LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34408925
PubMed Central
PMC8366543
DOI
10.1080/2162402x.2021.1962592
PII: 1962592
Knihovny.cz E-zdroje
- Klíčová slova
- CTLA4, MPA/DMBA-driven mammary carcinomas, PD-1, TS/A cells, cDC1s, immune checkpoint inhibitors,
- MeSH
- buňky NK MeSH
- imunoterapie MeSH
- lidé MeSH
- myši MeSH
- nádorové mikroprostředí MeSH
- oligopeptidy * MeSH
- triple-negativní karcinom prsu * terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- LTX-315 MeSH Prohlížeč
- oligopeptidy * MeSH
LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners. We found that breast cancer control by LTX-315 is accompanied by a reconfiguration of the immunological tumor microenvironment that supports the activation of anticancer immunity and can be boosted by radiation therapy. Mechanistically, depletion of natural killer (NK) cells compromised the capacity of LTX-315 to limit local and systemic disease progression in a mouse model of triple-negative breast cancer, and to extend the survival of mice bearing hormone-accelerated, carcinogen-driven endogenous mammary carcinomas. Altogether, our data suggest that LTX-315 controls breast cancer progression by engaging NK cell-dependent immunity.
Caryl and Israel Englander Institute for Precision Medicine New York NY USA
Department of Medical Biology University of Tromsø Tromsø Norway
Department of Population Health Sciences Weill Cornell Medical College New York NY USA
Department of Radiation Oncology Weill Cornell Medical College New York NY USA
Zobrazit více v PubMed
Kepp O, Marabelle A, Zitvogel L, Kroemer G.. Oncolysis without viruses - inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol. 2020;17(1):49–16. doi:10.1038/s41571-019-0272-7. PubMed DOI
Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27(2):212–224. doi:10.1038/s41591-021-01233-9. PubMed DOI
Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting cancer heterogeneity with immune responses driven by oncolytic peptides. Trends Cancer. 2021;7(6):557–572. doi:10.1016/j.trecan.2020.12.012. PubMed DOI
Camilio KA, Berge G, Ravuri CS, Rekdal O, Sveinbjørnsson B. Complete regression and systemic protective immune responses obtained in B16 melanomas after treatment with LTX-315. Cancer Immunol Immunother. 2014;63(6):601–613. doi:10.1007/s00262-014-1540-0. PubMed DOI PMC
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1):e000337. PubMed PMC
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. Int Rev Cell Mol Biol. 2020;350:63–118. PubMed PMC
Eike LM, Yang N, Rekdal Ø, Sveinbjørnsson B. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells. Oncotarget. 2015;6(33):34910–34923. doi:10.18632/oncotarget.5308. PubMed DOI PMC
Zhou H, Forveille S, Sauvat A, Yamazaki T, Senovilla L, Ma Y, Liu P, Yang H, Bezu L, Müller K, et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 2016;7(3):e2134. doi:10.1038/cddis.2016.47. PubMed DOI PMC
Yamazaki T, Pitt JM, Vétizou M, Marabelle A, Flores C, Rekdal Ø, Kroemer G, Zitvogel L. The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade. Cell Death Differ. 2016;23(6):1004–1015. doi:10.1038/cdd.2016.35. PubMed DOI PMC
Camilio KA, Wang MY, Mauseth B, Waagene S, Kvalheim G, Ø R, Sveinbjørnsson B, Mælandsmo GM. Combining the oncolytic peptide LTX-315 with doxorubicin demonstrates therapeutic potential in a triple-negative breast cancer model. Breast Cancer Res. 2019;21:9. doi:10.1186/s13058-018-1092-x. PubMed DOI PMC
Jebsen NL, Apelseth TO, Haugland HK, Rekdal Ø, Patel H, Gjertsen BT, Jøssang DE. Enhanced T-lymphocyte infiltration in a desmoid tumor of the thoracic wall in a young woman treated with intratumoral injections of the oncolytic peptide LTX-315: a case report. J Med Case Rep. 2019;13(1):177. doi:10.1186/s13256-019-2088-6. PubMed DOI PMC
Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jøssang DE, Awada A, Kristeleit R, Loirat D, Lazaridis G, Jungels C, et al. Safety, antitumor activity, and T-cell responses in a dose-ranging phase i trial of the oncolytic peptide LTX-315 in patients with solid tumors. Clin Cancer Res. 2021;27(10):2755–2763. doi:10.1158/1078-0432.CCR-20-3435. PubMed DOI
Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–1405. PubMed
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi:10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi:10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–2849. doi:10.1093/bioinformatics/btw313. PubMed DOI
Hensler M, Kasikova L, Fiser K, Rakova J, Skapa P, Laco J, Lanickova T, Pecen L, Truxova I, Vosahlikova S, et al. M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer. J Immunother Cancer. 2020;8(2):e000979. PubMed PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–287. doi:10.1089/omi.2011.0118. PubMed DOI PMC
Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, Elarouci N, Tavel D, Roumenina LT, Ayadi M, et al. The murine microenvironment cell population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med. 2020;12(1):86. doi:10.1186/s13073-020-00783-w. PubMed DOI PMC
Buqué A, Bloy N, Perez-Lanzón M, Iribarren K, Humeau J, Pol JG, Levesque S, Mondragon L, Yamazaki T, Sato A, et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020;11(1):3819. doi:10.1038/s41467-020-17644-0. PubMed DOI PMC
Pilones KA, Hensler M, Daviaud C, Kraynak J, Fucikova J, Galluzzi L, Demaria S, Formenti SC. Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade. Oncoimmunology. 2020;9(1):1830524. doi:10.1080/2162402X.2020.1830524. PubMed DOI PMC
De Giovanni C, Nicoletti G, Landuzzi L, Palladini A, Lollini PL, Nanni P. Bioprofiling TS/A murine mammary cancer for a functional precision experimental model. Cancers (Basel). 2019;11(12):1889. doi:10.3390/cancers11121889. PubMed DOI PMC
Rodriguez-Ruiz ME, Buqué A, Hensler M, Chen J, Bloy N, Petroni G, Sato A, Yamazaki T, Fucikova J, Galluzzi L. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology. 2019;8(11):e1655964. doi:10.1080/2162402X.2019.1655964. PubMed DOI PMC
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–5388. doi:10.1158/1078-0432.CCR-09-0265. PubMed DOI PMC
Yamazaki T, Kirchmair A, Sato A, Buqué A, Rybstein M, Petroni G, Bloy N, Finotello F, Stafford L, Navarro Manzano E, et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat Immunol. 2020;21(10):1160–1171. doi:10.1038/s41590-020-0751-0. PubMed DOI
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013;210(9):1695–1710. doi:10.1084/jem.20130579. PubMed DOI PMC
Petroni G, Buqué A, Yamazaki T, Bloy N, Liberto MD, Chen-Kiang S, Formenti SC, Galluzzi L. Radiotherapy delivered before CDK4/6 inhibitors mediates superior therapeutic effects in ER + breast cancer. Clin Cancer Res. 2021;27(7):1855–1863. doi:10.1158/1078-0432.CCR-20-3871. PubMed DOI PMC
Petroni G, Galluzzi L. Impact of treatment schedule on the efficacy of cytostatic and immunostimulatory agents. Oncoimmunology. 2021;10(1):1889101. doi:10.1080/2162402X.2021.1889101. PubMed DOI PMC
Wei J, Montalvo-Ortiz W, Yu L, Krasco A, Ebstein S, Cortez C, Lowy I, Murphy AJ, Sleeman MA, Skokos D. Sequence of alphaPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol. 2021;6(58):eabg0117. PubMed
Mosely SI, Prime JE, Sainson RC, Koopmann JO, Wang DY, Greenawalt DM, Ahdesmaki MJ, Leyland R, Mullins S, Pacelli L, et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol Res. 2017;5(1):29–41. doi:10.1158/2326-6066.CIR-16-0114. PubMed DOI
Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218. doi:10.1186/s13059-016-1070-5. PubMed DOI PMC
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S. Reis e Sousa C. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control Cell. 2018;172:1022–37.e14. PubMed PMC
Bödder J, Zahan T, van Slooten R, Schreibelt G, De Vries IJM, Flórez-Grau G. Harnessing the cDC1-NK cross-talk in the tumor microenvironment to battle cancer. Front Immunol. 2020;11:631713. doi:10.3389/fimmu.2020.631713. PubMed DOI PMC
