Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
Grantová podpora
21855
Cancer Research UK - United Kingdom
R01 CA229275
NCI NIH HHS - United States
P01 CA128814
NCI NIH HHS - United States
R01 CA160417
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
28724
Cancer Research UK - United Kingdom
R01 GM127791
NIGMS NIH HHS - United States
PubMed
32209603
PubMed Central
PMC7064135
DOI
10.1136/jitc-2019-000337
PII: jitc-2019-000337
Knihovny.cz E-zdroje
- Klíčová slova
- immunology, molecular biology, oncology,
- MeSH
- imunogenní buněčná smrt genetika MeSH
- konsensus MeSH
- lidé MeSH
- molekulární biologie metody MeSH
- směrnice jako téma MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Calidi Biotherapeutics San Diego California USA
Candiolo Cancer Institute FPO IRCCS Candiolo Italy
Caryl and Israel Englander Institute for Precision Medicine New York City New York USA
Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France
Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal Quebec City Canada
Comprehensive Cancer Center Helsinki University Hospital Helsinki Finland
Comprehensive Cancer Center Yale University School of Medicine New Haven Connecticut USA
Department of Bioengineering University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
Department of Biomedical Molecular Biology Ghent University Ghent Belgium
Department of Dermatology Yale School of Medicine New Haven Connecticut USA
Department of Immunology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
Department of Medical Biology University of Tromsø Tromsø Norway
Department of Medicine Memorial Sloan Kettering Cancer Center New York City New York USA
Department of Medicine Weill Cornell Medical College New York City New York USA
Department of Oncology and Molecular Medicine Istituto Superiore di Sanità Rome Italy
Department of Oncology University of Melbourne Parkville Victoria Australia
Department of Oncology University of Torino Torino Italy
Department of Radiation Oncology Gustave Roussy Cancer Campus Villejuif France
Department of Radiation Oncology Weill Cornell Medical College New York City New York USA
Department of Surgery University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
Department of Surgery UT Southwestern Medical Center Dallas Texas USA
Division of Radiotherapy and Imaging The Institute of Cancer Research London UK
Division of Surgical Oncology Massachusetts General Hospital Boston Massachusetts USA
Equipe 11 labellisée Ligue contre le Cancer Centre de Recherche des Cordeliers Paris France
Equipe labellisée par la Ligue contre le cancer Gustave Roussy Villejuif France
ESSA Pharmaceuticals South San Francisco California USA
Faculté de Pharmacie de l'Université de Montréal Montréal Quebec City Canada
Faculty of Medicine University of Paris Sud Paris Saclay Le Kremlin Bicêtre France
Gustave Roussy Comprehensive Cancer Institute Villejuif France
Hematology and Cell Therapy Clinica Universidad de Navarra Pamplona Spain
Humanitas Clinical and Research Center IRCCS Rozzano Italy
Humanitas University Department of Biomedical Sciences Pieve Emanuele Milan Italy
IIGM Italian Institute for Genomic Medicine c o IRCSS Candiolo Torino Italy
Immun Onkologisches Zentrum Köln Cologne Germany
Institut du Cancer de Montréal Montréal Quebec City Canada
Interdepartmental Research Center of Molecular Biotechnology University of Torino Torino Italy
iRepertoire Inc Huntsville Alabama USA
Istituto di Patologia Generale Università Cattolica del Sacro Cuore Rome Italy
Ludwig Collaborative and Swim Across America Laboratory MSKCC New York City New York USA
McMaster University Hamilton Ontario Canada
Merck and Co Inc Kenilworth New Jersey USA
Methusalem program Ghent University Ghent Belgium
NanoString Technologies Seattle Washington USA
Parker Institute for Cancer Immunotherapy MSKCC New York City New York USA
Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France
Refuge Biotechnologies Menlo Park California USA
Replimune Inc Woburn Massachusetts USA
Sandra and Edward Meyer Cancer Center New York City New York USA
SIRIC SOCRATES DHU Torino Faculté de Medecine Université Paris Saclay Kremlin Bicêtre France
Sorbonne Université Paris France
Suzhou Institute for Systems Medicine Chinese Academy of Medical Sciences Suzhou China
The Institute of Cancer Research London UK
Universitätsklinikum Erlangen Erlangen Germany
Université de Paris Paris France
University of Manchester NIHR Manchester Biomedical Research Centre Christie Hospital Manchester UK
UOSD Immunology and Immunotherapy Unit IRCCS Regina Elena National Cancer Institute Rome Italy
VIB Center for Inflammation Research Ghent Belgium
VIB KU Leuven Center for Cancer Biology KU Leuevn Leuven Belgium
Zobrazit více v PubMed
Galluzzi L, Vitale I, Aaronson SA, et al. . Molecular mechanisms of cell death: recommendations of the nomenclature Committee on cell death 2018. Cell Death Differ 2018;25:486–541. 10.1038/s41418-017-0012-4 PubMed DOI PMC
Tang D, Kang R, Berghe TV, et al. . The molecular machinery of regulated cell death. Cell Res 2019;29:347–64. 10.1038/s41422-019-0164-5 PubMed DOI PMC
Green DR, Ferguson T, Zitvogel L, et al. . Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009;9:353–63. 10.1038/nri2545 PubMed DOI PMC
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742–58. 10.1016/j.cell.2011.10.033 PubMed DOI PMC
Galluzzi L, Buqué A, Kepp O, et al. . Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017;17:97–111. 10.1038/nri.2016.107 PubMed DOI
Torchinsky MB, Garaude J, Martin AP, et al. . Innate immune recognition of infected apoptotic cells directs Th17 cell differentiation. Nature 2009;458:78–82. 10.1038/nature07781 PubMed DOI
Campisi L, Barbet G, Ding Y, et al. . Apoptosis in response to microbial infection induces autoreactive Th17 cells. Nat Immunol 2016;17:1084–92. 10.1038/ni.3512 PubMed DOI PMC
Nair-Gupta P, Baccarini A, Tung N, et al. . Tlr signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506–21. 10.1016/j.cell.2014.04.054 PubMed DOI PMC
Fend L, Yamazaki T, Remy C, et al. . Immune checkpoint blockade, immunogenic chemotherapy or IFN-α blockade boost the local and Abscopal effects of oncolytic virotherapy. Cancer Res 2017;77:4146–57. 10.1158/0008-5472.CAN-16-2165 PubMed DOI
Koks CA, Garg AD, Ehrhardt M, et al. . Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2015;136:E313–25. 10.1002/ijc.29202 PubMed DOI
Donnelly OG, Errington-Mais F, Steele L, et al. . Measles virus causes immunogenic cell death in human melanoma. Gene Ther 2013;20:7–15. 10.1038/gt.2011.205 PubMed DOI PMC
Brown MC, Holl EK, Boczkowski D, et al. . Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Sci Transl Med 2017;9:eaan4220 10.1126/scitranslmed.aan4220 PubMed DOI PMC
Hirvinen M, Rajecki M, Kapanen M, et al. . Immunological effects of a tumor necrosis factor Alpha–Armed oncolytic adenovirus. Hum Gene Ther 2015;26:134–44. 10.1089/hum.2014.069 PubMed DOI
