Consensus guidelines for the definition, detection and interpretation of immunogenic cell death

. 2020 Mar ; 8 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32209603

Grantová podpora
21855 Cancer Research UK - United Kingdom
R01 CA229275 NCI NIH HHS - United States
P01 CA128814 NCI NIH HHS - United States
R01 CA160417 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
28724 Cancer Research UK - United Kingdom
R01 GM127791 NIGMS NIH HHS - United States

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.

Calidi Biotherapeutics San Diego California USA

Cancer Gene Therapy Group Translational Immunology Research Program University of Helsinki Helsinki Finland

Candiolo Cancer Institute FPO IRCCS Candiolo Italy

Caryl and Israel Englander Institute for Precision Medicine New York City New York USA

Cell Death Research and Therapy Laboratory Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium

Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France

Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal Quebec City Canada

Centro de Investigação Translacional em Oncologia LIM24 Instituto do Câncer do Estado de São Paulo Faculdade de Medicina Universidade de São Paulo São Paulo Brasil

Comprehensive Cancer Center Helsinki University Hospital Helsinki Finland

Comprehensive Cancer Center Yale University School of Medicine New Haven Connecticut USA

Department of Bioengineering University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

Department of Biomedical Molecular Biology Ghent University Ghent Belgium

Department of Dermatology Yale School of Medicine New Haven Connecticut USA

Department of Immunology Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Immunology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

Department of Medical Biology University of Tromsø Tromsø Norway

Department of Medicine Memorial Sloan Kettering Cancer Center New York City New York USA

Department of Medicine Weill Cornell Medical College New York City New York USA

Department of Oncology and Molecular Medicine Istituto Superiore di Sanità Rome Italy

Department of Oncology University of Melbourne Parkville Victoria Australia

Department of Oncology University of Torino Torino Italy

Department of Pathology and Laboratory Medicine Weill Cornell Medical College New York City New York USA

Department of Pharmacology and Pathology University of California at San Diego School of Medicine La Jolla California USA

Department of Radiation Oncology Gustave Roussy Cancer Campus Villejuif France

Department of Radiation Oncology Weill Cornell Medical College New York City New York USA

Department of Surgery University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

Department of Surgery UT Southwestern Medical Center Dallas Texas USA

Division of Radiotherapy and Imaging The Institute of Cancer Research London UK

Division of Research and Clinical Medicine Peter MacCallum Cancer Centre Melbourne Victoria Australia

Division of Surgical Oncology Massachusetts General Hospital Boston Massachusetts USA

Equipe 11 labellisée Ligue contre le Cancer Centre de Recherche des Cordeliers Paris France

Equipe labellisée par la Ligue contre le cancer Gustave Roussy Villejuif France

ESSA Pharmaceuticals South San Francisco California USA

Faculté de Pharmacie de l'Université de Montréal Montréal Quebec City Canada

Faculty of Medicine University of Paris Sud Paris Saclay Le Kremlin Bicêtre France

Gustave Roussy Comprehensive Cancer Institute Villejuif France

Hematology and Cell Therapy Clinica Universidad de Navarra Pamplona Spain

Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York City New York USA

Humanitas Clinical and Research Center IRCCS Rozzano Italy

Humanitas University Department of Biomedical Sciences Pieve Emanuele Milan Italy

IIGM Italian Institute for Genomic Medicine c o IRCSS Candiolo Torino Italy

Immun Onkologisches Zentrum Köln Cologne Germany

Immunogenomics and Precision Oncology Platform Memorial Sloan Kettering Cancer Center New York City New York USA

Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Queensland Australia

INSERM Molecular Radiotherapy and therapeutic innovation U1030 Molecular Radiotherapy Gustave Roussy Cancer Campus Villejuif France

INSERM U1015 Villejuif France

INSERM U1138 Paris France

Institut du Cancer de Montréal Montréal Quebec City Canada

Interdepartmental Research Center of Molecular Biotechnology University of Torino Torino Italy

iRepertoire Inc Huntsville Alabama USA

Istituto di Patologia Generale Università Cattolica del Sacro Cuore Rome Italy

Karolinska Institute Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden

Laboratory of Tumor Immunology and Biology National Cancer Institute Center for Cancer Research National Institutes of Health Bethesda Maryland USA

Ludwig Collaborative and Swim Across America Laboratory MSKCC New York City New York USA

Ludwig Institute for Cancer Research and Department of Oncology University of Lausanne Lausanne Switzerland

Lytix Biopharma Oslo Norway

McMaster University Hamilton Ontario Canada

Merck and Co Inc Kenilworth New Jersey USA

Metabolomics and Cell Biology Platforms Gustave Roussy Comprehensive Cancer Institute Villejuif France

Methusalem program Ghent University Ghent Belgium

NanoString Technologies Seattle Washington USA

Parker Institute for Cancer Immunotherapy MSKCC New York City New York USA

Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France

Program of Immunology and Immunotherapy Centro de Investigación Médica Aplicada University of Navarra Pamplona Spain

Refuge Biotechnologies Menlo Park California USA

Replimune Inc Woburn Massachusetts USA

Sandra and Edward Meyer Cancer Center New York City New York USA

SIRIC SOCRATES DHU Torino Faculté de Medecine Université Paris Saclay Kremlin Bicêtre France

Sorbonne Université Paris France

Sotio Prague Czech Republic

Suzhou Institute for Systems Medicine Chinese Academy of Medical Sciences Suzhou China

The Institute of Cancer Research London UK

The Royal Marsden Hospital Institute of Cancer Research National Institute for Health Biomedical Research Centre London UK

Universitätsklinikum Erlangen Erlangen Germany

Université de Paris Paris France

University of Manchester NIHR Manchester Biomedical Research Centre Christie Hospital Manchester UK

UOSD Immunology and Immunotherapy Unit IRCCS Regina Elena National Cancer Institute Rome Italy

VIB Center for Inflammation Research Ghent Belgium

VIB KU Leuven Center for Cancer Biology KU Leuevn Leuven Belgium

Weill Cornell Medical College New York City New York USA

Erratum v

PubMed

Zobrazit více v PubMed

Galluzzi L, Vitale I, Aaronson SA, et al. . Molecular mechanisms of cell death: recommendations of the nomenclature Committee on cell death 2018. Cell Death Differ 2018;25:486–541. 10.1038/s41418-017-0012-4 PubMed DOI PMC

Tang D, Kang R, Berghe TV, et al. . The molecular machinery of regulated cell death. Cell Res 2019;29:347–64. 10.1038/s41422-019-0164-5 PubMed DOI PMC

Green DR, Ferguson T, Zitvogel L, et al. . Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009;9:353–63. 10.1038/nri2545 PubMed DOI PMC

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742–58. 10.1016/j.cell.2011.10.033 PubMed DOI PMC

Galluzzi L, Buqué A, Kepp O, et al. . Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017;17:97–111. 10.1038/nri.2016.107 PubMed DOI

Torchinsky MB, Garaude J, Martin AP, et al. . Innate immune recognition of infected apoptotic cells directs Th17 cell differentiation. Nature 2009;458:78–82. 10.1038/nature07781 PubMed DOI

Campisi L, Barbet G, Ding Y, et al. . Apoptosis in response to microbial infection induces autoreactive Th17 cells. Nat Immunol 2016;17:1084–92. 10.1038/ni.3512 PubMed DOI PMC

Nair-Gupta P, Baccarini A, Tung N, et al. . Tlr signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506–21. 10.1016/j.cell.2014.04.054 PubMed DOI PMC

