Trial watch: Peptide-based vaccines in anticancer therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
30524907
PubMed Central
PMC6279318
DOI
10.1080/2162402x.2018.1511506
PII: 1511506
Knihovny.cz E-zdroje
- Klíčová slova
- CAR T cells, MAGEA3, NY-ESO-1, immune checkpoint blockers, mutational load, synthetic long peptides, tumor neoantigens,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen.
Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France
Department of Radiation Oncology Weill Cornell Medical College New York NY USA
Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden
Faculty of Medicine University of Paris Sud Paris XI Le Kremlin Bicêtre France
INSERM U1015 Gustave Roussy Cancer Campus Villejuif France
Metabolomics and Cell Biology Platforms Gustave Roussy Cancer Campus Villejuif France
Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France
Sandra and Edward Meyer Cancer Center New York NY USA
Zobrazit více v PubMed
Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–247. doi:10.1038/nrd.2015.35. PubMed DOI
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–1365. doi:10.1126/science.aar6711. PubMed DOI
Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–1247. doi:10.1016/j.cell.2016.01.049. PubMed DOI PMC
Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50. doi:10.1016/S0065-2776(06)90001-7. PubMed DOI
Berraondo P, Labiano S, Minute L, Etxeberria I, Vasquez M, Sanchez-Arraez A, Teijeira A, Melero I. Cellular immunotherapies for cancer. Oncoimmunology. 2017;6:e1306619. doi:10.1080/2162402X.2017.1306619. PubMed DOI PMC
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18:313–322. doi:10.1038/nrc.2018.6. PubMed DOI PMC
Thomas S, Prendergast GC. Cancer vaccines: a brief overview. Methods Mol Biol. 2016;1403:755–761. doi:10.1007/978-1-4939-3387-7_43. PubMed DOI
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472–12508. doi:10.18632/oncotarget.2998. PubMed DOI PMC
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–330. doi:10.1038/nature21349. PubMed DOI
Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology. 2016;5:e1190061. doi:10.1080/2162402X.2016.1190061. PubMed DOI PMC
Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6:e1358335. doi:10.1080/2162402X.2017.1358335. PubMed DOI PMC
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–584. doi:10.1038/nrd4591. PubMed DOI
Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial watch: immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373237. doi:10.1080/2162402X.2017.1373237. PubMed DOI PMC
Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172. PubMed DOI
Derosa L, Routy B, Kroemer G, Zitvogel L. The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncoimmunology. 2018;7:e1434468. doi:10.1080/2162402X.2018.1434468. PubMed DOI PMC
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264. doi:10.1038/nrc3239. PubMed DOI PMC
Vanella V, Festino L, Strudel M, Simeone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncoimmunology. 2017;7:e1365209. doi:10.1080/2162402X.2017.1365209. PubMed DOI PMC
Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology. 2017;7:e1364828. doi:10.1080/2162402X.2017.1364828. PubMed DOI PMC
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171:934–949 e915. doi:10.1016/j.cell.2017.09.028. PubMed DOI PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri.2016.107. PubMed DOI
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. doi:10.1146/annurev-immunol-032712-100008. PubMed DOI
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi:10.1080/2162402X.2017.1386829. PubMed DOI PMC
Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, Tang D, Kang R. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086. doi:10.1080/2162402X.2018.1431086. PubMed DOI PMC
Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int J Mol Sci. 2018;19. doi:10.3390/ijms19020594. PubMed DOI PMC
Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology. 2018;7:e1431089. doi:10.1080/2162402X.2018.1431089. PubMed DOI PMC
Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–414. doi:10.1038/nri3845. PubMed DOI
Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383:816–827. doi:10.1016/S0140-6736(13)60802-8. PubMed DOI
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896. doi:10.1080/2162402X.2017.1371896. PubMed DOI PMC
Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42:640–655. doi:10.1053/j.seminoncol.2015.05.014. PubMed DOI
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62. doi:10.1038/nrclinonc.2017.148. PubMed DOI PMC
Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46. doi:10.1038/nrclinonc.2017.128. PubMed DOI
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–68. doi:10.1126/science.aaa4967. PubMed DOI PMC
Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–581. doi:10.1038/nrc.2016.97. PubMed DOI PMC
Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Oncoimmunology. 2016;5:e1251539. doi:10.1080/2162402X.2016.1251539. PubMed DOI PMC
Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–290. doi:10.1038/nrclinonc.2016.25. PubMed DOI PMC
Atanackovic D, Steinbach M, Radhakrishnan SV, Luetkens T. Immunotherapies targeting CD38 in multiple myeloma. Oncoimmunology. 2016;5:e1217374. doi:10.1080/2162402X.2016.1217374. PubMed DOI PMC
Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–622. doi:10.1038/nrd4596. PubMed DOI
Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al. Trial watch-small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016;5:e1149674. doi:10.1080/2162402X.2016.1149674. PubMed DOI PMC
