.28463 PubMed DOI PMC
Mok S, Tsoi J, Koya RC, Hu-Lieskovan S, West BL, Bollag G, Graeber TG, Ribas A. Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer 2015; 15:356; PMID:25939769; http://dx.doi.org/10.1186/s12885-015-1377-8 PubMed DOI PMC
Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC, Coussens LM. TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunol Res 2015; 3:518-25; PMID:25716473; http://dx.doi.org/10.1158/2326-6066.CIR-14-0232 PubMed DOI PMC
Patwardhan PP, Surriga O, Beckman MJ, de Stanchina E, Dematteo RP, Tap WD, Schwartz GK. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res 2014; 20:3146-58; PMID:24718867; http://dx.doi.org/10.1158/1078-0432.CCR-13-2576 PubMed DOI PMC
Sluijter M, van der Sluis TC, van der Velden PA, Versluis M, West BL, van der Burg SH, van Hall T. Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One 2014; 9:e104230; PMID:25110953; http://dx.doi.org/10.1371/journal.pone.0104230 PubMed DOI PMC
Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, Graeber TG, West BL, Bollag G, Ribas A. Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of Adoptive Cell Transfer Immunotherapy. Cancer Res 2014; 74:153-61; PMID:24247719; http://dx.doi.org/10.1158/0008-5472.CAN-13-1816 PubMed DOI PMC
Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, Chmielowski B, Staddon AP, Cohn AL, Shapiro GI et al.. Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. N Engl J Med 2015; 373:428-37; PMID:26222558; http://dx.doi.org/10.1056/NEJMoa1411366 PubMed DOI
Butowski NA, Colman H, De Groot JF, Omuro AMP, Nayak L, Cloughesy TF, Marimuthu A, Perry A, Phillips JJ, West B. A phase 2 study of orally administered PLX3397 in patients with recurrent glioblastoma. ASCO Meeting Abstracts 2014; 32:2023
Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, Cloughesy TF, Marimuthu A, Haidar S, Perry A et al.. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 2015; PMID:26449250; http://dx.doi.org/2449856210.1093/neuonc/nov245 PubMed DOI PMC
Sharma N, Wesolowski R, Reebel L, Rodal MB, Peck A, West B, Karlin DA, Dowlati A, Le MH, Coussens LM et al.. A phase 1b study to assess the safety of PLX3397, a CSF-1 receptor inhibitor, and paclitaxel in patients with advanced solid tumors. ASCO Meeting Abstracts 2014; 32:TPS3127
Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology 2013; 2:e26968; PMID:24498562; http://dx.doi.org/10.4161/onci.26968 PubMed DOI PMC
Moughon DL, He H, Schokrpur S, Jiang ZK, Yaqoob M, David J, Lin C, Iruela-Arispe ML, Dorigo O, Wu L. Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer. Cancer Res 2015; 75:4742-52; PMID:26471360; http://dx.doi.org/10.1158/0008-5472.CAN-14-3373 PubMed DOI PMC
Achyut BR, Shankar A, Iskander AS, Ara R, Angara K, Zeng P, Knight RA, Scicli AG, Arbab AS. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett 2015; 369:416-26; PMID:26404753; http://dx.doi.org/10.1016/j.canlet.2015.09.004 PubMed DOI PMC
Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST et al.. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest 2015; 125:1269-85; PMID:25689248; http://dx.doi.org/10.1172/JCI76452 PubMed DOI PMC
Garcia AJ, Ruscetti M, Arenzana TL, Tran LM, Bianci-Frias D, Sybert E, Priceman SJ, Wu L, Nelson PS, Smale ST et al.. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol Cell Biol 2014; 34:2017-28; PMID:24662052; http://dx.doi.org/10.1128/MCB.00090-14 PubMed DOI PMC
Ryder M, Gild M, Hohl TM, Pamer E, Knauf J, Ghossein R, Joyce JA, Fagin JA. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS One 2013; 8:e54302; PMID:23372702; http://dx.doi.org/10.1371/journal.pone.0054302 PubMed DOI PMC
Komohara Y, Horlad H, Ohnishi K, Fujiwara Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J, Takeya M. Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci 2012; 103:2165-72; PMID:22957741; http://dx.doi.org/10.1111/cas.12015 PubMed DOI PMC
Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 2013; 73:2782-94; PMID:23418320; http://dx.doi.org/10.1158/0008-5472.CAN-12-3981 PubMed DOI PMC
Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, Gil Z. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 2014; 33:3812-9; PMID:23995783; http://dx.doi.org/10.1038/onc.2013.357 PubMed DOI
Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML et al.. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 2010; 115:1461-71; PMID:20008303; http://dx.doi.org/10.1182/blood-2009-08-237412 PubMed DOI PMC
Ohnuki H, Tosato G. Notch and TGFbeta: Functional partners facilitating tumor progression. Oncoimmunology 2014; 3:e29029; PMID:25114830; http://dx.doi.org/10.4161/onci.29029 PubMed DOI PMC
Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH. Autophagy is involved in TGF-beta1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 2015; PMID:26716641; http://dx.doi.org/10.18632/oncotarget.6702 PubMed DOI PMC
Kloss S, Chambron N, Gardlowski T, Arseniev L, Koch J, Esser R, Glienke W, Seitz O, Köhl U. Increased sMICA and TGFbeta levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells. Oncoimmunology 2015; 4:e1055993; PMID:26451327; http://dx.doi.org/10.1080/2162402X.2015.1055993 PubMed DOI PMC
Anderton MJ, Mellor HR, Bell A, Sadler C, Pass M, Powell S, Steele SJ, Roberts RR, Heier A. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol Pathol 2011; 39:916-24; PMID:21859884; http://dx.doi.org/10.1177/0192623311416259 PubMed DOI
Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, Trocóniz IF. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer 2008; 44:142-50; PMID:18039567; http://dx.doi.org/10.1016/j.ejca.2007.10.008 PubMed DOI
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 2013; 123:1348-58; PMID:23391723; http://dx.doi.org/10.1172/JCI65416 PubMed DOI PMC
Yoon JH, Jung SM, Park SH, Kato M, Yamashita T, Lee IK, Sudo K, Nakae S, Han JS, Kim OH et al.. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes. EMBO Mol Med 2013; 5:1720-39; PMID:24127404; http://dx.doi.org/10.1002/emmm.201302524 PubMed DOI PMC
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA et al.. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther 2015; 9:4479-99; PMID:26309397; http://dx.doi.org/10.2147/DDDT.S86621 PubMed DOI PMC
Fujiwara Y, Nokihara H, Yamada Y, Yamamoto N, Sunami K, Utsumi H, Asou H, TakahashI O, Ogasawara K, Gueorguieva I et al.. Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 76:1143-52; PMID:26526984; http://dx.doi.org/10.1007/s00280-015-2895-4 PubMed DOI
Rodon J, Carducci MA, Sepulveda JM, Azaro A, Calvo E, Seoane J, Brana I, Sicart E, Gueorguieva I, Cleverly A et al.. Integrated data review of the first-in-human dose (FHD) study evaluating safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral transforming growth factor-beta (TGF-ss) receptor I kinase inhibitor, LY2157299 monohydrate (LY). ASCO Meeting Abstracts 2013; 31:2016
Rodon J, Carducci M, Sepulveda-Sanchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A et al.. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-beta receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs 2015; 33:357-70; PMID:25529192; http://dx.doi.org/10.1007/s10637-014-0192-4 PubMed DOI PMC
Rodon J, Carducci MA, Sepulveda-Sanchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly AL et al.. First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 2015; 21:553-60; PMID:25424852; http://dx.doi.org/10.1158/1078-0432.CCR-14-1380 PubMed DOI PMC
Kovacs RJ, Maldonado G, Azaro A, Fernandez MS, Romero FL, Sepulveda-Sanchez JM, Corretti M, Carducci M, Dolan M, Gueorguieva I et al.. Cardiac Safety of TGF-beta Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study. Cardiovasc Toxicol 2015; 15:309-23; PMID:25488804; http://dx.doi.org/10.1007/s12012-014-9297-4 PubMed DOI PMC
Suarez C, Rodon J, Desjardins A, Forsyth PAJ, Gueorguieva I, Cleverly A et al.. Phase Ib study evaluating safety and pharmacokinetics (PK) of the oral transforming growth factor-beta (TGF-ss) receptor I kinase inhibitor LY2157299 monohydrate (LY) when combined with chemoradiotherapy in newly diagnosed malignant gliomas. ASCO Meeting Abstracts 2013; 31:2039
Kozloff M, Carbonero R, Nadal T, Gueorguieva I, Cleverly A, Desaiah D et al.. Phase Ib study evaluating safety and pharmacokinetics (PK) of the oral transforming growth factor-beta (TGF-ss) receptor I kinase inhibitor LY2157299 monohydrate (LY) when combined with gemcitabine in patients with advanced cancer. ASCO Meeting Abstracts 2013; 31:2563