Siurala M, Bramante S, Vassilev L, et al. . Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer 2015;136:945–54. 10.1002/ijc.29048 PubMed DOI
Liikanen I, Ahtiainen L, Hirvinen MLM, et al. . Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Molecular Therapy 2013;21:1212–23. 10.1038/mt.2013.51 PubMed DOI PMC
Diaconu I, Cerullo V, Hirvinen MLM, et al. . Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012;72:2327–38. 10.1158/0008-5472.CAN-11-2975 PubMed DOI
Zhou H, Forveille S, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 2016;7:e2134 10.1038/cddis.2016.47 PubMed DOI PMC
Forveille S, Zhou H, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers necrotic cell death. Cell Cycle 2015;14:3506–12. 10.1080/15384101.2015.1093710 PubMed DOI PMC
Zhou H, Sauvat A, Gomes-da-Silva LC, et al. . The oncolytic compound LTX-401 targets the Golgi apparatus. Cell Death Differ 2016;23:2031–41. 10.1038/cdd.2016.86 PubMed DOI PMC
Casares N, Pequignot MO, Tesniere A, et al. . Caspase-Dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005;202:1691–701. 10.1084/jem.20050915 PubMed DOI PMC
Fucikova J, Kralikova P, Fialova A, et al. . Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011;71:4821–33. 10.1158/0008-5472.CAN-11-0950 PubMed DOI
Obeid M, Tesniere A, Ghiringhelli F, et al. . Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54–61. 10.1038/nm1523 PubMed DOI
Tesniere A, Schlemmer F, Boige V, et al. . Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010;29:482–91. 10.1038/onc.2009.356 PubMed DOI
Kopecka J, Salaroglio IC, Righi L, et al. . Loss of C/EBP-β lip drives cisplatin resistance in malignant pleural mesothelioma. Lung Cancer 2018;120:34–45. 10.1016/j.lungcan.2018.03.022 PubMed DOI
Spisek R, Charalambous A, Mazumder A, et al. . Bortezomib enhances dendritic cell (DC)–mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007;109:4839–45. 10.1182/blood-2006-10-054221 PubMed DOI PMC
Christiansen AJ, West A, Banks K-M, et al. . Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci U S A 2011;108:4141–6. 10.1073/pnas.1011037108 PubMed DOI PMC
Fragale A, Romagnoli G, Licursi V, et al. . Antitumor effects of Epidrug/IFNα combination driven by modulated gene signatures in both colorectal cancer and dendritic cells. Cancer Immunol Res 2017;5:604–16. 10.1158/2326-6066.CIR-17-0080 PubMed DOI
Riganti C, Lingua MF, Salaroglio IC, et al. . Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 2018;7:e1398874 10.1080/2162402X.2017.1398874 PubMed DOI PMC
West AC, Mattarollo SR, Shortt J, et al. . An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 2013;73:7265–76. 10.1158/0008-5472.CAN-13-0890 PubMed DOI
Sonnemann J, Greßmann S, Becker S, et al. . The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010;66:611–6. 10.1007/s00280-010-1302-4 PubMed DOI
Sagiv-Barfi I, Kohrt HE, Burckhardt L, et al. . Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood 2015;125:2079–86. 10.1182/blood-2014-08-593137 PubMed DOI PMC
Pozzi C, Cuomo A, Spadoni I, et al. . The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016;22:624–31. 10.1038/nm.4078 PubMed DOI
Liu P, Zhao L, Pol J, et al. . Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019;10:1486 10.1038/s41467-019-09415-3 PubMed DOI PMC
Bugaut H, Bruchard M, Berger H, et al. . Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013;8:e65181 10.1371/journal.pone.0065181 PubMed DOI PMC
Chen H-M, Wang P-H, Chen S-S, et al. . Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother 2012;61:1989–2002. 10.1007/s00262-012-1258-9 PubMed DOI PMC
Yang M, Li C, Zhu S, et al. . Tfam is a novel mediator of immunogenic cancer cell death. Oncoimmunology 2018;7:e1431086 10.1080/2162402X.2018.1431086 PubMed DOI PMC
Ho WS, Wang H, Maggio D, et al. . Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 2018;9:2126 10.1038/s41467-018-04425-z PubMed DOI PMC
D’Eliseo D, Manzi L, Velotti F. Capsaicin as an inducer of damage-associated molecular patterns (DAMPs) of immunogenic cell death (ICD) in human bladder cancer cells. Cell Stress and Chaperones 2013;18:801–8. 10.1007/s12192-013-0422-2 PubMed DOI PMC
Garg AD, Vandenberk L, Koks C, et al. . Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016;328:ra27. PubMed
Ogawa M, Tomita Y, Nakamura Y, et al. . Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2017;8:10425–36. 10.18632/oncotarget.14425 PubMed DOI PMC
Fucikova J, Moserova I, Truxova I, et al. . High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer 2014;135:1165–77. 10.1002/ijc.28766 PubMed DOI
Golden EB, Frances D, Pellicciotta I, et al. . Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014;3:e28518 10.4161/onci.28518 PubMed DOI PMC
Adkins I, Sadilkova L, Hradilova N, et al. . Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells. Oncoimmunology 2017;6:e1311433 10.1080/2162402X.2017.1311433 PubMed DOI PMC
Guo S, Jing Y, Burcus NI, et al. . Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018;142:629–40. 10.1002/ijc.31071 PubMed DOI
Rubner Y, Muth C, Strnad A, et al. . Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines. Radiat Oncol 2014;9:89 10.1186/1748-717X-9-89 10.1186/1748-717X-9-89 PubMed DOI PMC
Gameiro SR, Jammeh ML, Wattenberg MM, et al. . Radiation-Induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014;5:403–16. 10.18632/oncotarget.1719 PubMed DOI PMC
Ventura A, Vassall A, Robinson E, et al. . Extracorporeal photochemotherapy drives Monocyte-to-Dendritic cell maturation to induce anticancer immunity. Cancer Res 2018;78:4045–58. 10.1158/0008-5472.CAN-18-0171 PubMed DOI
Weiss EM, Meister S, Janko C, et al. . High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunotoxicol 2010;7:194–204. 10.3109/15476911003657414 PubMed DOI
Vancsik T, Kovago C, Kiss E, et al. . Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts. J Cancer 2018;9:41–53. 10.7150/jca.21520 PubMed DOI PMC
Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 2018;419:210–21. 10.1016/j.canlet.2018.01.050 PubMed DOI PMC
Ko EC, Benjamin KT, Formenti SC. Generating antitumor immunity by targeted radiation therapy: role of dose and fractionation. Adv Radiat Oncol 2018;3:486–93. 10.1016/j.adro.2018.08.021 PubMed DOI PMC
Deutsch E, Chargari C, Galluzzi L, et al. . Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019;20:e452–63. 10.1016/S1470-2045(19)30171-8 PubMed DOI
Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 2017;280:126–48. 10.1111/imr.12574 PubMed DOI
Yatim N, Albert ML. Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity. Immunity 2011;35:478–90. 10.1016/j.immuni.2011.10.010 PubMed DOI
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:1–10. 10.1016/j.immuni.2013.07.012 PubMed DOI
Pfirschke C, Engblom C, Rickelt S, et al. . Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44:343–54. 10.1016/j.immuni.2015.11.024 PubMed DOI PMC
Voorwerk L, Slagter M, Horlings HM, et al. . Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the tonic trial. Nat Med 2019;25:920–8. 10.1038/s41591-019-0432-4 PubMed DOI
Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. . Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015;22:58–73. 10.1038/cdd.2014.137 PubMed DOI PMC
Aaes TL, Kaczmarek A, Delvaeye T, et al. . Vaccination with Necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 2016;15:274–87. 10.1016/j.celrep.2016.03.037 PubMed DOI
Van Hoecke L, Van Lint S, Roose K, et al. . Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat Commun 2018;9:3417 10.1038/s41467-018-05979-8 PubMed DOI PMC
Yang H, Ma Y, Chen G, et al. . Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016;5:e1149673 10.1080/2162402X.2016.1149673 PubMed DOI PMC
Werthmöller N, Frey B, Wunderlich R, et al. . Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015;6:e1761 10.1038/cddis.2015.129 PubMed DOI PMC
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015;517:311–20. 10.1038/nature14191 PubMed DOI
Menger L, Vacchelli E, Kepp O, et al. . Trial Watch: cardiac glycosides and cancer therapy. Oncoimmunology 2013;2:e23082 10.4161/onci.23082 PubMed DOI PMC
Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164:1233–47. 10.1016/j.cell.2016.01.049 PubMed DOI PMC
Han J, Lotze MT. The Adaptome as biomarker for assessing cancer immunity and immunotherapy. Methods Mol Biol 2055;2020:369–97. PubMed
Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 2014;15:295–305. 10.1016/j.chom.2014.02.003 PubMed DOI PMC
Garg AD, Galluzzi L, Apetoh L, et al. . Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 2015;6:588 10.3389/fimmu.2015.00588 PubMed DOI PMC
Bloy N, Garcia P, Laumont CM, et al. . Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev 2017;280:165–74. 10.1111/imr.12582 PubMed DOI
Krysko DV, Garg AD, Kaczmarek A, et al. . Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012;12:860–75. 10.1038/nrc3380 PubMed DOI
Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends in Cancer 2017;3:643–58. 10.1016/j.trecan.2017.07.002 PubMed DOI
Hou W, Zhang Q, Yan Z, et al. . Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013;4:e966 10.1038/cddis.2013.493 PubMed DOI PMC
Galluzzi L, Buqué A, Kepp O, et al. . Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28:690–714. 10.1016/j.ccell.2015.10.012 PubMed DOI
Obeid M, Panaretakis T, Joza N, et al. . Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007;14:1848–50. 10.1038/sj.cdd.4402201 PubMed DOI
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69–74. 10.1126/science.aaa4971 PubMed DOI
Vesely MD, Kershaw MH, Schreiber RD, et al. . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235–71. 10.1146/annurev-immunol-031210-101324 PubMed DOI
Golden EB, Demaria S, Schiff PB, et al. . An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013;1:365–72. 10.1158/2326-6066.CIR-13-0115 PubMed DOI PMC
Dewan MZ, Galloway AE, Kawashima N, et al. . Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clinical Cancer Research 2009;15:5379–88. 10.1158/1078-0432.CCR-09-0265 PubMed DOI PMC
Twyman-Saint Victor C, Rech AJ, Maity A, et al. . Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015;520:373–7. 10.1038/nature14292 PubMed DOI PMC
Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev 2013;255:5–12. 10.1111/imr.12109 PubMed DOI PMC
Dorhoi A, Kaufmann SHE. Fine-Tuning of T cell responses during infection. Curr Opin Immunol 2009;21:367–77. 10.1016/j.coi.2009.07.004 PubMed DOI
Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013;13:551–65. 10.1038/nri3479 PubMed DOI
Cao X. Self-Regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016;16:35–50. 10.1038/nri.2015.8 PubMed DOI
Tang D, Kang R, Coyne CB, et al. . Pamps and DAMPs: signal 0s that Spur autophagy and immunity. Immunol Rev 2012;249:158–75. 10.1111/j.1600-065X.2012.01146.x PubMed DOI PMC
Klein L, Kyewski B, Allen PM, et al. . Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014;14:377–91. 10.1038/nri3667 PubMed DOI PMC
Waldmann H. Tolerance: an overview and perspectives. Nat Rev Nephrol 2010;6:569–76. 10.1038/nrneph.2010.108 PubMed DOI
Ishak CA, Classon M, De Carvalho DD. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 2018;4:583–97. 10.1016/j.trecan.2018.05.008 PubMed DOI
Jones PA, Ohtani H, Chakravarthy A, et al. . Epigenetic therapy in immune-oncology. Nat Rev Cancer 2019;19:151–61. 10.1038/s41568-019-0109-9 PubMed DOI
Smith CC, Beckermann KE, Bortone DS, et al. . Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 2018;128:4804–20. 10.1172/JCI121476 PubMed DOI PMC
Raposo B, Merky P, Lundqvist C, et al. . T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018;9:353 10.1038/s41467-017-02763-y PubMed DOI PMC
Zervoudi E, Saridakis E, Birtley JR, et al. . Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A 2013;110:19890–5. 10.1073/pnas.1309781110 PubMed DOI PMC
Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol 2012;24:112–8. 10.1016/j.coi.2011.12.003 PubMed DOI PMC
Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev 2016;272:8–16. 10.1111/imr.12434 PubMed DOI PMC
Scally SW, Petersen J, Law SC, et al. . A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 2013;210:2569–82. 10.1084/jem.20131241 PubMed DOI PMC
van Lummel M, Duinkerken G, van Veelen PA, et al. . Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 2014;63:237–47. 10.2337/db12-1214 PubMed DOI
Greaves M. Evolutionary determinants of cancer. Cancer Discov 2015;5:806–20. 10.1158/2159-8290.CD-15-0439 PubMed DOI PMC
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017;168:613–28. 10.1016/j.cell.2017.01.018 PubMed DOI
Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol 2016;41:98–103. 10.1016/j.coi.2016.07.005 PubMed DOI
Balachandran VP, Łuksza M, Zhao JN, et al. . Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017;551:512–6. 10.1038/nature24462 PubMed DOI PMC
Kanaseki T, Tokita S, Torigoe T. Proteogenomic discovery of cancer antigens: neoantigens and beyond. Pathol Int 2019;69:511–8. 10.1111/pin.12841 PubMed DOI
Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens. Annu Rev Immunol 2019;37:173–200. 10.1146/annurev-immunol-042617-053402 PubMed DOI
Sprooten J, Ceusters J, Coosemans A, et al. . Trial Watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019;8:e1638212 10.1080/2162402X.2019.1638212 PubMed DOI PMC
Bezu L, Kepp O, Cerrato G, et al. . Trial Watch: peptide-based vaccines in anticancer therapy. Oncoimmunology 2018;7:e1511506 10.1080/2162402X.2018.1511506 PubMed DOI PMC
Kirkin AF, Dzhandzhugazyan KN, Guldberg P, et al. . Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nat Commun 2018;9:785 10.1038/s41467-018-03217-9 PubMed DOI PMC
Simpson AJG, Caballero OL, Jungbluth A, et al. . Cancer/Testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615–25. 10.1038/nrc1669 PubMed DOI
Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. . Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014;14:135–46. 10.1038/nrc3670 PubMed DOI
Schuster H, Peper JK, Bösmüller H-C, et al. . The immunopeptidomic landscape of ovarian carcinomas. Proc Natl Acad Sci U S A 2017;114:E9942–51. 10.1073/pnas.1707658114 PubMed DOI PMC