Iyer VV. Small molecules for immunomodulation in cancer: a review. Anticancer Agents Med Chem. 2015;15:433–452. PubMed
Teulings HE, Tjin EPM, Willemsen KJ, Van Der Kleij S, Ter Meulen S, Kemp EH, Krebbers G, Van Noesel CJM, Franken C, Drijfhout JW, et al. Anti-Melanoma immunity and local regression of cutaneous metastases in melanoma patients treated with monobenzone and imiquimod; a phase 2 a trial. Oncoimmunology. 2018;7:e1419113. doi:10.1080/2162402X.2017.1419113. PubMed DOI PMC
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–2199. doi:10.1056/NEJMoa1406498. PubMed DOI PMC
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. doi:10.1056/NEJMoa1200690. PubMed DOI PMC
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–2028. doi:10.1056/NEJMoa1501824. PubMed DOI
Rosenberg JE, Hoffman-Censits J, Powles T, Van Der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920. doi:10.1016/S0140-6736(16)00561-4. PubMed DOI PMC
Fuca G, De Braud F, Di Nicola M. Immunotherapy-based combinations: an update. Curr Opin Oncol. 2018. doi:10.1097/CCO.0000000000000466. PubMed DOI
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–448. doi:10.1056/NEJMoa1709866. PubMed DOI PMC
Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13:25–40. doi:10.1038/nrclinonc.2015.187. PubMed DOI PMC
Suryadevara CM, Desai R, Abel ML, Riccione KA, Batich KA, Shen SH, Chongsathidkiet P, Gedeon PC, Elsamadicy AA, Snyder DJ, et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology. 2018;7:e1434464. doi:10.1080/2162402X.2018.1434464. PubMed DOI PMC
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–214. doi:10.1016/j.cell.2015.03.030. PubMed DOI PMC
Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018. doi:10.1056/NEJMoa1805131. PubMed DOI
Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016;5:e1214790. doi:10.1080/2162402X.2016.1214790. PubMed DOI PMC
Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquee L, Trigo JM, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68. doi:10.1016/S1470-2045(13)70510-2. PubMed DOI
Ruckert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaipl US. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol. 2018;194:509–519. doi:10.1007/s00066-018-1287-1. PubMed DOI
Fumet JD, Isambert N, Hervieu A, Zanetta S, Guion JF, Hennequin A, Rederstorff E, Bertaut A, Ghiringhelli F. Phase Ib/II trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer. ESMO Open. 2018;3:e000375. doi:10.1136/esmoopen-2018-000375. PubMed DOI PMC
Coulie PG, Van Den Eynde BJ, Van Der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–146. doi:10.1038/nrc3670. PubMed DOI
Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195:5117–5122. doi:10.4049/jimmunol.1501657. PubMed DOI PMC
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi:10.1126/science.aaa1348. PubMed DOI PMC
Boon T, Cerottini JC, Van Den Eynde B, Van Der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi:10.1146/annurev.iy.12.040194.002005. PubMed DOI
Boon T. van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183:725–729. PubMed PMC
Van Pel A, Van Der Bruggen P, Coulie PG, Brichard VG, Lethe B, Van Den Eynde B, Uyttenhove C, Renauld JC, Boon T. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev. 1995;145:229–250. PubMed
Blander JM. Regulation of the cell biology of antigen cross-presentation. Annu Rev Immunol. 2018;36:717–753. doi:10.1146/annurev-immunol-041015-055523. PubMed DOI PMC
Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol. 2004;16:76–81. PubMed
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J Exp Med. 2017;214:3105–3122. doi:10.1084/jem.20170335. PubMed DOI PMC
Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–945. doi:10.1038/nm.3909. PubMed DOI PMC
Van Den Eynde BJ, Boon T. Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res. 1997;27:81–86. PubMed
Menez-Jamet J, Gallou C, Rougeot A, Kosmatopoulos K. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. Ann Transl Med. 2016;4:266. doi:10.21037/atm.2016.05.15. PubMed DOI PMC
Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125:3413–3421. doi:10.1172/JCI80008. PubMed DOI PMC
Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 2017;27:11–37. doi:10.1038/cr.2016.155. PubMed DOI PMC
Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Cancer Genome Atlas Research N et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018. doi:10.1016/j.ccell.2018.07.001. PubMed DOI PMC
Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, Da Silva A, Mu XJ, Twombly TS, Koh H, Yang J, et al. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018;7:e1442999. doi:10.1080/2162402X.2018.1442999. PubMed DOI PMC
Martin SD, Wick DA, Nielsen JS, Little N, Holt RA, Nelson BH. A library-based screening method identifies neoantigen-reactive T cells in peripheral blood prior to relapse of ovarian cancer. Oncoimmunology. 2017;7:e1371895. doi:10.1080/2162402X.2017.1371895. PubMed DOI PMC
Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, et al. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis. 2018;9:791. doi:10.1038/s41419-018-0824-2. PubMed DOI PMC
Mufson RA. Tumor antigen targets and tumor immunotherapy. Front Biosci. 2006;11:337–343. PubMed
Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol. 2008;20:276–285. doi:10.1016/j.smim.2008.07.001. PubMed DOI PMC
Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127:2705–2718. doi:10.1172/JCI92335. PubMed DOI PMC
Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol. 2016;41:98–103. doi:10.1016/j.coi.2016.07.005. PubMed DOI
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. doi:10.1126/science.aaa4971. PubMed DOI