Brandes AA, Carpentier AF, Kesari S, Sepulveda J, Wheeler H, Chinot OL et al.. A phase II study of galunisertib monotherapy or galunisertib plus lomustine compared to lomustine monotherapy in recurrent glioblastoma. ASCO Meeting Abstracts 2015; 33:2014 PubMed PMC
Carpentier AF, Brandes AA, Kesari S, Sepulveda JM, Wheeler H, Chinot OL et al.. Safety interim data from a three-arm phase II study evaluating safety and pharmacokinetics of the oral transforming growth factor-beta (TGF-ss) receptor I kinase inhibitor LY2157299 monohydrate in patients with glioblastoma at first progression. ASCO Meeting Abstracts 2013; 31:2061
Faivre SJ, Santoro A, Kelley RK, Merle P, Gane E, Douillard J-Y et al.. Randomized dose comparison phase II study of the oral transforming growth factor-beta (TGF-ss) receptor I kinase inhibitor LY2157299 monohydrate (LY) in patients with advanced hepatocellular carcinoma (HCC). ASCO Meeting Abstracts 2013; 31:4118
Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM Jr, Hankey PA. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol 2011; 187:2181-92; PMID:21810604; http://dx.doi.org/10.4049/jimmunol.1003460 PubMed DOI PMC
Chaudhuri A. Regulation of Macrophage Polarization by RON Receptor Tyrosine Kinase Signaling. Front Immunol 2014; 5:546; PMID:25400637; http://dx.doi.org/10.3389/fimmu.2014.00546 PubMed DOI PMC
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24; PMID:25533673; http://dx.doi.org/10.1038/nrc3860 PubMed DOI PMC
Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13:140-56; PMID:24481312; http://dx.doi.org/10.1038/nrd4204 PubMed DOI PMC
Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10:143-53; PMID:23400000; http://dx.doi.org/10.1038/nrclinonc.2013.10 PubMed DOI
Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn IW, Flowers CR, Martin P, Viardot A, Flinn IW, Flowers CR, Martin P, Viardot A et al.. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370:1008-18; PMID:24450858; http://dx.doi.org/10.1056/NEJMoa1314583 PubMed DOI PMC
Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I et al.. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370:997-1007; PMID:24450857; http://dx.doi.org/10.1056/NEJMoa1315226 PubMed DOI PMC
Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, Bouabe H, Scudamore CL, Hancox T, Maecker H et al.. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014; 510:407-11; PMID:24919154; http://dx.doi.org/10.1038/nature13444 PubMed DOI PMC
Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, Infante E, Ridley AJ, Cooper D, Perretti M et al.. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun 2014; 5:3436; PMID:24625653; http://dx.doi.org/10.1038/ncomms4436 PubMed DOI PMC
Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W et al.. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011; 19:715-27; PMID:21665146; http://dx.doi.org/10.1016/j.ccr.2011.04.016 PubMed DOI PMC
Shah A, Mangaonkar A. Idelalisib: A Novel PI3Kdelta Inhibitor for Chronic Lymphocytic Leukemia. Ann Pharmacother 2015; 49:1162-70; PMID:26185276; http://dx.doi.org/10.1177/1060028015594813 PubMed DOI
Cheah CY, Nastoupil LJ, Neelapu SS, Forbes SG, Oki Y, Fowler NH. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood 2015; 125:3357-9; PMID:25999447; http://dx.doi.org/10.1182/blood-2015-03-633156 PubMed DOI PMC
Hewett YG, Uprety D, Shah BK. Idelalisib- a PI3Kdelta targeting agent for B-cell malignancies. J Oncol Pharm Pract 2016; 22:284-8; PMID:25712626; http://dx.doi.org/2461577810.1177/1078155215572933 PubMed DOI
Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, Benson DM, Byrd JC, Peterman S, Cho Y et al.. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood 2014; 123:3398-405; PMID:24615778; http://dx.doi.org/10.1182/blood-2013-11-537555 PubMed DOI PMC
Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, Spurgeon SE, Kahl BS, Bello C, Webb HK et al.. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 123:3390-7; PMID:24615777; http://dx.doi.org/10.1182/blood-2013-11-535047 PubMed DOI PMC
Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, Wagner-Johnston ND, Coutre SE, Benson DM, Peterman S et al.. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 2014; 123:3406-13; PMID:24615776; http://dx.doi.org/10.1182/blood-2013-11-538546 PubMed DOI PMC
Sikalidis AK. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res 2015; 21:9-17; PMID:25351939; http://dx.doi.org/10.1007/s12253-014-9860-0 PubMed DOI
Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM et al.. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64:5839-49; PMID:15313928; http://dx.doi.org/10.1158/0008-5472.CAN-04-0465 PubMed DOI
Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5:641-54; PMID:16056256; http://dx.doi.org/10.1038/nri1668 PubMed DOI
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78; PMID:25687683; http://dx.doi.org/10.1016/j.it.2015.01.003 PubMed DOI
Serafini P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol Res 2013; 57:172-84; PMID:24203443; http://dx.doi.org/10.1007/s12026-013-8455-2 PubMed DOI
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M et al.. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011; 208:1949-62; PMID:21930770; http://dx.doi.org/10.1084/jem.20101956 PubMed DOI PMC
Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P et al.. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006; 116:2777-90; PMID:17016559; http://dx.doi.org/10.1172/JCI28828 PubMed DOI PMC
Van Zandt MC, Whitehouse DL, Golebiowski A, Ji MK, Zhang M, Beckett RP, Jagdmann GE, Ryder TR, Sheeler R, Andreoli M et al.. Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J Med Chem 2013; 56:2568-80; PMID:23472952; http://dx.doi.org/10.1021/jm400014c PubMed DOI
De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M et al.. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 2005; 102:4185-90; PMID:15753302; http://dx.doi.org/10.1073/pnas.0409783102 PubMed DOI PMC
Bratasz A, Weir NM, Parinandi NL, Zweier JL, Sridhar R, Ignarro LJ, Kuppusamy P.. Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc Natl Acad Sci U S A 2006; 103:3914-9; PMID:16497833; http://dx.doi.org/10.1073/pnas.0511250103 PubMed DOI PMC
Chu GH, Le Bourdonnec B, Gu M, Ajello CW, Leister LK, Sellitto I, Cassel JA, Tuthill PA, O' Hare H, Dehaven RN et al.. Design and Synthesis of Imidazopyrimidine Derivatives as Potent iNOS Dimerization Inhibitors. Open Med Chem J 2009; 3:8-13; PMID:19966921; http://dx.doi.org/10.2174/1874104500903010008 PubMed DOI PMC
Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006; 203:2691-702; PMID:17101732; http://dx.doi.org/10.1084/jem.20061104 PubMed DOI PMC
Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H, Goodman S, Gourin CG, Ha PK, Fakhry C et al.. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 2015; 21:30-8; PMID:25564570; http://dx.doi.org/10.1158/1078-0432.CCR-14-1716 PubMed DOI PMC
Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C, Sargi Z, Nazarian R, Califano J, Borrello I, Serafini P. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 2015; 21:39-48; PMID:25320361; http://dx.doi.org/10.1158/1078-0432.CCR-14-1711 PubMed DOI PMC
Semeraro M, Galluzzi L. Novel insights into the mechanism of action of lenalidomide. Oncoimmunology 2014; 3:e28386; PMID:25340011; http://dx.doi.org/10.4161/onci.28386 PubMed DOI PMC
Frye SV, Arkin MR, Arrowsmith CH, Conn PJ, Glicksman MA, Hull-Ryde EA, Slusher BS. Tackling reproducibility in academic preclinical drug discovery. Nat Rev Drug Discov 2015; 14:733-4; PMID:26388229; http://dx.doi.org/10.1038/nrd4737 PubMed DOI
Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol 2016; 13:209-27; PMID:26718105; http://dx.doi.org/2658553310.1038/nrclinonc.2015.213 PubMed DOI
Frail DE, Brady M, Escott KJ, Holt A, Sanganee HJ, Pangalos MN, Watkins C, Wegner CD. Pioneering government-sponsored drug repositioning collaborations: progress and learning. Nat Rev Drug Discov 2015; 14:833-41; PMID:26585533; http://dx.doi.org/10.1038/nrd4707 PubMed DOI
Trial Watch: Toll-like receptor agonists in cancer immunotherapy
Trial watch: Peptide-based vaccines in anticancer therapy
Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy
Trial watch: Immune checkpoint blockers for cancer therapy
Trial Watch: Immunotherapy plus radiation therapy for oncological indications