Gilboa E. The makings of a tumor rejection antigen. Immunity 1999;11:263–70. 10.1016/S1074-7613(00)80101-6 PubMed DOI
Stone JD, Harris DT, Kranz DM. Tcr affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 2015;33:16–22. 10.1016/j.coi.2015.01.003 PubMed DOI PMC
Malaker SA, Penny SA, Steadman LG, et al. . Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res 2017;5:376–84. 10.1158/2326-6066.CIR-16-0280 PubMed DOI PMC
Campbell BB, Light N, Fabrizio D, et al. . Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–56. 10.1016/j.cell.2017.09.048 PubMed DOI PMC
Lawrence MS, Stojanov P, Polak P, et al. . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214–8. 10.1038/nature12213 PubMed DOI PMC
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature 2013;500:415–21. 10.1038/nature12477 PubMed DOI PMC
McGranahan N, Furness AJS, Rosenthal R, et al. . Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–9. 10.1126/science.aaf1490 PubMed DOI PMC
Riaz N, Havel JJ, Makarov V, et al. . Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017;171:934–49. 10.1016/j.cell.2017.09.028 PubMed DOI PMC
Vitale I, Sistigu A, Manic G, et al. . Mutational and antigenic landscape in tumor progression and cancer immunotherapy. Trends Cell Biol 2019;29:396–416. 10.1016/j.tcb.2019.01.003 PubMed DOI
Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. . Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104. 10.1056/NEJMoa1801946 PubMed DOI PMC
Hellmann MD, Callahan MK, Awad MM, et al. . Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 2018;33:853–61. 10.1016/j.ccell.2018.04.001 PubMed DOI PMC
Mandal R, Samstein RM, Lee K-W, et al. . Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science 2019;364:485–91. 10.1126/science.aau0447 PubMed DOI PMC
Turan T, Kannan D, Patel M, et al. . Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 2018;6:50 10.1186/s40425-018-0355-5 PubMed DOI PMC
Kroemer G, Galluzzi L, Kepp O, et al. . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013;31:51–72. 10.1146/annurev-immunol-032712-100008 PubMed DOI
Garrido F, Aptsiauri N, Doorduijn EM, et al. . The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 2016;39:44–51. 10.1016/j.coi.2015.12.007 PubMed DOI PMC
O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16:151–67. 10.1038/s41571-018-0142-8 PubMed DOI
McGranahan N, Rosenthal R, Hiley CT, et al. . Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell 2017;171:1259–71. 10.1016/j.cell.2017.10.001 PubMed DOI PMC
Rooney MS, Shukla SA, Wu CJ, et al. . Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48–61. 10.1016/j.cell.2014.12.033 PubMed DOI PMC
Grasso CS, Giannakis M, Wells DK, et al. . Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 2018;8:730–49. 10.1158/2159-8290.CD-17-1327 PubMed DOI PMC
Goel S, DeCristo MJ, Watt AC, et al. . Cdk4/6 inhibition triggers anti-tumour immunity. Nature 2017;548:471–5. 10.1038/nature23465 PubMed DOI PMC
Lhuillier C, Rudqvist N-P, Elemento O, et al. . Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019;11:40 10.1186/s13073-019-0653-7 PubMed DOI PMC
Chabanon RM, Muirhead G, Krastev DB, et al. . Parp inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J Clin Invest 2019;129:1211–28. 10.1172/JCI123319 PubMed DOI PMC
Dillon MT, Bergerhoff KF, Pedersen M, et al. . Atr inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin Cancer Res 2019;25:3392–403. 10.1158/1078-0432.CCR-18-1821 PubMed DOI PMC
Woller N, Gürlevik E, Fleischmann-Mundt B, et al. . Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening Neoantigenome-directed T-cell responses. Molecular Therapy 2015;23:1630–40. 10.1038/mt.2015.115 PubMed DOI PMC
Briere D, Sudhakar N, Woods DM, et al. . The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018;67:381–92. 10.1007/s00262-017-2091-y PubMed DOI PMC
Segovia C, San José-Enériz E, Munera-Maravilla E, et al. . Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019;25:1073–81. 10.1038/s41591-019-0499-y PubMed DOI
Weber J, Salgaller M, Samid D, et al. . Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res 1994;54:1766–71. PubMed
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors — therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019;18:845–67. 10.1038/s41573-019-0043-2 PubMed DOI
Gay NJ, Symmons MF, Gangloff M, et al. . Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014;14:546–58. 10.1038/nri3713 PubMed DOI
Kawai T, Akira S. Toll-Like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34:637–50. 10.1016/j.immuni.2011.05.006 PubMed DOI
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373–84. 10.1038/ni.1863 PubMed DOI
Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science 2019;363:eaat8657 10.1126/science.aat8657 PubMed DOI
Chow KT, Gale M, Loo Y-M. Rig-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 2018;36:667–94. 10.1146/annurev-immunol-042617-053309 PubMed DOI
Galluzzi L, Vanpouille-Box C, Bakhoum SF, et al. . Snapshot: cGAS-STING signaling. Cell 2018;173:276–276.e1. 10.1016/j.cell.2018.03.015 PubMed DOI
Motta V, Soares F, Sun T, et al. . Nod-Like receptors: versatile cytosolic sentinels. Physiol Rev 2015;95:149–78. 10.1152/physrev.00009.2014 PubMed DOI
Kersse K, Bertrand MJM, Lamkanfi M, et al. . Nod-Like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 2011;22:257–76. 10.1016/j.cytogfr.2011.09.003 PubMed DOI
Kuriakose T, Kanneganti T-D. Zbp1: innate sensor regulating cell death and inflammation. Trends Immunol 2018;39:123–34. 10.1016/j.it.2017.11.002 PubMed DOI PMC
Alarcón CR, Goodarzi H, Lee H, et al. . Hnrnpa2B1 is a mediator of m6A-Dependent nuclear RNA processing events. Cell 2015;162:1299–308. 10.1016/j.cell.2015.08.011 PubMed DOI PMC
Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019;365:eaav0758 10.1126/science.aav0758 PubMed DOI
McNab F, Mayer-Barber K, Sher A, et al. . Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87–103. 10.1038/nri3787 PubMed DOI PMC
Kepp O, Senovilla L, Vitale I, et al. . Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014;3:e955691 10.4161/21624011.2014.955691 PubMed DOI PMC
Michaud M, Martins I, Sukkurwala AQ, et al. . Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334:1573–7. 10.1126/science.1208347 PubMed DOI
Ghiringhelli F, Apetoh L, Tesniere A, et al. . Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 2009;15:1170–8. 10.1038/nm.2028 PubMed DOI
Garg AD, Vandenberk L, Fang S, et al. . Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 2017;24:832–43. 10.1038/cdd.2017.15 PubMed DOI PMC
Chiba S, Baghdadi M, Akiba H, et al. . Tumor-Infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor Tim-3 and the alarmin HMGB1. Nat Immunol 2012;13:832–42. 10.1038/ni.2376 PubMed DOI PMC
Apetoh L, Ghiringhelli F, Tesniere A, et al. . Toll-Like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007;13:1050–9. 10.1038/nm1622 PubMed DOI
Yang H, Hreggvidsdottir HS, Palmblad K, et al. . A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010;107:11942–7. 10.1073/pnas.1003893107 PubMed DOI PMC