Verdegaal EM, De Miranda NF, Visser M, Harryvan T, Van Buuren MM, Andersen RS, Hadrup SR, Van Der Minne CE, Schotte R, Spits H, et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 2016;536:91–95. doi:10.1038/nature18945. PubMed DOI
Cha SC, Qin H, Sakamaki I, Kwak L. Cloning variable region genes of clonal lymphoma immunoglobulin for generating patient-specific idiotype DNA vaccine. Methods Mol Biol. 2014;1139:289–303. doi:10.1007/978-1-4939-0345-0_24. PubMed DOI
Kurth R, Fenyo EM, Klein E, Essex M. Cell-surface antigens induced by RNA tumour viruses. Nature. 1979;279:197–201. PubMed
Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GJ, Savelyeva N. Targeting head and neck cancer by vaccination. Front Immunol. 2018;9:830. doi:10.3389/fimmu.2018.00830. PubMed DOI PMC
Qin Y, Ekmekcioglu S, Forget MA, Szekvolgyi L, Hwu P, Grimm EA, Jazaeri AA, Roszik J. Cervical cancer neoantigen landscape and immune activity is associated with human papillomavirus master regulators. Front Immunol. 2017;8:689. doi:10.3389/fimmu.2017.00689. PubMed DOI PMC
Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1:209–219. doi:10.1038/35105075. PubMed DOI
Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–915. doi:10.1038/nm1100. PubMed DOI PMC
Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–327. doi:10.1038/nature13387. PubMed DOI
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469. doi:10.1126/science.aaf1490. PubMed DOI PMC
Jager E, Jager D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol. 2002;14:178–182. PubMed
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796. doi:10.1038/nri2868. PubMed DOI
Melief CJ, Van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401–3412. doi:10.1172/JCI80009. PubMed DOI PMC
Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, Nobuoka D, Gotohda N, Takahashi S, Kato Y, et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology. 2016;5:e1129483. doi:10.1080/2162402X.2015.1129483. PubMed DOI PMC
Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–524. doi:10.1038/nrclinonc.2014.111. PubMed DOI
Bobisse S, Foukas PG, Coukos G, Harari A. Neoantigen-based cancer immunotherapy. Ann Transl Med. 2016;4:262. doi:10.21037/atm.2016.06.17. PubMed DOI PMC
Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines (Basel). 2015;3:344–372. doi:10.3390/vaccines3020344. PubMed DOI PMC
Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun. 2017;8:1954. doi:10.1038/s41467-017-02191-y. PubMed DOI PMC
Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin Cancer Res. 2017;23:5034–5043. doi:10.1158/1078-0432.CCR-16-3016. PubMed DOI PMC
Li F, Chen C, Ju T, Gao J, Yan J, Wang P, Xu Q, Hwu P, Du X, Lizee G. Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncoimmunology. 2016;5:e1238539. doi:10.1080/2162402X.2016.1238539. PubMed DOI PMC
Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines. 2007;6:591–603. doi:10.1586/14760584.6.4.591. PubMed DOI
Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–2127. doi:10.1056/NEJMoa1012863. PubMed DOI PMC
Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother. 2018. doi:10.1007/s00262-018-2158-4. PubMed DOI PMC
Silva AL, Rosalia RA, Sazak A, Carstens MG, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation. Eur J Pharm Biopharm. 2013;83:338–345. doi:10.1016/j.ejpb.2012.11.006. PubMed DOI
Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 2013;168:179–199. doi:10.1016/j.jconrel.2013.03.010. PubMed DOI
Varypataki EM, Silva AL, Barnier-Quer C, Collin N, Ossendorp F, Jiskoot W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. J Control Release. 2016;226:98–106. doi:10.1016/j.jconrel.2016.02.018. PubMed DOI
Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131:2640–2650. doi:10.1182/blood-2017-11-785873. PubMed DOI
Bloy N, Garcia P, Laumont CM, Pitt JM, Sistigu A, Stoll G, Yamazaki T, Bonneil E, Buque A, Humeau J, et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev. 2017;280:165–174. doi:10.1111/imr.12582. PubMed DOI
Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 2016;4:895–902. doi:10.1158/2326-6066.CIR-16-0197. PubMed DOI
Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9:833–844. doi:10.1038/nri2669. PubMed DOI
Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–1138. doi:10.1038/nm.3944. PubMed DOI
Arrieta VA, Cacho-Diaz B, Zhao J, Rabadan R, Chen L, Sonabend AM. The possibility of cancer immune editing in gliomas. A Critical Review. Oncoimmunology. 2018;7:e1445458. doi:10.1080/2162402X.2018.1445458. PubMed DOI PMC
Terry S, Buart S, Tan TZ, Gros G, Noman MZ, Lorens JB, Mami-Chouaib F, Thiery JP, Chouaib S. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology. 2017;6:e1271858. doi:10.1080/2162402X.2016.1271858. PubMed DOI PMC
Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12:307–313. doi:10.1038/nrc3246. PubMed DOI PMC
Pietrocola F, Bravo-San Pedro JM, Galluzzi L, Kroemer G. Autophagy in natural and therapy-driven anticancer immunosurveillance. Autophagy. 2017;13:2163–2170. doi:10.1080/15548627.2017.1310356. PubMed DOI PMC
Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol. 2007;19:203–208. doi:10.1016/j.coi.2007.02.001. PubMed DOI
Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M, Seya T. Toll-like receptor 2 ligand and interferon-gamma suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 2017;7:e1373231. doi:10.1080/2162402X.2017.1373231. PubMed DOI PMC
Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology. 2018;7:e1404213. doi:10.1080/2162402X.2017.1404213. PubMed DOI PMC
Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–848. doi:10.1038/nri1961. PubMed DOI
