M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer

. 2020 Aug ; 8 (2) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32819974

BACKGROUND: The immunological microenvironment of primary high-grade serous carcinomas (HGSCs) has a major impact on disease outcome. Conversely, little is known on the microenvironment of metastatic HGSCs and its potential influence on patient survival. Here, we explore the clinical relevance of the immunological configuration of HGSC metastases. METHODS: RNA sequencing was employed on 24 paired primary tumor microenvironment (P-TME) and metastatic tumor microenvironment (M-TME) chemotherapy-naive HGSC samples. Immunohistochemistry was used to evaluate infiltration by CD8+ T cells, CD20+ B cells, DC-LAMP+ (lysosomal-associated membrane protein 3) dendritic cells (DCs), NKp46+ (natural killer) cells and CD68+CD163+ M2-like tumor-associated macrophages (TAMs), abundance of PD-1+ (programmed cell death 1), LAG-3+ (lymphocyte-activating gene 3) cells, and PD-L1 (programmed death ligand 1) expression in 80 samples. Flow cytometry was used for functional assessments on freshly resected HGSC samples. RESULTS: 1468 genes were differentially expressed in the P-TME versus M-TME of HGSCs, the latter displaying signatures of extracellular matrix remodeling and immune infiltration. M-TME infiltration by immune effector cells had little impact on patient survival. Accordingly, M-TME-infiltrating T cells were functionally impaired, but not upon checkpoint activation. Conversely, cytokine signaling in favor of M2-like TAMs activity appeared to underlie inhibited immunity in the M-TME and poor disease outcome. CONCLUSIONS: Immunosuppressive M2-like TAM infiltrating metastatic sites limit clinically relevant immune responses against HGSCs.

Caryl and Israel Englander Institute for Precision Medicine New York City New York USA

CLIP Childhood Leukemia Investigation Prague Department of Pediatric Hematology and Oncology 2nd Faculty of Medicine Charles University Prague and University Hospital Motol Prague Czech Republic

Department of Dermatology Yale University School of Medicine New Haven Connecticut USA

Department of Gynecology and Obstetrics Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Gynecology and Obstetrics Charles University 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady Prague Czech Republic

Department of Gynecology and Obstetrics Charles University Faculty of Medicine and University Hospital Hradec Kralove Czech Republic

Department of Immunology Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Pathology and Molecular Medicine Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Radiation Oncology Weill Cornell Medical College New York City New York USA

Genomics Core Facility EMBL Heidelberg Germany

INSERM U1138 Centre de Recherche des Cordeliers Paris France

Sandra and Edward Meyer Cancer Center New York City New York USA

Sorbonne Université Paris France

Sotio Prague Czech Republic

The Fingerland Department of Pathology Charles University Faculty of Medicine and University Hospital Hradec Kralove Czech Republic

Université de Paris Paris France

Zobrazit více v PubMed

Fridman WH, Zitvogel L, Sautès-Fridman C, et al. . The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14:717–34. 10.1038/nrclinonc.2017.101 PubMed DOI

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. 10.1016/j.cell.2011.02.013 PubMed DOI

Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321–30. 10.1038/nature21349 PubMed DOI

Maley CC, Aktipis A, Graham TA, et al. . Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 2017;17:605–19. 10.1038/nrc.2017.69 PubMed DOI PMC

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011;147:275–92. 10.1016/j.cell.2011.09.024 PubMed DOI PMC

Giraldo NA, Becht E, Pagès F, et al. . Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 2015;21:3031–40. 10.1158/1078-0432.CCR-14-2926 PubMed DOI

Remark R, Alifano M, Cremer I, et al. . Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 2013;19:4079–91. 10.1158/1078-0432.CCR-12-3847 PubMed DOI

Tanchot C, Terme M, Pere H, et al. . Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 2013;6:147–57. 10.1007/s12307-012-0122-y PubMed DOI PMC

Torre LA, Siegel RL, Ward EM, et al. . Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev 2016;25:16–27. 10.1158/1055-9965.EPI-15-0578 PubMed DOI

Lengyel E. Ovarian cancer development and metastasis. Am J Pathol 2010;177:1053–64. 10.2353/ajpath.2010.100105 PubMed DOI PMC

Nieman KM, Kenny HA, Penicka CV, et al. . Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498–503. 10.1038/nm.2492 PubMed DOI PMC

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423–37. 10.1038/nm.3394 PubMed DOI PMC

Fucikova J, Rakova J, Hensler M, et al. . TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin Cancer Res 2019;25:4820–31. 10.1158/1078-0432.CCR-18-4175 PubMed DOI

Kasikova L, Hensler M, Truxova I, et al. . Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients. J Immunother Cancer 2019;7:312. 10.1186/s40425-019-0781-z PubMed DOI PMC

Bantug GR, Galluzzi L, Kroemer G, et al. . The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 2018;18:19–34. 10.1038/nri.2017.99 PubMed DOI

Vitale I, Manic G, Coussens LM, et al. . Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36–50. 10.1016/j.cmet.2019.06.001 PubMed DOI

Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018;17:887–904. 10.1038/nrd.2018.169 PubMed DOI

Meinhold-Heerlein I, Fotopoulou C, Harter P, et al. . The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet 2016;293:695–700. 10.1007/s00404-016-4035-8 PubMed DOI

O'Sullivan B, Brierley J, Byrd D, et al. . The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol 2017;18:849–51. 10.1016/S1470-2045(17)30438-2 PubMed DOI PMC

Truxova I, Kasikova L, Hensler M, et al. . Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer 2018;6:139. 10.1186/s40425-018-0446-3 PubMed DOI PMC

Goc J, Germain C, Vo-Bourgais TKD, et al. . Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 2014;74:705–15. 10.1158/0008-5472.CAN-13-1342 PubMed DOI

Solomon B, Young RJ, Bressel M, et al. . Prognostic Significance of PD-L1 + and CD8 + Immune Cells in HPV + Oropharyngeal Squamous Cell Carcinoma. Cancer Immunol Res 2018;6:295–304. 10.1158/2326-6066.CIR-17-0299 PubMed DOI

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016;32:2847–9. 10.1093/bioinformatics/btw313 PubMed DOI

Yu G, Wang L-G, Han Y, et al. . clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284–7. 10.1089/omi.2011.0118 PubMed DOI PMC

Angelova M, Charoentong P, Hackl H, et al. . Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 2015;16:64. 10.1186/s13059-015-0620-6 PubMed DOI PMC

Milne K, Köbel M, Kalloger SE, et al. . Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 2009;4:e6412. 10.1371/journal.pone.0006412 PubMed DOI PMC

Zhang L, Conejo-Garcia JR, Katsaros D, et al. . Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203–13. 10.1056/NEJMoa020177 PubMed DOI

Galluzzi L, Chan TA, Kroemer G, et al. . The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018;10. 10.1126/scitranslmed.aat7807. [Epub ahead of print: 19 Sep 2018]. PubMed DOI

Rooney MS, Shukla SA, Wu CJ, et al. . Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48–61. 10.1016/j.cell.2014.12.033 PubMed DOI PMC

Vitale I, Manic G, Galassi C, et al. . Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019;200:55–68. 10.1016/j.pharmthera.2019.04.004 PubMed DOI

Torre LA, Trabert B, DeSantis CE, et al. . Ovarian cancer statistics, 2018. CA Cancer J Clin 2018;68:284–96. 10.3322/caac.21456 PubMed DOI PMC

Senovilla L, Vacchelli E, Galon J, et al. . Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012;1:1323–43. 10.4161/onci.22009 PubMed DOI PMC

Barnett JC, Bean SM, Whitaker RS, et al. . Ovarian cancer tumor infiltrating T-regulatory (T(reg)) cells are associated with a metastatic phenotype. Gynecol Oncol 2010;116:556–62. 10.1016/j.ygyno.2009.11.020 PubMed DOI

Curiel TJ, Coukos G, Zou L, et al. . Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942–9. 10.1038/nm1093 PubMed DOI

Hwang W-T, Adams SF, Tahirovic E, et al. . Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 2012;124:192–8. 10.1016/j.ygyno.2011.09.039 PubMed DOI PMC

Nielsen JS, Sahota RA, Milne K, et al. . CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 2012;18:3281–92. 10.1158/1078-0432.CCR-12-0234 PubMed DOI

Bonome T, Levine DA, Shih J, et al. . A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 2008;68:5478–86. 10.1158/0008-5472.CAN-07-6595 PubMed DOI PMC

Yoshihara K, Tajima A, Yahata T, et al. . Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets. PLoS One 2010;5:e9615. 10.1371/journal.pone.0009615 PubMed DOI PMC

Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 2010;185:4977–82. 10.4049/jimmunol.1001323 PubMed DOI

Hamanishi J, Mandai M, Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol 2016;28:339–48. 10.1093/intimm/dxw020 PubMed DOI

Robinson-Smith TM, Isaacsohn I, Mercer CA, et al. . Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 2007;67:5708–16. 10.1158/0008-5472.CAN-06-4375 PubMed DOI

Yin M, Li X, Tan S, et al. . Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest 2016;126:4157–73. 10.1172/JCI87252 PubMed DOI PMC

Shimura S, Yang G, Ebara S, et al. . Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 2000;60:5857–61. PubMed

Medrek C, Pontén F, Jirström K, et al. . The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 2012;12:306. 10.1186/1471-2407-12-306 PubMed DOI PMC

Herrera M, Herrera A, Domínguez G, et al. . Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci 2013;104:437–44. 10.1111/cas.12096 PubMed DOI PMC

Qi Y, Chang Y, Wang Z, et al. . Tumor-associated macrophages expressing galectin-9 identify immunoevasive subtype muscle-invasive bladder cancer with poor prognosis but favorable adjuvant chemotherapeutic response. Cancer Immunol Immunother 2019;68:2067–80. 10.1007/s00262-019-02429-2 PubMed DOI PMC

Galluzzi L, Humeau J, Buqué A, et al. . Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. In Press 2020;136 10.1038/s41571-020-0413-z PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...