Fend L, Yamazaki T, Remy C, et al. . Immune checkpoint blockade, immunogenic chemotherapy or IFN-α blockade boost the local and Abscopal effects of oncolytic virotherapy. Cancer Res 2017;77:4146–57. 10.1158/0008-5472.CAN-16-2165 PubMed DOI

Koks CA, Garg AD, Ehrhardt M, et al. . Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2015;136:E313–25. 10.1002/ijc.29202 PubMed DOI

Donnelly OG, Errington-Mais F, Steele L, et al. . Measles virus causes immunogenic cell death in human melanoma. Gene Ther 2013;20:7–15. 10.1038/gt.2011.205 PubMed DOI PMC

Brown MC, Holl EK, Boczkowski D, et al. . Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Sci Transl Med 2017;9:eaan4220 10.1126/scitranslmed.aan4220 PubMed DOI PMC

Hirvinen M, Rajecki M, Kapanen M, et al. . Immunological effects of a tumor necrosis factor Alpha–Armed oncolytic adenovirus. Hum Gene Ther 2015;26:134–44. 10.1089/hum.2014.069 PubMed DOI

Siurala M, Bramante S, Vassilev L, et al. . Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer 2015;136:945–54. 10.1002/ijc.29048 PubMed DOI

Liikanen I, Ahtiainen L, Hirvinen MLM, et al. . Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Molecular Therapy 2013;21:1212–23. 10.1038/mt.2013.51 PubMed DOI PMC

Diaconu I, Cerullo V, Hirvinen MLM, et al. . Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012;72:2327–38. 10.1158/0008-5472.CAN-11-2975 PubMed DOI

Zhou H, Forveille S, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 2016;7:e2134 10.1038/cddis.2016.47 PubMed DOI PMC

Forveille S, Zhou H, Sauvat A, et al. . The oncolytic peptide LTX-315 triggers necrotic cell death. Cell Cycle 2015;14:3506–12. 10.1080/15384101.2015.1093710 PubMed DOI PMC

Zhou H, Sauvat A, Gomes-da-Silva LC, et al. . The oncolytic compound LTX-401 targets the Golgi apparatus. Cell Death Differ 2016;23:2031–41. 10.1038/cdd.2016.86 PubMed DOI PMC

Casares N, Pequignot MO, Tesniere A, et al. . Caspase-Dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005;202:1691–701. 10.1084/jem.20050915 PubMed DOI PMC

Fucikova J, Kralikova P, Fialova A, et al. . Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011;71:4821–33. 10.1158/0008-5472.CAN-11-0950 PubMed DOI

Obeid M, Tesniere A, Ghiringhelli F, et al. . Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54–61. 10.1038/nm1523 PubMed DOI

Tesniere A, Schlemmer F, Boige V, et al. . Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010;29:482–91. 10.1038/onc.2009.356 PubMed DOI

Kopecka J, Salaroglio IC, Righi L, et al. . Loss of C/EBP-β lip drives cisplatin resistance in malignant pleural mesothelioma. Lung Cancer 2018;120:34–45. 10.1016/j.lungcan.2018.03.022 PubMed DOI

Spisek R, Charalambous A, Mazumder A, et al. . Bortezomib enhances dendritic cell (DC)–mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007;109:4839–45. 10.1182/blood-2006-10-054221 PubMed DOI PMC

Christiansen AJ, West A, Banks K-M, et al. . Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci U S A 2011;108:4141–6. 10.1073/pnas.1011037108 PubMed DOI PMC

Fragale A, Romagnoli G, Licursi V, et al. . Antitumor effects of Epidrug/IFNα combination driven by modulated gene signatures in both colorectal cancer and dendritic cells. Cancer Immunol Res 2017;5:604–16. 10.1158/2326-6066.CIR-17-0080 PubMed DOI

Riganti C, Lingua MF, Salaroglio IC, et al. . Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 2018;7:e1398874 10.1080/2162402X.2017.1398874 PubMed DOI PMC

West AC, Mattarollo SR, Shortt J, et al. . An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 2013;73:7265–76. 10.1158/0008-5472.CAN-13-0890 PubMed DOI

Sonnemann J, Greßmann S, Becker S, et al. . The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010;66:611–6. 10.1007/s00280-010-1302-4 PubMed DOI

Sagiv-Barfi I, Kohrt HE, Burckhardt L, et al. . Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood 2015;125:2079–86. 10.1182/blood-2014-08-593137 PubMed DOI PMC

Pozzi C, Cuomo A, Spadoni I, et al. . The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016;22:624–31. 10.1038/nm.4078 PubMed DOI

Liu P, Zhao L, Pol J, et al. . Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019;10:1486 10.1038/s41467-019-09415-3 PubMed DOI PMC

Bugaut H, Bruchard M, Berger H, et al. . Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013;8:e65181 10.1371/journal.pone.0065181 PubMed DOI PMC

Chen H-M, Wang P-H, Chen S-S, et al. . Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother 2012;61:1989–2002. 10.1007/s00262-012-1258-9 PubMed DOI PMC

Yang M, Li C, Zhu S, et al. . Tfam is a novel mediator of immunogenic cancer cell death. Oncoimmunology 2018;7:e1431086 10.1080/2162402X.2018.1431086 PubMed DOI PMC

Ho WS, Wang H, Maggio D, et al. . Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 2018;9:2126 10.1038/s41467-018-04425-z PubMed DOI PMC

D’Eliseo D, Manzi L, Velotti F. Capsaicin as an inducer of damage-associated molecular patterns (DAMPs) of immunogenic cell death (ICD) in human bladder cancer cells. Cell Stress and Chaperones 2013;18:801–8. 10.1007/s12192-013-0422-2 PubMed DOI PMC

Garg AD, Vandenberk L, Koks C, et al. . Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016;328:ra27. PubMed

Ogawa M, Tomita Y, Nakamura Y, et al. . Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2017;8:10425–36. 10.18632/oncotarget.14425 PubMed DOI PMC

Fucikova J, Moserova I, Truxova I, et al. . High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer 2014;135:1165–77. 10.1002/ijc.28766 PubMed DOI

Golden EB, Frances D, Pellicciotta I, et al. . Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014;3:e28518 10.4161/onci.28518 PubMed DOI PMC

Adkins I, Sadilkova L, Hradilova N, et al. . Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells. Oncoimmunology 2017;6:e1311433 10.1080/2162402X.2017.1311433 PubMed DOI PMC

Guo S, Jing Y, Burcus NI, et al. . Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018;142:629–40. 10.1002/ijc.31071 PubMed DOI

Rubner Y, Muth C, Strnad A, et al. . Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines. Radiat Oncol 2014;9:89 10.1186/1748-717X-9-89 10.1186/1748-717X-9-89 PubMed DOI PMC

Gameiro SR, Jammeh ML, Wattenberg MM, et al. . Radiation-Induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014;5:403–16. 10.18632/oncotarget.1719 PubMed DOI PMC

Ventura A, Vassall A, Robinson E, et al. . Extracorporeal photochemotherapy drives Monocyte-to-Dendritic cell maturation to induce anticancer immunity. Cancer Res 2018;78:4045–58. 10.1158/0008-5472.CAN-18-0171 PubMed DOI

Weiss EM, Meister S, Janko C, et al. . High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunotoxicol 2010;7:194–204. 10.3109/15476911003657414 PubMed DOI

Vancsik T, Kovago C, Kiss E, et al. . Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts. J Cancer 2018;9:41–53. 10.7150/jca.21520 PubMed DOI PMC

Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 2018;419:210–21. 10.1016/j.canlet.2018.01.050 PubMed DOI PMC

Ko EC, Benjamin KT, Formenti SC. Generating antitumor immunity by targeted radiation therapy: role of dose and fractionation. Adv Radiat Oncol 2018;3:486–93. 10.1016/j.adro.2018.08.021 PubMed DOI PMC