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi:10.1038/ni1102-991. PubMed DOI
Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–1261. doi:10.1038/nm.2883. PubMed DOI
Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide-based anticancer vaccines. Oncoimmunology. 2015;4:e974411. doi:10.4161/2162402X.2014.974411. PubMed DOI PMC
Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, Gilboa E, Hammond SA, Hershberg R, Korman AJ, et al. The human vaccines project: a roadmap for cancer vaccine development. Sci Transl Med. 2016;8:334–339. doi:10.1126/scitranslmed.aaf0685. PubMed DOI
Hos BJ, Tondini E, Van Kasteren SI, Ossendorp F. Approaches to improve chemically defined synthetic peptide vaccines. Front Immunol. 2018;9:884. doi:10.3389/fimmu.2018.00884. PubMed DOI PMC
Arens R, Van Hall T, Van Der Burg SH, Ossendorp F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol. 2013;25:182–190. doi:10.1016/j.smim.2013.04.008. PubMed DOI
Drug and Device News P T. 2017;42:554–593. PubMed PMC
Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries–key challenges and issues. N Engl J Med. 2007;356:1908–1910. doi:10.1056/NEJMp078053. PubMed DOI
Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–314. doi:10.1016/S0140-6736(09)61248-4. PubMed DOI
Group FIS Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356:1915–1927. doi:10.1056/NEJMoa061741. PubMed DOI
Zhai L, Tumban E. Gardasil-9: A global survey of projected efficacy. Antiviral Res. 2016;130:101–109. doi:10.1016/j.antiviral.2016.03.016. PubMed DOI
Cuzick J. Gardasil 9 joins the fight against cervix cancer. Expert Rev Vaccines. 2015;14:1047–1049. doi:10.1586/14760584.2015.1051470. PubMed DOI
Van Poelgeest MI, Welters MJ, Van Esch EM, Stynenbosch LF, Kerpershoek G, Van Persijn Van Meerten EL, Van Den Hende M, Lowik MJ, Berends-Van Der Meer DM, Fathers LM, et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 2013;11:88. doi:10.1186/1479-5876-11-88. PubMed DOI PMC
Van Poelgeest MI, Welters MJ, Vermeij R, Stynenbosch LF, Loof NM, Berends-Van Der Meer DM, Lowik MJ, Hamming IL, Van Esch EM, Hellebrekers BW, et al. Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res. 2016;22:2342–2350. doi:10.1158/1078-0432.CCR-15-2594. PubMed DOI
Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-Van Der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–1847. doi:10.1056/NEJMoa0810097. PubMed DOI
Obeid J, Hu Y, Slingluff CL Jr.. Vaccines, adjuvants, and dendritic cell activators–current status and future challenges. Semin Oncol. 2015;42:549–561. doi:10.1053/j.seminoncol.2015.05.006. PubMed DOI PMC
Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016;22:1402–1410. doi:10.1038/nm.4200. PubMed DOI PMC
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–581. doi:10.1038/nature13988. PubMed DOI PMC
Hailemichael Y, Woods A, Fu T, He Q, Nielsen MC, Hasan F, Roszik J, Xiao Z, Vianden C, Khong H, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338–1354. doi:10.1172/JCI93303. PubMed DOI PMC
Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 2018;128:3209–3218. doi:10.1172/JCI120775. PubMed DOI PMC
Nagaoka K, Hosoi A, Iino T, Morishita Y, Matsushita H, Kakimi K. Dendritic cell vaccine induces antigen-specific CD8(+) T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncoimmunology. 2018;7:e1395124. doi:10.1080/2162402X.2017.1395124. PubMed DOI PMC
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi:10.1056/NEJMoa1003466. PubMed DOI PMC
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139. doi:10.1080/2162402X.2017.1363139. PubMed DOI PMC
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6:e1398878. doi:10.1080/2162402X.2017.1398878. PubMed DOI PMC
Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–835. doi:10.1016/S1470-2045(16)00099-1. PubMed DOI
Higgins M, Curigliano G, Dieras V, Kuemmel S, Kunz G, Fasching PA, Campone M, Bachelot T, Krivorotko P, Chan S, et al. Safety and immunogenicity of neoadjuvant treatment using WT1-immunotherapeutic in combination with standard therapy in patients with WT1-positive Stage II/III breast cancer: a randomized Phase I study. Breast Cancer Res Treat. 2017;162:479–488. doi:10.1007/s10549-017-4130-y. PubMed DOI PMC
Obara W, Eto M, Mimata H, Kohri K, Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al. A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol. 2017;28:798–803. doi:10.1093/annonc/mdw675. PubMed DOI
Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108:1452–1457. doi:10.1111/cas.13278. PubMed DOI PMC
Slingluff CL Jr., Petroni GR, Olson WC, Smolkin ME, Chianese-Bullock KA, Mauldin IS, Smith KT, Deacon DH, Varhegyi NE, Donnelly SB, et al. A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15 immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother. 2016;65:25–36. doi:10.1007/s00262-015-1770-9. PubMed DOI PMC
Gutzmer R, Rivoltini L, Levchenko E, Testori A, Utikal J, Ascierto PA, Demidov L, Grob JJ, Ridolfi R, Schadendorf D, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1:e000068. doi:10.1136/esmoopen-2016-000068. PubMed DOI PMC
Saiag P, Gutzmer R, Ascierto PA, Maio M, Grob JJ, Murawa P, Dreno B, Ross M, Weber J, Hauschild A, et al. Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT). Ann Oncol. 2016;27:1947–1953. doi:10.1093/annonc/mdw291. PubMed DOI PMC
Pujol JL, Vansteenkiste JF, De Pas TM, Atanackovic D, Reck M, Thomeer M, Douillard JY, Fasola G, Potter V, Taylor P, et al. Safety and Immunogenicity of MAGE-A3 cancer immunotherapeutic with or without adjuvant chemotherapy in patients with resected stage IB to III MAGE-A3-positive non-small-cell lung cancer. J Thorac Oncol. 2015;10:1458–1467. doi:10.1097/JTO.0000000000000653. PubMed DOI