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ. 2021;28(3):843–860. doi:10.1038/s41418-020-00658-y. PubMed DOI PMC
Falk I, Potocnik AJ, Barthlott T, Levelt CN, Eichmann K. Immature T cells in peripheral lymphoid organs of recombinase-activating gene-1/-2-deficient mice. Thymus Dependence and Responsiveness to anti-CD3 Epsilon Antibody J Immunol. 1996;156:1362–1368. PubMed
Abba MC, Zhong Y, Lee J, Kil H, Lu Y, Takata Y, Simper MS, Gaddis S, Shen J, Aldaz CM. DMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations. Oncotarget. 2016;7(39):64289–64299. doi:10.18632/oncotarget.11733. PubMed DOI PMC
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8(1):15618. doi:10.1038/ncomms15618. PubMed DOI PMC
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 2020;21(2):120–134. doi:10.1038/s41590-019-0561-4. PubMed DOI
Rao S, Gharib K, Han A. Cancer immunosurveillance by T cells. Int Rev Cell Mol Biol. 2019;342:149–173. PubMed
von Andrian UH. NK cell memory: discovery of a mystery. Nat Immunol. 2021;22(6):669–671. doi:10.1038/s41590-021-00890-9. PubMed DOI
Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. Semin Hematol. 2020;57:185–193. PubMed PMC
Buque A, Bloy N, Petroni G, Kroemer G, Galluzzi L. NK cells beat T cells at early breast cancer control. Oncoimmunology. 2020;9(1):1806010. doi:10.1080/2162402X.2020.1806010. PubMed DOI PMC
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100. doi:10.1038/s41571-020-0426-7. PubMed DOI PMC
Pilones KA, Charpentier M, Garcia-Martinez E, Daviaud C, Kraynak J, Aryankalayil J, Formenti SC, Demaria S. Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol Res. 2020;8(8):1054–1063. doi:10.1158/2326-6066.CIR-19-0338. PubMed DOI PMC
Creelan BC, Antonia SJ. The NKG2A immune checkpoint - a new direction in cancer immunotherapy. Nat Rev Clin Oncol. 2019;16(5):277–278. doi:10.1038/s41571-019-0182-8. PubMed DOI
Nishikado H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H. NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo. J Immunol. 2011;186(10):5766–5771. doi:10.4049/jimmunol.1100370. PubMed DOI
Assarsson E, Kambayashi T, Sandberg JK, Hong S, Taniguchi M, Van Kaer L, Ljunggren HG, Chambers BJ. CD8+T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol. 2000;165(7):3673–3679. doi:10.4049/jimmunol.165.7.3673. PubMed DOI
De La Cruz-merino L, Chiesa M, Caballero R, Rojo F, Palazón N, Carrasco FH, Sánchez-Margalet V. Breast cancer immunology and immunotherapy: Current status and future perspectives. Int Rev Cell Mol Biol. 2017;331:1–53. PubMed
Emens LA. Breast cancer immunotherapy: Facts and hopes. Clin Cancer Res. 2018;24(3):511–520. doi:10.1158/1078-0432.CCR-16-3001. PubMed DOI PMC
Rugo HS, Delord JP, Im SA, Ott PA, Piha-Paul SA, Bedard PL, Sachdev J, Le Tourneau C, van Brummelen EMJ, Varga A, et al. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. Clin Cancer Res. 2018;24(12):2804–2811. doi:10.1158/1078-0432.CCR-17-3452. PubMed DOI
Corrales L, Woo SR, Williams JB, McWhirter SM, Dubensky TW Jr., Gajewski TF. Antagonism of the STING pathway via activation of the AIM2 inflammasome by Intracellular DNA. J Immunol. 2016;196(7):3191–3198. doi:10.4049/jimmunol.1502538. PubMed DOI PMC
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. doi:10.1038/s41577-019-0165-0. PubMed DOI PMC
Spicer JF, Marabelle A, Baurain JF, Awada A, Kristeleit RS, Jossang DE, Jebsen N, Loirat D, Armstrong AC, Curigliano G, et al. A phase I/II study of the oncolytic peptide LTX-315 combined with checkpoint inhibition generates de novo T-cell responses and clinical benefit in patients with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3094.
Type I interferon signaling in malignant blasts contributes to treatment efficacy in AML patients
Trial watch: Dendritic cell (DC)-based immunotherapy for cancer