Deutsch E, Chargari C, Galluzzi L, et al. . Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019;20:e452–63. 10.1016/S1470-2045(19)30171-8 PubMed DOI

Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 2017;280:126–48. 10.1111/imr.12574 PubMed DOI

Yatim N, Albert ML. Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity. Immunity 2011;35:478–90. 10.1016/j.immuni.2011.10.010 PubMed DOI

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:1–10. 10.1016/j.immuni.2013.07.012 PubMed DOI

Pfirschke C, Engblom C, Rickelt S, et al. . Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44:343–54. 10.1016/j.immuni.2015.11.024 PubMed DOI PMC

Voorwerk L, Slagter M, Horlings HM, et al. . Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the tonic trial. Nat Med 2019;25:920–8. 10.1038/s41591-019-0432-4 PubMed DOI

Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. . Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015;22:58–73. 10.1038/cdd.2014.137 PubMed DOI PMC

Aaes TL, Kaczmarek A, Delvaeye T, et al. . Vaccination with Necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 2016;15:274–87. 10.1016/j.celrep.2016.03.037 PubMed DOI

Van Hoecke L, Van Lint S, Roose K, et al. . Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat Commun 2018;9:3417 10.1038/s41467-018-05979-8 PubMed DOI PMC

Yang H, Ma Y, Chen G, et al. . Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016;5:e1149673 10.1080/2162402X.2016.1149673 PubMed DOI PMC

Werthmöller N, Frey B, Wunderlich R, et al. . Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015;6:e1761 10.1038/cddis.2015.129 PubMed DOI PMC

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015;517:311–20. 10.1038/nature14191 PubMed DOI

Menger L, Vacchelli E, Kepp O, et al. . Trial Watch: cardiac glycosides and cancer therapy. Oncoimmunology 2013;2:e23082 10.4161/onci.23082 PubMed DOI PMC

Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164:1233–47. 10.1016/j.cell.2016.01.049 PubMed DOI PMC

Han J, Lotze MT. The Adaptome as biomarker for assessing cancer immunity and immunotherapy. Methods Mol Biol 2055;2020:369–97. PubMed

Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 2014;15:295–305. 10.1016/j.chom.2014.02.003 PubMed DOI PMC

Garg AD, Galluzzi L, Apetoh L, et al. . Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 2015;6:588 10.3389/fimmu.2015.00588 PubMed DOI PMC

Bloy N, Garcia P, Laumont CM, et al. . Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev 2017;280:165–74. 10.1111/imr.12582 PubMed DOI

Krysko DV, Garg AD, Kaczmarek A, et al. . Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012;12:860–75. 10.1038/nrc3380 PubMed DOI

Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends in Cancer 2017;3:643–58. 10.1016/j.trecan.2017.07.002 PubMed DOI

Hou W, Zhang Q, Yan Z, et al. . Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013;4:e966 10.1038/cddis.2013.493 PubMed DOI PMC

Galluzzi L, Buqué A, Kepp O, et al. . Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28:690–714. 10.1016/j.ccell.2015.10.012 PubMed DOI

Obeid M, Panaretakis T, Joza N, et al. . Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007;14:1848–50. 10.1038/sj.cdd.4402201 PubMed DOI

Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69–74. 10.1126/science.aaa4971 PubMed DOI

Vesely MD, Kershaw MH, Schreiber RD, et al. . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235–71. 10.1146/annurev-immunol-031210-101324 PubMed DOI

Golden EB, Demaria S, Schiff PB, et al. . An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013;1:365–72. 10.1158/2326-6066.CIR-13-0115 PubMed DOI PMC

Dewan MZ, Galloway AE, Kawashima N, et al. . Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clinical Cancer Research 2009;15:5379–88. 10.1158/1078-0432.CCR-09-0265 PubMed DOI PMC

Twyman-Saint Victor C, Rech AJ, Maity A, et al. . Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015;520:373–7. 10.1038/nature14292 PubMed DOI PMC

Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev 2013;255:5–12. 10.1111/imr.12109 PubMed DOI PMC

Dorhoi A, Kaufmann SHE. Fine-Tuning of T cell responses during infection. Curr Opin Immunol 2009;21:367–77. 10.1016/j.coi.2009.07.004 PubMed DOI

Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013;13:551–65. 10.1038/nri3479 PubMed DOI

Cao X. Self-Regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016;16:35–50. 10.1038/nri.2015.8 PubMed DOI

Tang D, Kang R, Coyne CB, et al. . Pamps and DAMPs: signal 0s that Spur autophagy and immunity. Immunol Rev 2012;249:158–75. 10.1111/j.1600-065X.2012.01146.x PubMed DOI PMC

Klein L, Kyewski B, Allen PM, et al. . Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014;14:377–91. 10.1038/nri3667 PubMed DOI PMC

Waldmann H. Tolerance: an overview and perspectives. Nat Rev Nephrol 2010;6:569–76. 10.1038/nrneph.2010.108 PubMed DOI

Ishak CA, Classon M, De Carvalho DD. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 2018;4:583–97. 10.1016/j.trecan.2018.05.008 PubMed DOI

Jones PA, Ohtani H, Chakravarthy A, et al. . Epigenetic therapy in immune-oncology. Nat Rev Cancer 2019;19:151–61. 10.1038/s41568-019-0109-9 PubMed DOI

Smith CC, Beckermann KE, Bortone DS, et al. . Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 2018;128:4804–20. 10.1172/JCI121476 PubMed DOI PMC

Raposo B, Merky P, Lundqvist C, et al. . T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018;9:353 10.1038/s41467-017-02763-y PubMed DOI PMC

Zervoudi E, Saridakis E, Birtley JR, et al. . Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A 2013;110:19890–5. 10.1073/pnas.1309781110 PubMed DOI PMC

Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol 2012;24:112–8. 10.1016/j.coi.2011.12.003 PubMed DOI PMC

Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev 2016;272:8–16. 10.1111/imr.12434 PubMed DOI PMC

Scally SW, Petersen J, Law SC, et al. . A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 2013;210:2569–82. 10.1084/jem.20131241 PubMed DOI PMC

van Lummel M, Duinkerken G, van Veelen PA, et al. . Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 2014;63:237–47. 10.2337/db12-1214 PubMed DOI

Greaves M. Evolutionary determinants of cancer. Cancer Discov 2015;5:806–20. 10.1158/2159-8290.CD-15-0439 PubMed DOI PMC

McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017;168:613–28. 10.1016/j.cell.2017.01.018 PubMed DOI

Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol 2016;41:98–103. 10.1016/j.coi.2016.07.005 PubMed DOI

Balachandran VP, Łuksza M, Zhao JN, et al. . Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017;551:512–6. 10.1038/nature24462 PubMed DOI PMC

Kanaseki T, Tokita S, Torigoe T. Proteogenomic discovery of cancer antigens: neoantigens and beyond. Pathol Int 2019;69:511–8. 10.1111/pin.12841 PubMed DOI

Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens. Annu Rev Immunol 2019;37:173–200. 10.1146/annurev-immunol-042617-053402 PubMed DOI

Sprooten J, Ceusters J, Coosemans A, et al. . Trial Watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019;8:e1638212 10.1080/2162402X.2019.1638212 PubMed DOI PMC

Bezu L, Kepp O, Cerrato G, et al. . Trial Watch: peptide-based vaccines in anticancer therapy. Oncoimmunology 2018;7:e1511506 10.1080/2162402X.2018.1511506 PubMed DOI PMC

Kirkin AF, Dzhandzhugazyan KN, Guldberg P, et al. . Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nat Commun 2018;9:785 10.1038/s41467-018-03217-9 PubMed DOI PMC