Stanton SE, Eary JF, Marzbani EA, Mankoff D, Salazar LG, Higgins D, Childs J, Reichow J, Dang Y, Disis ML. Concurrent SPECT/PET-CT imaging as a method for tracking adoptively transferred T-cells in vivo. J Immunother Cancer. 2016;4:27. doi:10.1186/s40425-016-0131-3. PubMed DOI PMC
Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, Morse MA, Pejovic T, Bentley J, Buyse M, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. doi:10.1080/2162402X.2015.1026529. PubMed DOI PMC
Eckert F, Gaipl US, Niedermann G, Hettich M, Schilbach K, Huber SM, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35. doi:10.1016/j.ctro.2016.12.006. PubMed DOI PMC
Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides. Am J Hematol. 2015;90:602–607. doi:10.1002/ajh.24014. PubMed DOI PMC
Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, Kohanbash G, Drappatz J, Engh J, Amankulor N, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21:286–294. doi:10.1158/1078-0432.CCR-14-1790. PubMed DOI PMC
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–1385. doi:10.1016/S1470-2045(17)30517-X. PubMed DOI
Wood LV, Fojo A, Roberson BD, Hughes MS, Dahut W, Gulley JL, Madan RA, Arlen PM, Sabatino M, Stroncek DF, et al. TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with stage D0 prostate cancer. Oncoimmunology. 2016;5:e1197459. doi:10.1080/2162402X.2016.1197459. PubMed DOI PMC
Mauldin IS, Wages NA, Stowman AM, Wang E, Olson WC, Deacon DH, Smith KT, Galeassi N, Teague JE, Smolkin ME, et al. Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother. 2016;65:1201–1212. doi:10.1007/s00262-016-1880-z. PubMed DOI PMC
Mauldin IS, Wages NA, Stowman AM, Wang E, Smolkin ME, Olson WC, Deacon DH, Smith KT, Galeassi NV, Chianese-Bullock KA, et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother. 2016;65:1189–1199. doi:10.1007/s00262-016-1881-y. PubMed DOI PMC
Nitschke NJ, Bjoern J, Iversen TZ, Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma. Stem Cell Investig. 2017;4:77. doi:10.21037/sci.2017.08.06. PubMed DOI PMC
Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM, et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res. 2015;3:278–287. doi:10.1158/2326-6066.CIR-14-0202. PubMed DOI PMC
Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. 2017;66:851–863. doi:10.1007/s00262-017-1981-3. PubMed DOI PMC
Sakamoto S, Yamada T, Terazaki Y, Yoshiyama K, Sugawara S, Takamori S, Matsueda S, Shichijo S, Yamada A, Noguchi M, et al. Feasibility study of personalized peptide vaccination for advanced small cell lung cancer. Clin Lung Cancer. 2017;18:e385–e394. doi:10.1016/j.cllc.2017.03.011. PubMed DOI
Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–66201. doi:10.18632/oncotarget.11751. PubMed DOI PMC
Baumgaertner P, Costa Nunes C, Cachot A, Maby-El Hajjami H, Cagnon L, Braun M, Derre L, Rivals JP, Rimoldi D, Gnjatic S, et al. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology. 2016;5:e1216290. doi:10.1080/2162402X.2016.1216290. PubMed DOI PMC
Hasegawa K, Ikeda Y, Kunugi Y, Kurosaki A, Imai Y, Kohyama S, Nagao S, Kozawa E, Yoshida K, Tsunoda T, et al. Phase I study of multiple epitope peptide vaccination in patients with recurrent or persistent cervical cancer. J Immunother. 2018;41:201–207. doi:10.1097/CJI.0000000000000214. PubMed DOI
Yutani S, Shirahama T, Muroya D, Matsueda S, Yamaguchi R, Morita M, Shichijo S, Yamada A, Sasada T, Itoh K. Feasibility study of personalized peptide vaccination for hepatocellular carcinoma patients refractory to locoregional therapies. Cancer Sci. 2017;108:1732–1738. doi:10.1111/cas.13301. PubMed DOI PMC
Shirahama T, Muroya D, Matsueda S, Yamada A, Shichijo S, Naito M, Yamashita T, Sakamoto S, Okuda K, Itoh K, et al. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci. 2017;108:838–845. doi:10.1111/cas.13193. PubMed DOI PMC
Kohrt HE, Muller A, Baker J, Goldstein MJ, Newell E, Dutt S, Czerwinski D, Lowsky R, Strober S. Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation. Blood. 2011;118:5319–5329. doi:10.1182/blood-2011-05-356238. PubMed DOI PMC
Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;14:501–510. doi:10.1038/nrurol.2017.77. PubMed DOI
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221. doi:10.1038/nature22991. PubMed DOI PMC
Melief CJM. Cancer: precision T-cell therapy targets tumours. Nature. 2017;547:165–167. doi:10.1038/nature23093. PubMed DOI
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi:10.1038/nature12477. PubMed DOI PMC
Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, Clifton GT, Sukhumalchandra P, Ma Q, Reddy SM, et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 2017;77:5374–5383. doi:10.1158/0008-5472.CAN-16-2774. PubMed DOI PMC
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, et al. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4(+) T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology. 2018;7:e1415687. doi:10.1080/2162402X.2017.1415687. PubMed DOI PMC
Petrizzo A, Mauriello A, Luciano A, Rea D, Barbieri A, Arra C, Maiolino P, Tornesello M, Gigantino V, Botti G, et al. Inhibition of tumor growth by cancer vaccine combined with metronomic chemotherapy and anti-PD-1 in a pre-clinical setting. Oncotarget. 2018;9:3576–3589. doi:10.18632/oncotarget.23181. PubMed DOI PMC
Tanaka H, Hazama S, Iida M, Tsunedomi R, Takenouchi H, Nakajima M, Tokumitsu Y, Kanekiyo S, Shindo Y, Tomochika S, et al. miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci. 2017;108:2229–2238. doi:10.1111/cas.13390. PubMed DOI PMC