Soloff AC, Lotze MT. A peaceful death orchestrates immune balance in a chaotic environment. Proc Natl Acad Sci U S A 2019;116:22901–3. 10.1073/pnas.1916211116 PubMed DOI PMC
Gorgulho CM, Romagnoli GG, Bharthi R, et al. . Johnny on the Spot-Chronic inflammation is driven by HMGB1. Front Immunol 2019;10:1561 10.3389/fimmu.2019.01561 PubMed DOI PMC
Vacchelli E, Ma Y, Baracco EE, et al. . Chemotherapy-Induced antitumor immunity requires formyl peptide receptor 1. Science 2015;350:972–8. 10.1126/science.aad0779 PubMed DOI
Sistigu A, Yamazaki T, Vacchelli E, et al. . Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014;20:1301–9. 10.1038/nm.3708 PubMed DOI
Krombach J, Hennel R, Brix N, et al. . Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2019;8:e1523097 10.1080/2162402X.2018.1523097 PubMed DOI PMC
Panaretakis T, Joza N, Modjtahedi N, et al. . The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008;15:1499–509. 10.1038/cdd.2008.67 PubMed DOI
Ahrens S, Zelenay S, Sancho D, et al. . F-Actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012;36:635–45. 10.1016/j.immuni.2012.03.008 PubMed DOI
Krysko DV, Agostinis P, Krysko O, et al. . Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011;32:157–64. 10.1016/j.it.2011.01.005 PubMed DOI
Zhang Q, Raoof M, Chen Y, et al. . Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104–7. 10.1038/nature08780 PubMed DOI PMC
Rodriguez-Ruiz ME, Buqué A, Hensler M, et al. . Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 2019;8:e1655964 10.1080/2162402X.2019.1655964 PubMed DOI PMC
Martins I, Wang Y, Michaud M, et al. . Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2014;21:79–91. 10.1038/cdd.2013.75 PubMed DOI PMC
Martins I, Michaud M, Sukkurwala AQ, et al. . Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 2012;8:413–5. 10.4161/auto.19009 PubMed DOI
Apetoh L, Ghiringhelli F, Tesniere A, et al. . The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007;220:47–59. 10.1111/j.1600-065X.2007.00573.x PubMed DOI
Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev 2017;280:41–56. 10.1111/imr.12577 PubMed DOI PMC
Di Virgilio F, Sarti AC, Falzoni S, et al. . Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018;18:601–18. 10.1038/s41568-018-0037-0 PubMed DOI
Vanpouille-Box C, Demaria S, Formenti SC, et al. . Cytosolic DNA sensing in organismal tumor control. Cancer Cell 2018;34:361–78. 10.1016/j.ccell.2018.05.013 PubMed DOI
Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18:309–24. 10.1038/nri.2017.142 PubMed DOI
Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018;19:731–45. 10.1038/s41580-018-0068-0 PubMed DOI
Galluzzi L, Baehrecke EH, Ballabio A, et al. . Molecular definitions of autophagy and related processes. Embo J 2017;36:1811–36. 10.15252/embj.201796697 PubMed DOI PMC
Sicari D, Igbaria A, Chevet E. Control of protein homeostasis in the early secretory pathway: current status and challenges. Cells 2019;8:1347 10.3390/cells8111347 PubMed DOI PMC
Long M, McWilliams TG. Monitoring autophagy in cancer: from bench to bedside. Semin Cancer Biol 2019. 10.1016/j.semcancer.2019.05.016 PubMed DOI
Juste YR, Cuervo AM. Analysis of chaperone-mediated autophagy. Methods Mol Biol 1880;2019:703–27. PubMed PMC
Boyd-Tressler A, Penuela S, Laird DW, et al. . Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism. J. Biol. Chem. 2014;289:27246–63. 10.1074/jbc.M114.590240 PubMed DOI PMC
Garg AD, Krysko DV, Verfaillie T, et al. . A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. Embo J 2012;31:1062–79. 10.1038/emboj.2011.497 PubMed DOI PMC
Elliott MR, Chekeni FB, Trampont PC, et al. . Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009;461:282–6. 10.1038/nature08296 PubMed DOI PMC
Panaretakis T, Kepp O, Brockmeier U, et al. . Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J 2009;28:578–90. 10.1038/emboj.2009.1 PubMed DOI PMC
Senovilla L, Vitale I, Martins I, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. 10.1126/science.1224922 PubMed DOI
Truxova I, Kasikova L, Salek C, et al. . Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica 2019:haematol.2019.223933 10.3324/haematol.2019.223933 PubMed DOI PMC
Bezu L, Sauvat A, Humeau J, et al. . eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 2018;25:1375–93. 10.1038/s41418-017-0044-9 PubMed DOI PMC
Sukkurwala AQ, Martins I, Wang Y, et al. . Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014;21:59–68. 10.1038/cdd.2013.73 PubMed DOI PMC
Tufi R, Panaretakis T, Bianchi K, et al. . Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ 2008;15:274–82. 10.1038/sj.cdd.4402275 PubMed DOI
Moserova I, Truxova I, Garg AD, et al. . Caspase-2 and oxidative stress underlie the immunogenic potential of high hydrostatic pressure-induced cancer cell death. Oncoimmunology 2017;6:e1258505 10.1080/2162402X.2016.1258505 PubMed DOI PMC
Musahl A-S, Huang X, Rusakiewicz S, et al. . A long non-coding RNA links calreticulin-mediated immunogenic cell removal to Rb1 transcription. Oncogene 2015;34:5046–54. 10.1038/onc.2014.424 PubMed DOI
Colangelo T, Polcaro G, Ziccardi P, et al. . The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis 2016;7:e2108 10.1038/cddis.2016.29 PubMed DOI PMC
Liu C-C, Leclair P, Pedari F, et al. . Integrins and ERp57 coordinate to regulate cell surface calreticulin in immunogenic cell death. Front Oncol 2019;9:411 10.3389/fonc.2019.00411 PubMed DOI PMC
Gardai SJ, McPhillips KA, Frasch SC, et al. . Cell-Surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321–34. 10.1016/j.cell.2005.08.032 PubMed DOI
Chen X, Fosco D, Kline DE, et al. . Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia. Oncoimmunology 2017;6:e1278332 10.1080/2162402X.2016.1278332 PubMed DOI PMC
Fucikova J, Kasikova L, Truxova I, et al. . Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2018;193:25–34. 10.1016/j.imlet.2017.11.006 PubMed DOI
Radogna F, Diederich M. Stress-Induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochem Pharmacol 2018;153:12–23. 10.1016/j.bcp.2018.02.006 PubMed DOI
Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. . Dna exonuclease TREX1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017;8:15618 10.1038/ncomms15618 PubMed DOI PMC
Deng L, Liang H, Xu M, et al. . Sting-Dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014;41:843–52. 10.1016/j.immuni.2014.10.019 PubMed DOI PMC
Zitvogel L, Galluzzi L, Kepp O, et al. . Type I interferons in anticancer immunity. Nat Rev Immunol 2015;15:405–14. 10.1038/nri3845 PubMed DOI
Diamond JM, Vanpouille-Box C, Spada S, et al. . Exosomes shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 2018;6:910–20. 10.1158/2326-6066.CIR-17-0581 PubMed DOI PMC
Kang R, Tang D, Schapiro NE, et al. . The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014;33:567–77. 10.1038/onc.2012.631 PubMed DOI PMC
Kang R, Chen R, Xie M, et al. . The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis. J.i. 2016;196:4331–7. 10.4049/jimmunol.1502340 PubMed DOI PMC