Simpson AJG, Caballero OL, Jungbluth A, et al. . Cancer/Testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615–25. 10.1038/nrc1669 PubMed DOI

Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. . Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014;14:135–46. 10.1038/nrc3670 PubMed DOI

Schuster H, Peper JK, Bösmüller H-C, et al. . The immunopeptidomic landscape of ovarian carcinomas. Proc Natl Acad Sci U S A 2017;114:E9942–51. 10.1073/pnas.1707658114 PubMed DOI PMC

Gilboa E. The makings of a tumor rejection antigen. Immunity 1999;11:263–70. 10.1016/S1074-7613(00)80101-6 PubMed DOI

Stone JD, Harris DT, Kranz DM. Tcr affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 2015;33:16–22. 10.1016/j.coi.2015.01.003 PubMed DOI PMC

Malaker SA, Penny SA, Steadman LG, et al. . Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res 2017;5:376–84. 10.1158/2326-6066.CIR-16-0280 PubMed DOI PMC

Campbell BB, Light N, Fabrizio D, et al. . Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–56. 10.1016/j.cell.2017.09.048 PubMed DOI PMC

Lawrence MS, Stojanov P, Polak P, et al. . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214–8. 10.1038/nature12213 PubMed DOI PMC

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature 2013;500:415–21. 10.1038/nature12477 PubMed DOI PMC

McGranahan N, Furness AJS, Rosenthal R, et al. . Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–9. 10.1126/science.aaf1490 PubMed DOI PMC

Riaz N, Havel JJ, Makarov V, et al. . Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017;171:934–49. 10.1016/j.cell.2017.09.028 PubMed DOI PMC

Vitale I, Sistigu A, Manic G, et al. . Mutational and antigenic landscape in tumor progression and cancer immunotherapy. Trends Cell Biol 2019;29:396–416. 10.1016/j.tcb.2019.01.003 PubMed DOI

Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. . Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104. 10.1056/NEJMoa1801946 PubMed DOI PMC

Hellmann MD, Callahan MK, Awad MM, et al. . Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 2018;33:853–61. 10.1016/j.ccell.2018.04.001 PubMed DOI PMC

Mandal R, Samstein RM, Lee K-W, et al. . Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science 2019;364:485–91. 10.1126/science.aau0447 PubMed DOI PMC

Turan T, Kannan D, Patel M, et al. . Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 2018;6:50 10.1186/s40425-018-0355-5 PubMed DOI PMC

Kroemer G, Galluzzi L, Kepp O, et al. . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013;31:51–72. 10.1146/annurev-immunol-032712-100008 PubMed DOI

Garrido F, Aptsiauri N, Doorduijn EM, et al. . The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 2016;39:44–51. 10.1016/j.coi.2015.12.007 PubMed DOI PMC

O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16:151–67. 10.1038/s41571-018-0142-8 PubMed DOI

McGranahan N, Rosenthal R, Hiley CT, et al. . Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell 2017;171:1259–71. 10.1016/j.cell.2017.10.001 PubMed DOI PMC

Rooney MS, Shukla SA, Wu CJ, et al. . Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48–61. 10.1016/j.cell.2014.12.033 PubMed DOI PMC

Grasso CS, Giannakis M, Wells DK, et al. . Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 2018;8:730–49. 10.1158/2159-8290.CD-17-1327 PubMed DOI PMC

Goel S, DeCristo MJ, Watt AC, et al. . Cdk4/6 inhibition triggers anti-tumour immunity. Nature 2017;548:471–5. 10.1038/nature23465 PubMed DOI PMC

Lhuillier C, Rudqvist N-P, Elemento O, et al. . Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019;11:40 10.1186/s13073-019-0653-7 PubMed DOI PMC

Chabanon RM, Muirhead G, Krastev DB, et al. . Parp inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J Clin Invest 2019;129:1211–28. 10.1172/JCI123319 PubMed DOI PMC

Dillon MT, Bergerhoff KF, Pedersen M, et al. . Atr inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin Cancer Res 2019;25:3392–403. 10.1158/1078-0432.CCR-18-1821 PubMed DOI PMC

Woller N, Gürlevik E, Fleischmann-Mundt B, et al. . Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening Neoantigenome-directed T-cell responses. Molecular Therapy 2015;23:1630–40. 10.1038/mt.2015.115 PubMed DOI PMC

Briere D, Sudhakar N, Woods DM, et al. . The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018;67:381–92. 10.1007/s00262-017-2091-y PubMed DOI PMC

Segovia C, San José-Enériz E, Munera-Maravilla E, et al. . Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019;25:1073–81. 10.1038/s41591-019-0499-y PubMed DOI

Weber J, Salgaller M, Samid D, et al. . Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res 1994;54:1766–71. PubMed

Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors — therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019;18:845–67. 10.1038/s41573-019-0043-2 PubMed DOI

Gay NJ, Symmons MF, Gangloff M, et al. . Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014;14:546–58. 10.1038/nri3713 PubMed DOI

Kawai T, Akira S. Toll-Like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34:637–50. 10.1016/j.immuni.2011.05.006 PubMed DOI

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373–84. 10.1038/ni.1863 PubMed DOI

Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science 2019;363:eaat8657 10.1126/science.aat8657 PubMed DOI

Chow KT, Gale M, Loo Y-M. Rig-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 2018;36:667–94. 10.1146/annurev-immunol-042617-053309 PubMed DOI

Galluzzi L, Vanpouille-Box C, Bakhoum SF, et al. . Snapshot: cGAS-STING signaling. Cell 2018;173:276–276.e1. 10.1016/j.cell.2018.03.015 PubMed DOI

Motta V, Soares F, Sun T, et al. . Nod-Like receptors: versatile cytosolic sentinels. Physiol Rev 2015;95:149–78. 10.1152/physrev.00009.2014 PubMed DOI

Kersse K, Bertrand MJM, Lamkanfi M, et al. . Nod-Like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 2011;22:257–76. 10.1016/j.cytogfr.2011.09.003 PubMed DOI

Kuriakose T, Kanneganti T-D. Zbp1: innate sensor regulating cell death and inflammation. Trends Immunol 2018;39:123–34. 10.1016/j.it.2017.11.002 PubMed DOI PMC

Alarcón CR, Goodarzi H, Lee H, et al. . Hnrnpa2B1 is a mediator of m6A-Dependent nuclear RNA processing events. Cell 2015;162:1299–308. 10.1016/j.cell.2015.08.011 PubMed DOI PMC

Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019;365:eaav0758 10.1126/science.aav0758 PubMed DOI

McNab F, Mayer-Barber K, Sher A, et al. . Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87–103. 10.1038/nri3787 PubMed DOI PMC

Kepp O, Senovilla L, Vitale I, et al. . Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014;3:e955691 10.4161/21624011.2014.955691 PubMed DOI PMC

Michaud M, Martins I, Sukkurwala AQ, et al. . Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334:1573–7. 10.1126/science.1208347 PubMed DOI

Ghiringhelli F, Apetoh L, Tesniere A, et al. . Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 2009;15:1170–8. 10.1038/nm.2028 PubMed DOI

Garg AD, Vandenberk L, Fang S, et al. . Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 2017;24:832–43. 10.1038/cdd.2017.15 PubMed DOI PMC

Chiba S, Baghdadi M, Akiba H, et al. . Tumor-Infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor Tim-3 and the alarmin HMGB1. Nat Immunol 2012;13:832–42. 10.1038/ni.2376 PubMed DOI PMC

Apetoh L, Ghiringhelli F, Tesniere A, et al. . Toll-Like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007;13:1050–9. 10.1038/nm1622 PubMed DOI