Huang L, Wang Z, Liu C, Xu C, Mbofung RM, McKenzie JA, Khong H, Hwu P, Peng W. CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner. Oncogene. 2017;36:4081–4086. doi:10.1038/onc.2017.35. PubMed DOI PMC
Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–222. doi:10.1038/nrc.2016.154. PubMed DOI PMC
Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6:404–414. doi:10.1038/nrd2224. PubMed DOI
Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–360. doi:10.1038/nrc2373. PubMed DOI
Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, Pollard AJ, Van Crevel R, Wilson CB. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016;16:392–400. doi:10.1038/nri.2016.43. PubMed DOI PMC
Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 2005;11:S63–68. doi:10.1038/nm1210. PubMed DOI
Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011;30:150–182. doi:10.3109/08830185.2011.572210. PubMed DOI
McElrath MJ. Adjuvants: tailoring humoral immune responses. Curr Opin HIV AIDS. 2017;12:278–284. doi:10.1097/COH.0000000000000365. PubMed DOI PMC
Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, Petroni GR, Bissonette EA, Neese PY, Grosh WW, et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol. 2005;174:3080–3086. PubMed
Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol. 1999;163:57–61. PubMed
Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190:355–366. PubMed PMC
Van Den Eertwegh AJ, Versluis J, Van Den Berg HP, Santegoets SJ, Van Moorselaar RJ, Van Der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:509–517. doi:10.1016/S1470-2045(12)70007-4. PubMed DOI
Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, et al. Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the eastern cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–4076. doi:10.1200/JCO.2015.62.0500. PubMed DOI PMC
Van Der Sluis TC, Van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, Boon L, Smit VT, Welters MJ, Ossendorp F, et al. Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res. 2015;21:781–794. doi:10.1158/1078-0432.CCR-14-2142. PubMed DOI
Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73. doi:10.1038/nri2216. PubMed DOI
Dranoff G. Tailor-made renal cell carcinoma vaccines. Cancer Cell. 2012;22:287–289. doi:10.1016/j.ccr.2012.08.021. PubMed DOI
Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, et al. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64:1305–1314. doi:10.1007/s00262-015-1698-0. PubMed DOI PMC
Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–870. doi:10.1016/j.ijrobp.2003.09.012. PubMed DOI
Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH, Demaria S. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75:2232–2242. doi:10.1158/0008-5472.CAN-14-3511. PubMed DOI PMC
Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, Formenti SC, Demaria S. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. 2017;8:229. doi:10.3389/fimmu.2017.00229. PubMed DOI PMC
Cadena A, Cushman TR, Anderson C, Barsoumian HB, Welsh JW, Cortez MA. Radiation and anti-cancer vaccines: a winning combination. Vaccines (Basel). 2018;6. doi:10.3390/vaccines6010009. PubMed DOI PMC
Yamaue H, Tsunoda T, Tani M, Miyazawa M, Yamao K, Mizuno N, Okusaka T, Ueno H, Boku N, Fukutomi A, et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC study. Cancer Sci. 2015;106:883–890. doi:10.1111/cas.12674. PubMed DOI PMC
Melssen M, Slingluff CL Jr.. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92. doi:10.1016/j.coi.2017.07.004. PubMed DOI PMC
Keefe DM, Bateman EH. Tumor control versus adverse events with targeted anticancer therapies. Nat Rev Clin Oncol. 2011;9:98–109. doi:10.1038/nrclinonc.2011.192. PubMed DOI
Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57–66. doi:10.1038/nrclinonc.2016.96. PubMed DOI PMC
Schmidt C. The benefits of immunotherapy combinations. Nature. 2017;552:S67–S69. doi:10.1038/d41586-017-08702-7. PubMed DOI
Versteven M, Jmj VDB, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. doi:10.3389/fimmu.2018.00394. PubMed DOI PMC
Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternes N, Jegou S, Woods DM, Sodre AL, Hansen M, Meirow Y, et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 2017;8:592. doi:10.1038/s41467-017-00608-2. PubMed DOI PMC
Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–158. doi:10.1038/nrclinonc.2015.209. PubMed DOI
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133 e1117. doi:10.1016/j.cell.2017.07.024. PubMed DOI PMC
Liu P, Zhao L, Loos F, Iribarren K, Kepp O, Kroemer G. Epigenetic anticancer agents cause HMGB1 release in vivo. Oncoimmunology. 2018;7:e1431090. doi:10.1080/2162402X.2018.1431090. PubMed DOI PMC
Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44:343–354. doi:10.1016/j.immuni.2015.11.024. PubMed DOI PMC
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi:10.1038/nature13954. PubMed DOI PMC
Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1:1223–1225. doi:10.4161/onci.21335. PubMed DOI PMC
Kang J, Galluzzi L. PD-L1 blockade for urothelial carcinoma. Oncoimmunology. 2017;6:e1334028. doi:10.1080/2162402X.2017.1334028. PubMed DOI PMC
Siefker-Radtke A, Curti B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat Rev Urol. 2018;15:112–124. doi:10.1038/nrurol.2017.190. PubMed DOI
Jelinek T, Hajek R. PD-1/PD-L1 inhibitors in multiple myeloma: the present and the future. Oncoimmunology. 2016;5:e1254856. doi:10.1080/2162402X.2016.1254856. PubMed DOI PMC
Sharma P, Logothetis C. Prostate cancer: combination of vaccine plus ipilimumab–safety and toxicity. Nat Rev Urol. 2012;9:302–303. doi:10.1038/nrurol.2012.103. PubMed DOI