Boone BA, Orlichenko L, Schapiro NE, et al. . The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 2015;22:326–34. 10.1038/cgt.2015.21 PubMed DOI PMC
Bianchi ME, Crippa MP, Manfredi AA, et al. . High-Mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2017;280:74–82. 10.1111/imr.12601 PubMed DOI
Venereau E, Casalgrandi M, Schiraldi M, et al. . Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012;209:1519–28. 10.1084/jem.20120189 PubMed DOI PMC
Garg AD, Dudek AM, Ferreira GB, et al. . Ros-Induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013;9:1292–307. 10.4161/auto.25399 PubMed DOI
Yatim N, Jusforgues-Saklani H, Orozco S, et al. . RIPK1 and NF- B signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015;350:328–34. 10.1126/science.aad0395 PubMed DOI PMC
Martins I, Kepp O, Schlemmer F, et al. . Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011;30:1147–58. 10.1038/onc.2010.500 PubMed DOI
Aranda F, Bloy N, Pesquet J, et al. . Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene 2015;34:3053–62. 10.1038/onc.2014.234 PubMed DOI
Garg AD, Elsen S, Krysko DV, et al. . Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2015;6:26841–60. 10.18632/oncotarget.4754 PubMed DOI PMC
Dudek-Peri AM, Ferreira GB, Muchowicz A, et al. . Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res 2015;75:1603–14. 10.1158/0008-5472.CAN-14-2089 PubMed DOI
Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. . Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010;2:63ra94 10.1126/scitranslmed.3001375 PubMed DOI PMC
Romano E, Rufo N, Korf H, et al. . Bnip3 modulates the interface between B16-F10 melanoma cells and immune cells. Oncotarget 2018;9:17631–44. 10.18632/oncotarget.24815 10.18632/oncotarget.24815 PubMed DOI PMC
Fucikova J, Moserova I, Urbanova L, et al. . Prognostic and predictive value of DAMPs and DAMP-Associated processes in cancer. Front Immunol 2015;6:402 10.3389/fimmu.2015.00402 PubMed DOI PMC
Fucikova J, Becht E, Iribarren K, et al. . Calreticulin expression in human Non–Small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res 2016;76:1746–56. 10.1158/0008-5472.CAN-15-1142 PubMed DOI
Ladoire S, Penault-Llorca F, Senovilla L, et al. . Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 2015;11:1878–90. 10.1080/15548627.2015.1082022 PubMed DOI PMC
Yamazaki T, Hannani D, Poirier-Colame V, et al. . Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014;21:69–78. 10.1038/cdd.2013.72 PubMed DOI PMC
Fucikova J, Truxova I, Hensler M, et al. . Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 2016;128:3113–24. 10.1182/blood-2016-08-731737 PubMed DOI PMC
Wemeau M, Kepp O, Tesnière A, et al. . Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010;1:e104 10.1038/cddis.2010.82 PubMed DOI PMC
Bidwell BN, Slaney CY, Withana NP, et al. . Silencing of IRF7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 2012;18:1224–31. 10.1038/nm.2830 PubMed DOI
Suzuki S, Yokobori T, Tanaka N, et al. . Cd47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2012;28:465–72. 10.3892/or.2012.1831 PubMed DOI
Majeti R, Chao MP, Alizadeh AA, et al. . Cd47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286–99. 10.1016/j.cell.2009.05.045 PubMed DOI PMC
Wang H, Tan M, Zhang S, et al. . Expression and significance of CD44, CD47 and c-Met in ovarian clear cell carcinoma. Int J Mol Sci 2015;16:3391–404. 10.3390/ijms16023391 PubMed DOI PMC
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015;16:343–53. 10.1038/ni.3123 PubMed DOI PMC
Fridman WH, Zitvogel L, Sautès–Fridman C, et al. . The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14:717–34. 10.1038/nrclinonc.2017.101 PubMed DOI
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321–30. 10.1038/nature21349 PubMed DOI
Sharma P, Hu-Lieskovan S, Wargo JA, et al. . Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707–23. 10.1016/j.cell.2017.01.017 PubMed DOI PMC
Sabatos-Peyton CA, Nevin J, Brock A, et al. . Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncoimmunology 2018;7:e1385690 10.1080/2162402X.2017.1385690 PubMed DOI PMC
Mittal SK, Roche PA. Suppression of antigen presentation by IL-10. Curr Opin Immunol 2015;34:22–7. 10.1016/j.coi.2014.12.009 PubMed DOI PMC
Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 2013;13:788–99. 10.1038/nrc3603 PubMed DOI PMC
Shalapour S, Karin M. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity 2019;51:15–26. 10.1016/j.immuni.2019.06.021 PubMed DOI PMC
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27:109–18. 10.1038/cr.2016.151 PubMed DOI PMC
Wellenstein MD, de Visser KE. Cancer-Cell-Intrinsic mechanisms shaping the tumor immune landscape. Immunity 2018;48:399–416. 10.1016/j.immuni.2018.03.004 PubMed DOI
Vitale I, Manic G, Coussens LM, et al. . Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36–50. 10.1016/j.cmet.2019.06.001 PubMed DOI
Montalbán del Barrio I, Penski C, Schlahsa L, et al. . Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 2016;4:49 10.1186/s40425-016-0154-9 PubMed DOI PMC
d’Almeida SM, Kauffenstein G, Roy C, et al. . The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: regulatory role of IL-27. Oncoimmunology 2016;5:e1178025 10.1080/2162402X.2016.1178025 PubMed DOI PMC
Mandapathil M, Hilldorfer B, Szczepanski MJ, et al. . Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 2010;285:7176–86. 10.1074/jbc.M109.047423 PubMed DOI PMC
Vijayan D, Young A, Teng MWL, et al. . Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017;17:709–24. 10.1038/nrc.2017.86 PubMed DOI
Li C, Zhang Y, Cheng X, et al. . Pink1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated Immunometabolism. Dev Cell 2018;46:441–55. 10.1016/j.devcel.2018.07.012 PubMed DOI PMC
Shimada K, Crother TR, Karlin J, et al. . Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36:401–14. 10.1016/j.immuni.2012.01.009 PubMed DOI PMC
McLane LM, Abdel-Hakeem MS, Wherry EJ. Cd8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 2019;37:457–95. 10.1146/annurev-immunol-041015-055318 PubMed DOI
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015;15:486–99. 10.1038/nri3862 PubMed DOI PMC
Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 2016;39:1–6. 10.1016/j.coi.2015.10.009 PubMed DOI PMC
Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 2015;5:915–9. 10.1158/2159-8290.CD-15-0563 PubMed DOI PMC
Chang C-H, Qiu J, O'Sullivan D, et al. . Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229–41. 10.1016/j.cell.2015.08.016 PubMed DOI PMC
Bantug GR, Galluzzi L, Kroemer G, et al. . The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 2018;18:19–34. 10.1038/nri.2017.99 PubMed DOI
Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the Tryptophan–Kynurenine–Aryl hydrocarbon axis. Clin Cancer Res 2019;25:1462–71. 10.1158/1078-0432.CCR-18-2882 PubMed DOI PMC
Colegio OR, Chu N-Q, Szabo AL, et al. . Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513:559–63. 10.1038/nature13490 PubMed DOI PMC