Yang H, Hreggvidsdottir HS, Palmblad K, et al. . A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010;107:11942–7. 10.1073/pnas.1003893107 PubMed DOI PMC

Soloff AC, Lotze MT. A peaceful death orchestrates immune balance in a chaotic environment. Proc Natl Acad Sci U S A 2019;116:22901–3. 10.1073/pnas.1916211116 PubMed DOI PMC

Gorgulho CM, Romagnoli GG, Bharthi R, et al. . Johnny on the Spot-Chronic inflammation is driven by HMGB1. Front Immunol 2019;10:1561 10.3389/fimmu.2019.01561 PubMed DOI PMC

Vacchelli E, Ma Y, Baracco EE, et al. . Chemotherapy-Induced antitumor immunity requires formyl peptide receptor 1. Science 2015;350:972–8. 10.1126/science.aad0779 PubMed DOI

Sistigu A, Yamazaki T, Vacchelli E, et al. . Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014;20:1301–9. 10.1038/nm.3708 PubMed DOI

Krombach J, Hennel R, Brix N, et al. . Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2019;8:e1523097 10.1080/2162402X.2018.1523097 PubMed DOI PMC

Panaretakis T, Joza N, Modjtahedi N, et al. . The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008;15:1499–509. 10.1038/cdd.2008.67 PubMed DOI

Ahrens S, Zelenay S, Sancho D, et al. . F-Actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012;36:635–45. 10.1016/j.immuni.2012.03.008 PubMed DOI

Krysko DV, Agostinis P, Krysko O, et al. . Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011;32:157–64. 10.1016/j.it.2011.01.005 PubMed DOI

Zhang Q, Raoof M, Chen Y, et al. . Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104–7. 10.1038/nature08780 PubMed DOI PMC

Rodriguez-Ruiz ME, Buqué A, Hensler M, et al. . Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 2019;8:e1655964 10.1080/2162402X.2019.1655964 PubMed DOI PMC

Martins I, Wang Y, Michaud M, et al. . Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2014;21:79–91. 10.1038/cdd.2013.75 PubMed DOI PMC

Martins I, Michaud M, Sukkurwala AQ, et al. . Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 2012;8:413–5. 10.4161/auto.19009 PubMed DOI

Apetoh L, Ghiringhelli F, Tesniere A, et al. . The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007;220:47–59. 10.1111/j.1600-065X.2007.00573.x PubMed DOI

Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev 2017;280:41–56. 10.1111/imr.12577 PubMed DOI PMC

Di Virgilio F, Sarti AC, Falzoni S, et al. . Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018;18:601–18. 10.1038/s41568-018-0037-0 PubMed DOI

Vanpouille-Box C, Demaria S, Formenti SC, et al. . Cytosolic DNA sensing in organismal tumor control. Cancer Cell 2018;34:361–78. 10.1016/j.ccell.2018.05.013 PubMed DOI

Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18:309–24. 10.1038/nri.2017.142 PubMed DOI

Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018;19:731–45. 10.1038/s41580-018-0068-0 PubMed DOI

Galluzzi L, Baehrecke EH, Ballabio A, et al. . Molecular definitions of autophagy and related processes. Embo J 2017;36:1811–36. 10.15252/embj.201796697 PubMed DOI PMC

Sicari D, Igbaria A, Chevet E. Control of protein homeostasis in the early secretory pathway: current status and challenges. Cells 2019;8:1347 10.3390/cells8111347 PubMed DOI PMC

Long M, McWilliams TG. Monitoring autophagy in cancer: from bench to bedside. Semin Cancer Biol 2019. 10.1016/j.semcancer.2019.05.016 PubMed DOI

Juste YR, Cuervo AM. Analysis of chaperone-mediated autophagy. Methods Mol Biol 1880;2019:703–27. PubMed PMC

Boyd-Tressler A, Penuela S, Laird DW, et al. . Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism. J. Biol. Chem. 2014;289:27246–63. 10.1074/jbc.M114.590240 PubMed DOI PMC

Garg AD, Krysko DV, Verfaillie T, et al. . A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. Embo J 2012;31:1062–79. 10.1038/emboj.2011.497 PubMed DOI PMC

Elliott MR, Chekeni FB, Trampont PC, et al. . Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009;461:282–6. 10.1038/nature08296 PubMed DOI PMC

Panaretakis T, Kepp O, Brockmeier U, et al. . Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J 2009;28:578–90. 10.1038/emboj.2009.1 PubMed DOI PMC

Senovilla L, Vitale I, Martins I, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. 10.1126/science.1224922 PubMed DOI

Truxova I, Kasikova L, Salek C, et al. . Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica 2019:haematol.2019.223933 10.3324/haematol.2019.223933 PubMed DOI PMC

Bezu L, Sauvat A, Humeau J, et al. . eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 2018;25:1375–93. 10.1038/s41418-017-0044-9 PubMed DOI PMC

Sukkurwala AQ, Martins I, Wang Y, et al. . Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014;21:59–68. 10.1038/cdd.2013.73 PubMed DOI PMC

Tufi R, Panaretakis T, Bianchi K, et al. . Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ 2008;15:274–82. 10.1038/sj.cdd.4402275 PubMed DOI

Moserova I, Truxova I, Garg AD, et al. . Caspase-2 and oxidative stress underlie the immunogenic potential of high hydrostatic pressure-induced cancer cell death. Oncoimmunology 2017;6:e1258505 10.1080/2162402X.2016.1258505 PubMed DOI PMC

Musahl A-S, Huang X, Rusakiewicz S, et al. . A long non-coding RNA links calreticulin-mediated immunogenic cell removal to Rb1 transcription. Oncogene 2015;34:5046–54. 10.1038/onc.2014.424 PubMed DOI

Colangelo T, Polcaro G, Ziccardi P, et al. . The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis 2016;7:e2108 10.1038/cddis.2016.29 PubMed DOI PMC

Liu C-C, Leclair P, Pedari F, et al. . Integrins and ERp57 coordinate to regulate cell surface calreticulin in immunogenic cell death. Front Oncol 2019;9:411 10.3389/fonc.2019.00411 PubMed DOI PMC

Gardai SJ, McPhillips KA, Frasch SC, et al. . Cell-Surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321–34. 10.1016/j.cell.2005.08.032 PubMed DOI

Chen X, Fosco D, Kline DE, et al. . Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia. Oncoimmunology 2017;6:e1278332 10.1080/2162402X.2016.1278332 PubMed DOI PMC

Fucikova J, Kasikova L, Truxova I, et al. . Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2018;193:25–34. 10.1016/j.imlet.2017.11.006 PubMed DOI

Radogna F, Diederich M. Stress-Induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochem Pharmacol 2018;153:12–23. 10.1016/j.bcp.2018.02.006 PubMed DOI

Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. . Dna exonuclease TREX1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017;8:15618 10.1038/ncomms15618 PubMed DOI PMC

Deng L, Liang H, Xu M, et al. . Sting-Dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014;41:843–52. 10.1016/j.immuni.2014.10.019 PubMed DOI PMC

Zitvogel L, Galluzzi L, Kepp O, et al. . Type I interferons in anticancer immunity. Nat Rev Immunol 2015;15:405–14. 10.1038/nri3845 PubMed DOI

Diamond JM, Vanpouille-Box C, Spada S, et al. . Exosomes shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 2018;6:910–20. 10.1158/2326-6066.CIR-17-0581 PubMed DOI PMC

Kang R, Tang D, Schapiro NE, et al. . The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014;33:567–77. 10.1038/onc.2012.631 PubMed DOI PMC