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi:10.1126/science.aad1329. PubMed DOI PMC
Sidaway P. Immunotherapy: local chemotherapy synergizes with CTLA-4 inhibition. Nat Rev Clin Oncol. 2018;15:202. doi:10.1038/nrclinonc.2018.22. PubMed DOI
Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, Lutz ER, Jaffee EM. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight. 2018;3. doi:10.1172/jci.insight.122092. PubMed DOI PMC
Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi:10.4161/onci.27297. PubMed DOI PMC
Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131:49–57. doi:10.1182/blood-2017-06-741041. PubMed DOI
Enhancing PD-1 Blockade in solid tumors. Cancer Discov. 2016;6:OF2. doi:10.1158/2159-8290.CD-NB2016-086. PubMed DOI
Turaj AH, Hussain K, Cox KL, Rose-Zerilli MJJ, Testa J, Dahal LN, Chan HTC, James S, Field VL, Carter MJ, et al. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell. 2017;32:777–791 e776. doi:10.1016/j.ccell.2017.11.001. PubMed DOI PMC
Wei SM, Fei JX, Tao F, Pan HL, Shen Q, Wang L, Wu YJ, Zhou L, Zhu SX, Liao WB, et al. Anti-CD27 antibody potentiates antitumor effect of dendritic cell-based vaccine in prostate cancer-bearing mice. Int Surg. 2015;100:155–163. doi:10.9738/INTSURG-D-14-00147.1. PubMed DOI PMC
Vo MC, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Rhee JH, Lee JJ. Lenalidomide and programmed death-1 blockade synergistically enhances the effects of dendritic cell vaccination in a model of murine myeloma. Front Immunol. 2018;9:1370. doi:10.3389/fimmu.2018.01370. PubMed DOI PMC
Henry JY, Labarthe MC, Meyer B, Dasgupta P, Dalgleish AG, Galustian C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs(R) immunomodulatory compounds lenalidomide and pomalidomide. Immunology. 2013;139:377–385. doi:10.1111/imm.12087. PubMed DOI PMC
Petrylak DP, Vogelzang NJ, Budnik N, Wiechno PJ, Sternberg CN, Doner K, Bellmunt J, Burke JM, De Olza MO, Choudhury A, et al. Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2015;16:417–425. doi:10.1016/S1470-2045(15)70025-2. PubMed DOI
Sakamaki I, Kwak LW, Cha SC, Yi Q, Lerman B, Chen J, Surapaneni S, Bateman S, Qin H. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28:329–337. doi:10.1038/leu.2013.177. PubMed DOI PMC
Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013;104:15–21. doi:10.1111/cas.12050. PubMed DOI PMC
Sasada T, Yamada A, Noguchi M, Itoh K. Personalized peptide vaccine for treatment of advanced cancer. Curr Med Chem. 2014;21:2332–2345. PubMed
Roden RBS, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer. 2018;18:240–254. doi:10.1038/nrc.2018.13. PubMed DOI PMC
Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–2088. doi:10.1016/S0140-6736(15)00239-1. PubMed DOI PMC
Killock D. Therapeutic HPV vaccine holds promise. Nat Rev Clin Oncol. 2015;12:686. doi:10.1038/nrclinonc.2015.180. PubMed DOI
Doyle HA, Koski RA, Bonafe N, Bruck RA, Tagliatela SM, Gee RJ, Mamula MJ. Epidermal growth factor receptor peptide vaccination induces cross-reactive immunity to human EGFR, HER2, and HER3. Cancer Immunol Immunother. 2018. doi:10.1007/s00262-018-2218-9. PubMed DOI PMC
Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB, De Jongh WA, Clausen TM, Nicoletti G, Landuzzi L, Penichet ML, et al. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology. 2018;7:e1408749. doi:10.1080/2162402X.2017.1408749. PubMed DOI PMC
Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ, Brenin CM, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. 2017;5:92. doi:10.1186/s40425-017-0295-5. PubMed DOI PMC
Arab A, Nicastro J, Slavcev R, Razazan A, Barati N, Nikpoor AR, Brojeni AAM, Mosaffa F, Badiee A, Jaafari MR, et al. Lambda phage nanoparticles displaying HER2-derived E75 peptide induce effective E75-CD8(+) T response. Immunol Res. 2018;66:200–206. doi:10.1007/s12026-017-8969-0. PubMed DOI
Arab A, Behravan J, Razazan A, Gholizadeh Z, Nikpoor AR, Barati N, Mosaffa F, Badiee A, Jaafari MR. A nano-liposome vaccine carrying E75, a HER-2/neu-derived peptide, exhibits significant antitumour activity in mice. J Drug Target. 2018;26:365–372. doi:10.1080/1061186X.2017.1387788. PubMed DOI
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol. 2018. doi:10.2174/1570163815666180502164652. PubMed DOI
Takeoka T, Nagase H, Kurose K, Ohue Y, Yamasaki M, Takiguchi S, Sato E, Isobe M, Kanazawa T, Matsumoto M, et al. NY-ESO-1 protein cancer vaccine with poly-ICLC and OK-432: rapid and Strong Induction of NY-ESO-1-specific immune responses by poly-ICLC. J Immunother. 2017. doi:10.1097/CJI.0000000000000162. PubMed DOI
Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, Peoples GE. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy. 2014;6:519–531. doi:10.2217/imt.14.22. PubMed DOI
Andersen MH. thor SP. Survivin–a universal tumor antigen. Histol Histopathol. 2002;17:669–675. doi:10.14670/HH-17.669. PubMed DOI
Shima H, Kutomi G, Satomi F, Imamura M, Kimura Y, Mizuguchi T, Watanabe K, Takahashi A, Murai A, Tsukahara T, et al. Case report: long-term survival of a pancreatic cancer patient immunized with an SVN-2B peptide vaccine. Cancer Immunol Immunother. 2018. doi:10.1007/s00262-018-2217-x. PubMed DOI PMC
Chiang CY, Chen YJ, Wu CC, Liu SJ, Leng CH, Chen HW. Efficient uptake of recombinant lipidated survivin by antigen-presenting cells initiates antigen cross-presentation and antitumor immunity. Front Immunol. 2018;9:822. doi:10.3389/fimmu.2018.00822. PubMed DOI PMC
Berzofsky JA, Terabe M, Trepel JB, Pastan I, Stroncek DF, Morris JC, Wood LV. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother. 2017. doi:10.1007/s00262-017-2084-x. PubMed DOI PMC