Voron T, Colussi O, Marcheteau E, et al. . Vegf-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015;212:139–48. 10.1084/jem.20140559 PubMed DOI PMC
Flavell RA, Sanjabi S, Wrzesinski SH, et al. . The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 2010;10:554–67. 10.1038/nri2808 PubMed DOI PMC
Yamauchi M, Barker TH, Gibbons DL, et al. . The fibrotic tumor stroma. J Clin Invest 2018;128:16–25. 10.1172/JCI93554 PubMed DOI PMC
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018;9:115 10.1038/s41419-017-0061-0 PubMed DOI PMC
Menger L, Vacchelli E, Adjemian S, et al. . Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012;143:ra99. PubMed
Kepp O, Galluzzi L, Lipinski M, et al. . Cell death assays for drug discovery. Nat Rev Drug Discov 2011;10:221–37. 10.1038/nrd3373 PubMed DOI
Galluzzi L, Aaronson SA, Abrams J, et al. . Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009;16:1093–107. 10.1038/cdd.2009.44 PubMed DOI PMC
van Schadewijk A, van’t Wout EFA, Stolk J, et al. . A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress and Chaperones 2012;17:275–9. 10.1007/s12192-011-0306-2 PubMed DOI PMC
Lam AR, Le Bert N, Ho SSW, et al. . Rae1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014;74:2193–203. 10.1158/0008-5472.CAN-13-1703 PubMed DOI PMC
Duewell P, Beller E, Kirchleitner SV, et al. . Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. Oncoimmunology 2015;4:e1029698 10.1080/2162402X.2015.1029698 PubMed DOI PMC
Shen YJ, Le Bert N, Chitre AA, et al. . Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015;11:460–73. 10.1016/j.celrep.2015.03.041 PubMed DOI
Diner EJ, Burdette DL, Wilson SC, et al. . The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human sting. Cell Rep 2013;3:1355–61. 10.1016/j.celrep.2013.05.009 PubMed DOI PMC
Seo GJ, Kim C, Shin W-J, et al. . TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 2018;9:613 10.1038/s41467-018-02936-3 PubMed DOI PMC
Klionsky DJ, Abdelmohsen K, Abe A, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222. 10.1080/15548627.2015.1100356 PubMed DOI PMC
Teo ZL, Versaci S, Dushyanthen S, et al. . Combined Cdk4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res 2017;77:6340–52. 10.1158/0008-5472.CAN-17-2210 PubMed DOI
Lu J, Liu X, Liao Y-P, et al. . Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018;12:11041–61. 10.1021/acsnano.8b05189 PubMed DOI PMC
Sukkurwala AQ, Adjemian S, Senovilla L, et al. . Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 2014;3:e28473 10.4161/onci.28473 PubMed DOI PMC
Garg AD, Krysko DV, Vandenabeele P, et al. . Hypericin-Based photodynamic therapy induces surface exposure of damage-associated molecular patterns like Hsp70 and calreticulin. Cancer Immunol Immunother 2012;61:215–21. 10.1007/s00262-011-1184-2 PubMed DOI PMC
Hossain DMS, Javaid S, Cai M, et al. . Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J Clin Invest 2018;128:644–54. 10.1172/JCI94586 PubMed DOI PMC
Imamura H, Huynh Nhat KP, Togawa H, et al. . Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009;106:15651–6. 10.1073/pnas.0904764106 PubMed DOI PMC
Melis MHM, Simpson KL, Dovedi SJ, et al. . Sustained tumour eradication after induced caspase-3 activation and synchronous tumour apoptosis requires an intact host immune response. Cell Death Differ 2013;20:765–73. 10.1038/cdd.2013.8 PubMed DOI PMC
Martins I, Kepp O, Menger L, et al. . Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol 2013;1004:43–56. 10.1007/978-1-62703-383-1_4 PubMed DOI
Schiavoni G, Sistigu A, Valentini M, et al. . Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011;71:768–78. 10.1158/0008-5472.CAN-10-2788 PubMed DOI
Schildkopf P, Frey B, Ott OJ, et al. . Radiation combined with hyperthermia induces Hsp70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 2011;101:109–15. 10.1016/j.radonc.2011.05.056 PubMed DOI
Lorenzi S, Mattei F, Sistigu A, et al. . Type I IFNs control antigen retention and survival of CD8α(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 2011;186:5142–50. 10.4049/jimmunol.1004163 PubMed DOI
Kulzer L, Rubner Y, Deloch L, et al. . Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol 2014;11:328–36. 10.3109/1547691X.2014.880533 PubMed DOI
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27. 10.1111/imr.12621 PubMed DOI PMC
Mantovani A, Dinarello CA, Molgora M, et al. . Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 2019;50:778–95. 10.1016/j.immuni.2019.03.012 PubMed DOI PMC
Mattei F, Schiavoni G, Sestili P, et al. . Irf-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 2012;14:1223–43. 10.1593/neo.121444 PubMed DOI PMC
Sagwal SK, Pasqual-Melo G, Bodnar Y, et al. . Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis 2018;9:1179 10.1038/s41419-018-1221-6 PubMed DOI PMC
Parlato S, De Ninno A, Molfetta R, et al. . 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017;7:1093 10.1038/s41598-017-01013-x PubMed DOI PMC
Nam G-H, Lee EJ, Kim YK, et al. . Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018;9:2165 10.1038/s41467-018-04607-9 PubMed DOI PMC
Ma Y, Aymeric L, Locher C, et al. . Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011;208:491–503. 10.1084/jem.20100269 PubMed DOI PMC
Malamas AS, Gameiro SR, Knudson KM, et al. . Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget 2016;7:86937–47. 10.18632/oncotarget.13520 PubMed DOI PMC
Duewell P, Steger A, Lohr H, et al. . Rig-I-Like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ 2014;21:1825–37. 10.1038/cdd.2014.96 PubMed DOI PMC
Prestwich RJ, Errington F, Ilett EJ, et al. . Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clinical Cancer Research 2008;14:7358–66. 10.1158/1078-0432.CCR-08-0831 PubMed DOI PMC
Müller LME, Holmes M, Michael JL, et al. . Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J Immunother Cancer 2019;7:164 10.1186/s40425-019-0632-y PubMed DOI PMC
Ma Y, Adjemian S, Mattarollo SR, et al. . Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013;38:729–41. 10.1016/j.immuni.2013.03.003 PubMed DOI
Wculek SK, Amores-Iniesta J, Conde-Garrosa R, et al. . Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 2019;7:100 10.1186/s40425-019-0565-5 PubMed DOI PMC
Bauer C, Bauernfeind F, Sterzik A, et al. . Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 2007;56:1275–82. 10.1136/gut.2006.108621 PubMed DOI PMC
Lu X, Ding Z-C, Cao Y, et al. . Alkylating Agent Melphalan Augments the Efficacy of Adoptive Immunotherapy Using Tumor-Specific CD4 + T Cells. J.i. 2015;194:2011–21. 10.4049/jimmunol.1401894 PubMed DOI PMC
Rodriguez-Ruiz ME, Rodriguez I, Garasa S, et al. . Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and Crosspriming. Cancer Res 2016;76:5994–6005. 10.1158/0008-5472.CAN-16-0549 PubMed DOI
Vanpouille-Box C, Diamond JM, Pilones KA, et al. . Tgfβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015;75:2232–42. 10.1158/0008-5472.CAN-14-3511 PubMed DOI PMC
Hartmann J, Wölfelschneider J, Stache C, et al. . Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlenther Onkol 2016;192:806–14. 10.1007/s00066-016-1014-8 PubMed DOI