Kang R, Chen R, Xie M, et al. . The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis. J.i. 2016;196:4331–7. 10.4049/jimmunol.1502340 PubMed DOI PMC

Boone BA, Orlichenko L, Schapiro NE, et al. . The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 2015;22:326–34. 10.1038/cgt.2015.21 PubMed DOI PMC

Bianchi ME, Crippa MP, Manfredi AA, et al. . High-Mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2017;280:74–82. 10.1111/imr.12601 PubMed DOI

Venereau E, Casalgrandi M, Schiraldi M, et al. . Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012;209:1519–28. 10.1084/jem.20120189 PubMed DOI PMC

Garg AD, Dudek AM, Ferreira GB, et al. . Ros-Induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013;9:1292–307. 10.4161/auto.25399 PubMed DOI

Yatim N, Jusforgues-Saklani H, Orozco S, et al. . RIPK1 and NF- B signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015;350:328–34. 10.1126/science.aad0395 PubMed DOI PMC

Martins I, Kepp O, Schlemmer F, et al. . Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011;30:1147–58. 10.1038/onc.2010.500 PubMed DOI

Aranda F, Bloy N, Pesquet J, et al. . Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene 2015;34:3053–62. 10.1038/onc.2014.234 PubMed DOI

Garg AD, Elsen S, Krysko DV, et al. . Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2015;6:26841–60. 10.18632/oncotarget.4754 PubMed DOI PMC

Dudek-Peri AM, Ferreira GB, Muchowicz A, et al. . Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res 2015;75:1603–14. 10.1158/0008-5472.CAN-14-2089 PubMed DOI

Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. . Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010;2:63ra94 10.1126/scitranslmed.3001375 PubMed DOI PMC

Romano E, Rufo N, Korf H, et al. . Bnip3 modulates the interface between B16-F10 melanoma cells and immune cells. Oncotarget 2018;9:17631–44. 10.18632/oncotarget.24815 10.18632/oncotarget.24815 PubMed DOI PMC

Fucikova J, Moserova I, Urbanova L, et al. . Prognostic and predictive value of DAMPs and DAMP-Associated processes in cancer. Front Immunol 2015;6:402 10.3389/fimmu.2015.00402 PubMed DOI PMC

Fucikova J, Becht E, Iribarren K, et al. . Calreticulin expression in human Non–Small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res 2016;76:1746–56. 10.1158/0008-5472.CAN-15-1142 PubMed DOI

Ladoire S, Penault-Llorca F, Senovilla L, et al. . Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 2015;11:1878–90. 10.1080/15548627.2015.1082022 PubMed DOI PMC

Yamazaki T, Hannani D, Poirier-Colame V, et al. . Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014;21:69–78. 10.1038/cdd.2013.72 PubMed DOI PMC

Fucikova J, Truxova I, Hensler M, et al. . Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 2016;128:3113–24. 10.1182/blood-2016-08-731737 PubMed DOI PMC

Wemeau M, Kepp O, Tesnière A, et al. . Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010;1:e104 10.1038/cddis.2010.82 PubMed DOI PMC

Bidwell BN, Slaney CY, Withana NP, et al. . Silencing of IRF7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 2012;18:1224–31. 10.1038/nm.2830 PubMed DOI

Suzuki S, Yokobori T, Tanaka N, et al. . Cd47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2012;28:465–72. 10.3892/or.2012.1831 PubMed DOI

Majeti R, Chao MP, Alizadeh AA, et al. . Cd47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286–99. 10.1016/j.cell.2009.05.045 PubMed DOI PMC

Wang H, Tan M, Zhang S, et al. . Expression and significance of CD44, CD47 and c-Met in ovarian clear cell carcinoma. Int J Mol Sci 2015;16:3391–404. 10.3390/ijms16023391 PubMed DOI PMC

Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015;16:343–53. 10.1038/ni.3123 PubMed DOI PMC

Fridman WH, Zitvogel L, Sautès–Fridman C, et al. . The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14:717–34. 10.1038/nrclinonc.2017.101 PubMed DOI

Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321–30. 10.1038/nature21349 PubMed DOI

Sharma P, Hu-Lieskovan S, Wargo JA, et al. . Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707–23. 10.1016/j.cell.2017.01.017 PubMed DOI PMC

Sabatos-Peyton CA, Nevin J, Brock A, et al. . Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncoimmunology 2018;7:e1385690 10.1080/2162402X.2017.1385690 PubMed DOI PMC

Mittal SK, Roche PA. Suppression of antigen presentation by IL-10. Curr Opin Immunol 2015;34:22–7. 10.1016/j.coi.2014.12.009 PubMed DOI PMC

Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 2013;13:788–99. 10.1038/nrc3603 PubMed DOI PMC

Shalapour S, Karin M. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity 2019;51:15–26. 10.1016/j.immuni.2019.06.021 PubMed DOI PMC

Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27:109–18. 10.1038/cr.2016.151 PubMed DOI PMC

Wellenstein MD, de Visser KE. Cancer-Cell-Intrinsic mechanisms shaping the tumor immune landscape. Immunity 2018;48:399–416. 10.1016/j.immuni.2018.03.004 PubMed DOI

Vitale I, Manic G, Coussens LM, et al. . Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36–50. 10.1016/j.cmet.2019.06.001 PubMed DOI

Montalbán del Barrio I, Penski C, Schlahsa L, et al. . Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 2016;4:49 10.1186/s40425-016-0154-9 PubMed DOI PMC

d’Almeida SM, Kauffenstein G, Roy C, et al. . The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: regulatory role of IL-27. Oncoimmunology 2016;5:e1178025 10.1080/2162402X.2016.1178025 PubMed DOI PMC

Mandapathil M, Hilldorfer B, Szczepanski MJ, et al. . Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 2010;285:7176–86. 10.1074/jbc.M109.047423 PubMed DOI PMC

Vijayan D, Young A, Teng MWL, et al. . Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017;17:709–24. 10.1038/nrc.2017.86 PubMed DOI

Li C, Zhang Y, Cheng X, et al. . Pink1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated Immunometabolism. Dev Cell 2018;46:441–55. 10.1016/j.devcel.2018.07.012 PubMed DOI PMC

Shimada K, Crother TR, Karlin J, et al. . Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36:401–14. 10.1016/j.immuni.2012.01.009 PubMed DOI PMC

McLane LM, Abdel-Hakeem MS, Wherry EJ. Cd8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 2019;37:457–95. 10.1146/annurev-immunol-041015-055318 PubMed DOI

Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015;15:486–99. 10.1038/nri3862 PubMed DOI PMC

Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 2016;39:1–6. 10.1016/j.coi.2015.10.009 PubMed DOI PMC

Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 2015;5:915–9. 10.1158/2159-8290.CD-15-0563 PubMed DOI PMC

Chang C-H, Qiu J, O'Sullivan D, et al. . Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229–41. 10.1016/j.cell.2015.08.016 PubMed DOI PMC

Bantug GR, Galluzzi L, Kroemer G, et al. . The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 2018;18:19–34. 10.1038/nri.2017.99 PubMed DOI

Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the Tryptophan–Kynurenine–Aryl hydrocarbon axis. Clin Cancer Res 2019;25:1462–71. 10.1158/1078-0432.CCR-18-2882 PubMed DOI PMC

Colegio OR, Chu N-Q, Szabo AL, et al. . Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513:559–63. 10.1038/nature13490 PubMed DOI PMC

Voron T, Colussi O, Marcheteau E, et al. . Vegf-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015;212:139–48. 10.1084/jem.20140559 PubMed DOI PMC

Flavell RA, Sanjabi S, Wrzesinski SH, et al. . The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 2010;10:554–67. 10.1038/nri2808 PubMed DOI PMC

Yamauchi M, Barker TH, Gibbons DL, et al. . The fibrotic tumor stroma. J Clin Invest 2018;128:16–25. 10.1172/JCI93554 PubMed DOI PMC

Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018;9:115 10.1038/s41419-017-0061-0 PubMed DOI PMC

Menger L, Vacchelli E, Adjemian S, et al. . Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012;143:ra99. PubMed

Kepp O, Galluzzi L, Lipinski M, et al. . Cell death assays for drug discovery. Nat Rev Drug Discov 2011;10:221–37. 10.1038/nrd3373 PubMed DOI

Galluzzi L, Aaronson SA, Abrams J, et al. . Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009;16:1093–107. 10.1038/cdd.2009.44 PubMed DOI PMC

van Schadewijk A, van’t Wout EFA, Stolk J, et al. . A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress and Chaperones 2012;17:275–9. 10.1007/s12192-011-0306-2 PubMed DOI PMC

Lam AR, Le Bert N, Ho SSW, et al. . Rae1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014;74:2193–203. 10.1158/0008-5472.CAN-13-1703 PubMed DOI PMC

Duewell P, Beller E, Kirchleitner SV, et al. . Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. Oncoimmunology 2015;4:e1029698 10.1080/2162402X.2015.1029698 PubMed DOI PMC

Shen YJ, Le Bert N, Chitre AA, et al. . Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015;11:460–73. 10.1016/j.celrep.2015.03.041 PubMed DOI

Diner EJ, Burdette DL, Wilson SC, et al. . The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human sting. Cell Rep 2013;3:1355–61. 10.1016/j.celrep.2013.05.009 PubMed DOI PMC

Seo GJ, Kim C, Shin W-J, et al. . TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 2018;9:613 10.1038/s41467-018-02936-3 PubMed DOI PMC

Klionsky DJ, Abdelmohsen K, Abe A, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222. 10.1080/15548627.2015.1100356 PubMed DOI PMC

Teo ZL, Versaci S, Dushyanthen S, et al. . Combined Cdk4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res 2017;77:6340–52. 10.1158/0008-5472.CAN-17-2210 PubMed DOI

Lu J, Liu X, Liao Y-P, et al. . Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018;12:11041–61. 10.1021/acsnano.8b05189 PubMed DOI PMC

Sukkurwala AQ, Adjemian S, Senovilla L, et al. . Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 2014;3:e28473 10.4161/onci.28473 PubMed DOI PMC

Garg AD, Krysko DV, Vandenabeele P, et al. . Hypericin-Based photodynamic therapy induces surface exposure of damage-associated molecular patterns like Hsp70 and calreticulin. Cancer Immunol Immunother 2012;61:215–21. 10.1007/s00262-011-1184-2 PubMed DOI PMC

Hossain DMS, Javaid S, Cai M, et al. . Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J Clin Invest 2018;128:644–54. 10.1172/JCI94586 PubMed DOI PMC

Imamura H, Huynh Nhat KP, Togawa H, et al. . Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009;106:15651–6. 10.1073/pnas.0904764106 PubMed DOI PMC

Melis MHM, Simpson KL, Dovedi SJ, et al. . Sustained tumour eradication after induced caspase-3 activation and synchronous tumour apoptosis requires an intact host immune response. Cell Death Differ 2013;20:765–73. 10.1038/cdd.2013.8 PubMed DOI PMC

Martins I, Kepp O, Menger L, et al. . Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol 2013;1004:43–56. 10.1007/978-1-62703-383-1_4 PubMed DOI

Schiavoni G, Sistigu A, Valentini M, et al. . Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011;71:768–78. 10.1158/0008-5472.CAN-10-2788 PubMed DOI

Schildkopf P, Frey B, Ott OJ, et al. . Radiation combined with hyperthermia induces Hsp70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 2011;101:109–15. 10.1016/j.radonc.2011.05.056 PubMed DOI

Lorenzi S, Mattei F, Sistigu A, et al. . Type I IFNs control antigen retention and survival of CD8α(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 2011;186:5142–50. 10.4049/jimmunol.1004163 PubMed DOI

Kulzer L, Rubner Y, Deloch L, et al. . Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol 2014;11:328–36. 10.3109/1547691X.2014.880533 PubMed DOI

Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27. 10.1111/imr.12621 PubMed DOI PMC

Mantovani A, Dinarello CA, Molgora M, et al. . Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 2019;50:778–95. 10.1016/j.immuni.2019.03.012 PubMed DOI PMC

Mattei F, Schiavoni G, Sestili P, et al. . Irf-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 2012;14:1223–43. 10.1593/neo.121444 PubMed DOI PMC

Sagwal SK, Pasqual-Melo G, Bodnar Y, et al. . Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis 2018;9:1179 10.1038/s41419-018-1221-6 PubMed DOI PMC

Parlato S, De Ninno A, Molfetta R, et al. . 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017;7:1093 10.1038/s41598-017-01013-x PubMed DOI PMC

Nam G-H, Lee EJ, Kim YK, et al. . Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018;9:2165 10.1038/s41467-018-04607-9 PubMed DOI PMC

Ma Y, Aymeric L, Locher C, et al. . Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011;208:491–503. 10.1084/jem.20100269 PubMed DOI PMC

Malamas AS, Gameiro SR, Knudson KM, et al. . Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget 2016;7:86937–47. 10.18632/oncotarget.13520 PubMed DOI PMC

Duewell P, Steger A, Lohr H, et al. . Rig-I-Like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ 2014;21:1825–37. 10.1038/cdd.2014.96 PubMed DOI PMC

Prestwich RJ, Errington F, Ilett EJ, et al. . Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clinical Cancer Research 2008;14:7358–66. 10.1158/1078-0432.CCR-08-0831 PubMed DOI PMC

Müller LME, Holmes M, Michael JL, et al. . Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J Immunother Cancer 2019;7:164 10.1186/s40425-019-0632-y PubMed DOI PMC

Ma Y, Adjemian S, Mattarollo SR, et al. . Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013;38:729–41. 10.1016/j.immuni.2013.03.003 PubMed DOI

Wculek SK, Amores-Iniesta J, Conde-Garrosa R, et al. . Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 2019;7:100 10.1186/s40425-019-0565-5 PubMed DOI PMC

Bauer C, Bauernfeind F, Sterzik A, et al. . Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 2007;56:1275–82. 10.1136/gut.2006.108621 PubMed DOI PMC

Lu X, Ding Z-C, Cao Y, et al. . Alkylating Agent Melphalan Augments the Efficacy of Adoptive Immunotherapy Using Tumor-Specific CD4 + T Cells. J.i. 2015;194:2011–21. 10.4049/jimmunol.1401894 PubMed DOI PMC

Rodriguez-Ruiz ME, Rodriguez I, Garasa S, et al. . Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and Crosspriming. Cancer Res 2016;76:5994–6005. 10.1158/0008-5472.CAN-16-0549 PubMed DOI

Vanpouille-Box C, Diamond JM, Pilones KA, et al. . Tgfβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015;75:2232–42. 10.1158/0008-5472.CAN-14-3511 PubMed DOI PMC

Hartmann J, Wölfelschneider J, Stache C, et al. . Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlenther Onkol 2016;192:806–14. 10.1007/s00066-016-1014-8 PubMed DOI

Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326–41. 10.1016/j.ccell.2017.02.009 PubMed DOI PMC

Ngwa W, Irabor OC, Schoenfeld JD, et al. . Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018;18:313–22. 10.1038/nrc.2018.6 PubMed DOI PMC

Demaria S, Kawashima N, Yang AM, et al. . Immune-Mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 2005;11:728–34. PubMed

Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, et al. . Tgfβ blockade enhances radiotherapy Abscopal efficacy effects in combination with anti-PD1 and Anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 2019;18:621–31. 10.1158/1535-7163.MCT-18-0558 PubMed DOI

Zamarin D, Holmgaard RB, Subudhi SK, et al. . Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014;226:ra32. PubMed PMC

Singh M, Savage N, Singh SK. In vivo murine models of brain metastasis. Methods Mol Biol 1869;2019:231–8. PubMed

Taggart D, Andreou T, Scott KJ, et al. . Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proc Natl Acad Sci U S A 2018;115:E1540–9. 10.1073/pnas.1714089115 PubMed DOI PMC

Seitz C, Rückert M, Deloch L, et al. . Tumor cell-based vaccine generated with high hydrostatic pressure synergizes with radiotherapy by generating a favorable anti-tumor immune microenvironment. Front Oncol 2019;9:805 10.3389/fonc.2019.00805 PubMed DOI PMC

Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol 2014;34:433–54. PubMed

Buqué A, Galluzzi L. Modeling tumor immunology and immunotherapy in mice. Trends in Cancer 2018;4:599–601. 10.1016/j.trecan.2018.07.003 PubMed DOI

Bonnotte B, Gough M, Phan V, et al. . Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res 2003;63:2145–9. PubMed

Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 2018;18:e1700167 10.1002/pmic.201700167 PubMed DOI PMC

Zitvogel L, Pitt JM, Daillère R, et al. . Mouse models in oncoimmunology. Nat Rev Cancer 2016;16:759–73. 10.1038/nrc.2016.91 PubMed DOI

Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017;17:751–65. 10.1038/nrc.2017.92 PubMed DOI

Olson B, Li Y, Lin Y, et al. . Mouse models for cancer immunotherapy research. Cancer Discov 2018;8:1358–65. 10.1158/2159-8290.CD-18-0044 PubMed DOI PMC

Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years: table 1. Cold Spring Harb Protoc 2015;2015:pdb.top069906–74. 10.1101/pdb.top069906 PubMed DOI PMC

Kersten K, Visser KE, Miltenburg MH, et al. . Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017;9:137–53. 10.15252/emmm.201606857 PubMed DOI PMC

Galuschka C, Proynova R, Roth B, et al. . Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res 2017;77:2557–63. 10.1158/0008-5472.CAN-16-3099 PubMed DOI

Walsh NC, Kenney LL, Jangalwe S, et al. . Humanized mouse models of clinical disease. Annu Rev Pathol 2017;12:187–215. 10.1146/annurev-pathol-052016-100332 PubMed DOI PMC

Shultz LD, Goodwin N, Ishikawa F, et al. . Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014;2014:pdb.top073585–708. 10.1101/pdb.top073585 PubMed DOI PMC

Shultz LD, Brehm MA, Garcia-Martinez JV, et al. . Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786–98. 10.1038/nri3311 PubMed DOI PMC

Ali N, Flutter B, Sanchez Rodriguez R, et al. . Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-Effector memory phenotype. PLoS One 2012;7:e44219 10.1371/journal.pone.0044219 PubMed DOI PMC

Mosier DE, Gulizia RJ, Baird SM, et al. . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256–9. 10.1038/335256a0 PubMed DOI

Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007;7:118–30. 10.1038/nri2017 PubMed DOI

Halkias J, Yen B, Taylor KT, et al. . Conserved and divergent aspects of human T-cell development and migration in humanized mice. Immunol Cell Biol 2015;93:716–26. 10.1038/icb.2015.38 PubMed DOI PMC

Saito Y, Ellegast JM, Rafiei A, et al. . Peripheral blood CD34+ cells efficiently engraft human cytokine knock-in mice. Blood 2016;128:1829–33. 10.1182/blood-2015-10-676452 PubMed DOI PMC

Rongvaux A, Willinger T, Martinek J, et al. . Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014;32:364–72. 10.1038/nbt.2858 PubMed DOI PMC

Melkus MW, Estes JD, Padgett-Thomas A, et al. . Humanized mice Mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006;12:1316–22. 10.1038/nm1431 PubMed DOI

Lan P, Tonomura N, Shimizu A, et al. . Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006;108:487–92. 10.1182/blood-2005-11-4388 PubMed DOI

Billerbeck E, Barry WT, Mu K, et al. . Development of human CD4+Foxp3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011;117:3076–86. 10.1182/blood-2010-08-301507 PubMed DOI PMC

Ito R, Takahashi T, Katano I, et al. . Establishment of a human allergy model using human IL-3/GM-CSF–Transgenic NOG mice. J.i. 2013;191:2890–9. PubMed

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350–5. 10.1126/science.aar4060 PubMed DOI PMC

Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint Blockade-Based combination therapies. Cancer Cell 2018;33:581–98. 10.1016/j.ccell.2018.03.005 PubMed DOI PMC

Postow MA, Callahan MK, Barker CA, et al. . Immunologic correlates of the Abscopal effect in a patient with melanoma. N Engl J Med 2012;366:925–31. 10.1056/NEJMoa1112824 PubMed DOI PMC

Grimaldi AM, Simeone E, Giannarelli D, et al. . Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014;3:e28780 10.4161/onci.28780 PubMed DOI PMC

Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol 2016;16:177–92. 10.1038/nri.2016.4 PubMed DOI

Hangai S, Ao T, Kimura Y, et al. . Pge2 induced in and released by dying cells functions as an inhibitory dAMP. Proc Natl Acad Sci U S A 2016;113:3844–9. 10.1073/pnas.1602023113 PubMed DOI PMC

Bondanza A, Zimmermann Valérie S., Rovere-Querini P, et al. . Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med 2004;200:1157–65. 10.1084/jem.20040327 PubMed DOI PMC

Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013;14:668–75. 10.1038/ni.2635 PubMed DOI PMC

Green DR, Galluzzi L, Kroemer G. Cell biology. metabolic control of cell death. Science 2014;345:1250256. PubMed PMC

Gopalakrishnan V, Helmink BA, Spencer CN, et al. . The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33:570–80. 10.1016/j.ccell.2018.03.015 PubMed DOI PMC

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–55. 10.1038/nn.4476 PubMed DOI PMC

Formenti SC, Rudqvist N-P, Golden E, et al. . Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 2018;24:1845–51. 10.1038/s41591-018-0232-2 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer

. 2024 ; 15 () : 1479483. [epub] 20250109

Trial watch: chemotherapy-induced immunogenic cell death in oncology

. 2023 ; 12 (1) : 2219591. [epub] 20230603

Promises and Challenges of Immunogenic Chemotherapy in Multiple Myeloma

. 2022 Aug 14 ; 11 (16) : . [epub] 20220814

Immunological configuration of ovarian carcinoma: features and impact on disease outcome

. 2021 Oct ; 9 (10) : .

LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells

. 2021 ; 10 (1) : 1962592. [epub] 20210810

Second Primary Cancers After Liver, Gallbladder and Bile Duct Cancers, and These Cancers as Second Primary Cancers

. 2021 ; 13 () : 683-691. [epub] 20210804

Cardiac Glycosides as Immune System Modulators

. 2021 Apr 29 ; 11 (5) : . [epub] 20210429

Calreticulin and cancer

. 2021 Jan ; 31 (1) : 5-16. [epub] 20200730

Detection of immunogenic cell death and its relevance for cancer therapy

. 2020 Nov 26 ; 11 (11) : 1013. [epub] 20201126

Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade

. 2020 Oct 20 ; 9 (1) : 1830524. [epub] 20201020

Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective

. 2020 Aug 28 ; 21 (17) : . [epub] 20200828

Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer

. 2020 Jul 30 ; 11 (1) : 3819. [epub] 20200730

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...