Lowenfeld L, Zaheer S, Oechsle C, Fracol M, Datta J, Xu S, Fitzpatrick E, Roses RE, Fisher CS, McDonald ES, et al. Addition of anti-estrogen therapy to anti-HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ER(pos)/HER2(pos) early breast cancer. Oncoimmunology. 2017;6:e1207032. doi:10.1080/2162402X.2016.1207032. PubMed DOI PMC
Cui N, Shi J, Yang C. HER2-Based Immunotherapy for Breast Cancer. Cancer Biother Radiopharm. 2018;33:169–175. doi:10.1089/cbr.2017.2327. PubMed DOI
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock JNY-ESO-1. Based Immunotherapy of Cancer: current Perspectives. Front Immunol. 2018;9:947. doi:10.3389/fimmu.2018.00947. PubMed DOI PMC
Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5:615–625. doi:10.1038/nrc1669. PubMed DOI
Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF. CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci U S A. 2001;98:3964–3969. doi:10.1073/pnas.061507398. PubMed DOI PMC
Wang Y, Zhang J, Wu Y, Zy D, Xm L, Liu J, Zhong WN, Deng GH, Xia XY, Deng YT, et al. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine. Sci Rep. 2015;5:11275. doi:10.1038/srep11275. PubMed DOI PMC
Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH, Inderberg EM. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66:891–901. doi:10.1007/s00262-017-1994-y. PubMed DOI PMC
Kim H, Seo EH, Lee SH, Kim BJ. The telomerase-derived anticancer peptide vaccine GV1001 as an extracellular heat shock protein-mediated cell-penetrating peptide. Int J Mol Sci. 2016;17. doi:10.3390/ijms17122054. PubMed DOI PMC
Fenoglio D, Parodi A, Lavieri R, Kalli F, Ferrera F, Tagliamacco A, Guastalla A, Lamperti MG, Giacomini M, Filaci G. Immunogenicity of GX301 cancer vaccine: four (telomerase peptides) are better than one. Hum Vaccin Immunother. 2015;11:838–850. doi:10.1080/21645515.2015.1012032. PubMed DOI PMC
Lee YK, Nata’atmaja BS, Kim BH, Pak CS, Heo CY. Protective effect of telomerase-based 16-mer peptide vaccine (GV1001) on inferior epigastric island skin flap survivability in ischaemia-reperfusion injury rat model. J Plast Surg Hand Surg. 2017;51:210–216. doi:10.1080/2000656X.2016.1235046. PubMed DOI
Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35:5768–5775. doi:10.1016/j.vaccine.2017.09.011. PubMed DOI
Shinde R, Shimoda M, Chaudhary K, Liu H, Mohamed E, Bradley J, Kandala S, Li X, Liu K, McGaha TL, et al IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens. J Immunol. 2015;195:2374–2382. doi:10.4049/jimmunol.1402854. PubMed DOI PMC
Muller S, Agnihotri S, Shoger KE, Myers MI, Smith N, Chaparala S, Villanueva CR, Chattopadhyay A, Lee AV, Butterfield LH, et al. Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCI Insight. 2018:3. doi:10.1172/jci.insight.98791. PubMed DOI PMC
Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21:5427–5433. doi:10.1158/1078-0432.CCR-15-0420. PubMed DOI PMC
Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017;77:6795–6811. doi:10.1158/0008-5472.CAN-17-2285. PubMed DOI PMC
Mitchell P, Thatcher N, Socinski MA, Wasilewska-Tesluk E, Horwood K, Szczesna A, Martin C, Ragulin Y, Zukin M, Helwig C, et al. Tecemotide in unresectable stage III non-small-cell lung cancer in the phase III START study: updated overall survival and biomarker analyses. Ann Oncol. 2015;26:1134–1142. doi:10.1093/annonc/mdv104. PubMed DOI
Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 2013;31:2413–2420. doi:10.1200/JCO.2012.43.7111. PubMed DOI
Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37. doi:10.4161/onci.1.1.17938. PubMed DOI PMC
Seton-Rogers S. Immunotherapy: switching off immune suppression. Nat Rev Cancer. 2017;17:1. doi:10.1038/nrc.2016.144. PubMed DOI
Martins I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. Aging (Albany NY). 2011;3:821–828. doi:10.18632/aging.100380. PubMed DOI PMC
Parmiani G, Russo V, Maccalli C, Parolini D, Rizzo N, Maio M. Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother. 2014;10:3175–3178. doi:10.4161/hv.29418. PubMed DOI PMC
Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–148. doi:10.1111/imr.12574. PubMed DOI
Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588. PubMed DOI PMC
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570. doi:10.1126/science.1203486. PubMed DOI
Gross ET, Han S, Vemu P, Peinado CD, Marsala M, Ellies LG, Bui JD. Immunosurveillance and immunoediting in MMTV-PyMT-induced mammary oncogenesis. Oncoimmunology. 2017;6:e1268310. doi:10.1080/2162402X.2016.1268310. PubMed DOI PMC
Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–717. doi:10.1038/nri.2017.75. PubMed DOI PMC
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi:10.1038/nri3862. PubMed DOI PMC
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: the promise of immune priming with epigenetic agents. Oncoimmunology. 2017;6:e1315486. doi:10.1080/2162402X.2017.1315486. PubMed DOI PMC
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018. doi:10.1038/s41577-018-0014-6. PubMed DOI
Van Der Burg SH, Arens R, Ossendorp F, Van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–233. doi:10.1038/nrc.2016.16. PubMed DOI
Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28:319–328. doi:10.1093/intimm/dxw027. PubMed DOI
Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18:168–182. doi:10.1038/nri.2017.131. PubMed DOI PMC
Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol. 2018;18:183–194. doi:10.1038/nri.2017.140. PubMed DOI
Guo Y, Lei K, Tang L. Neoantigen vaccine delivery for personalized anticancer immunotherapy. Front Immunol. 2018;9:1499. doi:10.3389/fimmu.2018.01499. PubMed DOI PMC