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326–41. 10.1016/j.ccell.2017.02.009 PubMed DOI PMC
Ngwa W, Irabor OC, Schoenfeld JD, et al. . Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018;18:313–22. 10.1038/nrc.2018.6 PubMed DOI PMC
Demaria S, Kawashima N, Yang AM, et al. . Immune-Mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 2005;11:728–34. PubMed
Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, et al. . Tgfβ blockade enhances radiotherapy Abscopal efficacy effects in combination with anti-PD1 and Anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 2019;18:621–31. 10.1158/1535-7163.MCT-18-0558 PubMed DOI
Zamarin D, Holmgaard RB, Subudhi SK, et al. . Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014;226:ra32. PubMed PMC
Singh M, Savage N, Singh SK. In vivo murine models of brain metastasis. Methods Mol Biol 1869;2019:231–8. PubMed
Taggart D, Andreou T, Scott KJ, et al. . Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proc Natl Acad Sci U S A 2018;115:E1540–9. 10.1073/pnas.1714089115 PubMed DOI PMC
Seitz C, Rückert M, Deloch L, et al. . Tumor cell-based vaccine generated with high hydrostatic pressure synergizes with radiotherapy by generating a favorable anti-tumor immune microenvironment. Front Oncol 2019;9:805 10.3389/fonc.2019.00805 PubMed DOI PMC
Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol 2014;34:433–54. PubMed
Buqué A, Galluzzi L. Modeling tumor immunology and immunotherapy in mice. Trends in Cancer 2018;4:599–601. 10.1016/j.trecan.2018.07.003 PubMed DOI
Bonnotte B, Gough M, Phan V, et al. . Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res 2003;63:2145–9. PubMed
Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 2018;18:e1700167 10.1002/pmic.201700167 PubMed DOI PMC
Zitvogel L, Pitt JM, Daillère R, et al. . Mouse models in oncoimmunology. Nat Rev Cancer 2016;16:759–73. 10.1038/nrc.2016.91 PubMed DOI
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017;17:751–65. 10.1038/nrc.2017.92 PubMed DOI
Olson B, Li Y, Lin Y, et al. . Mouse models for cancer immunotherapy research. Cancer Discov 2018;8:1358–65. 10.1158/2159-8290.CD-18-0044 PubMed DOI PMC
Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years: table 1. Cold Spring Harb Protoc 2015;2015:pdb.top069906–74. 10.1101/pdb.top069906 PubMed DOI PMC
Kersten K, Visser KE, Miltenburg MH, et al. . Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017;9:137–53. 10.15252/emmm.201606857 PubMed DOI PMC
Galuschka C, Proynova R, Roth B, et al. . Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res 2017;77:2557–63. 10.1158/0008-5472.CAN-16-3099 PubMed DOI
Walsh NC, Kenney LL, Jangalwe S, et al. . Humanized mouse models of clinical disease. Annu Rev Pathol 2017;12:187–215. 10.1146/annurev-pathol-052016-100332 PubMed DOI PMC
Shultz LD, Goodwin N, Ishikawa F, et al. . Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014;2014:pdb.top073585–708. 10.1101/pdb.top073585 PubMed DOI PMC
Shultz LD, Brehm MA, Garcia-Martinez JV, et al. . Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786–98. 10.1038/nri3311 PubMed DOI PMC
Ali N, Flutter B, Sanchez Rodriguez R, et al. . Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-Effector memory phenotype. PLoS One 2012;7:e44219 10.1371/journal.pone.0044219 PubMed DOI PMC
Mosier DE, Gulizia RJ, Baird SM, et al. . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256–9. 10.1038/335256a0 PubMed DOI
Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007;7:118–30. 10.1038/nri2017 PubMed DOI
Halkias J, Yen B, Taylor KT, et al. . Conserved and divergent aspects of human T-cell development and migration in humanized mice. Immunol Cell Biol 2015;93:716–26. 10.1038/icb.2015.38 PubMed DOI PMC
Saito Y, Ellegast JM, Rafiei A, et al. . Peripheral blood CD34+ cells efficiently engraft human cytokine knock-in mice. Blood 2016;128:1829–33. 10.1182/blood-2015-10-676452 PubMed DOI PMC
Rongvaux A, Willinger T, Martinek J, et al. . Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014;32:364–72. 10.1038/nbt.2858 PubMed DOI PMC
Melkus MW, Estes JD, Padgett-Thomas A, et al. . Humanized mice Mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006;12:1316–22. 10.1038/nm1431 PubMed DOI
Lan P, Tonomura N, Shimizu A, et al. . Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006;108:487–92. 10.1182/blood-2005-11-4388 PubMed DOI
Billerbeck E, Barry WT, Mu K, et al. . Development of human CD4+Foxp3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011;117:3076–86. 10.1182/blood-2010-08-301507 PubMed DOI PMC
Ito R, Takahashi T, Katano I, et al. . Establishment of a human allergy model using human IL-3/GM-CSF–Transgenic NOG mice. J.i. 2013;191:2890–9. PubMed
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350–5. 10.1126/science.aar4060 PubMed DOI PMC
Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint Blockade-Based combination therapies. Cancer Cell 2018;33:581–98. 10.1016/j.ccell.2018.03.005 PubMed DOI PMC
Postow MA, Callahan MK, Barker CA, et al. . Immunologic correlates of the Abscopal effect in a patient with melanoma. N Engl J Med 2012;366:925–31. 10.1056/NEJMoa1112824 PubMed DOI PMC
Grimaldi AM, Simeone E, Giannarelli D, et al. . Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014;3:e28780 10.4161/onci.28780 PubMed DOI PMC
Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol 2016;16:177–92. 10.1038/nri.2016.4 PubMed DOI
Hangai S, Ao T, Kimura Y, et al. . Pge2 induced in and released by dying cells functions as an inhibitory dAMP. Proc Natl Acad Sci U S A 2016;113:3844–9. 10.1073/pnas.1602023113 PubMed DOI PMC
Bondanza A, Zimmermann Valérie S., Rovere-Querini P, et al. . Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med 2004;200:1157–65. 10.1084/jem.20040327 PubMed DOI PMC
Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013;14:668–75. 10.1038/ni.2635 PubMed DOI PMC
Green DR, Galluzzi L, Kroemer G. Cell biology. metabolic control of cell death. Science 2014;345:1250256. PubMed PMC
Gopalakrishnan V, Helmink BA, Spencer CN, et al. . The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33:570–80. 10.1016/j.ccell.2018.03.015 PubMed DOI PMC
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–55. 10.1038/nn.4476 PubMed DOI PMC
Formenti SC, Rudqvist N-P, Golden E, et al. . Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 2018;24:1845–51. 10.1038/s41591-018-0232-2 PubMed DOI PMC
Trial watch: chemotherapy-induced immunogenic cell death in oncology
Promises and Challenges of Immunogenic Chemotherapy in Multiple Myeloma
Immunological configuration of ovarian carcinoma: features and impact on disease outcome
LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells
Cardiac Glycosides as Immune System Modulators
Detection of immunogenic cell death and its relevance for cancer therapy
Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective
Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer