Multivariate linear mixture models for the prediction of febrile seizure risk and recurrence: a prospective case-control study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37833343
PubMed Central
PMC10576023
DOI
10.1038/s41598-023-43599-5
PII: 10.1038/s41598-023-43599-5
Knihovny.cz E-zdroje
- MeSH
- deficit železa * MeSH
- febrilní křeče * diagnóza etiologie MeSH
- horečka komplikace MeSH
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- studie případů a kontrol MeSH
- železo MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- železo MeSH
Our goal was to identify highly accurate empirical models for the prediction of the risk of febrile seizure (FS) and FS recurrence. In a prospective, three-arm, case-control study, we enrolled 162 children (age 25.8 ± 17.1 months old, 71 females). Participants formed one case group (patients with FS) and two control groups (febrile patients without seizures and healthy controls). The impact of blood iron status, peak body temperature, and participants' demographics on FS risk and recurrence was investigated with univariate and multivariate statistics. Serum iron concentration, iron saturation, and unsaturated iron-binding capacity differed between the three investigated groups (pFWE < 0.05). These serum analytes were key variables in the design of novel multivariate linear mixture models. The models classified FS risk with higher accuracy than univariate approaches. The designed bi-linear classifier achieved a sensitivity/specificity of 82%/89% and was closest to the gold-standard classifier. A multivariate model assessing FS recurrence provided a difference (pFWE < 0.05) with a separating sensitivity/specificity of 72%/69%. Iron deficiency, height percentile, and age were significant FS risk factors. In addition, height percentile and hemoglobin concentration were linked to FS recurrence. Novel multivariate models utilizing blood iron status and demographic variables predicted FS risk and recurrence among infants and young children with fever.
Zobrazit více v PubMed
Jang HN, Yoon HS, Lee EH. Prospective case control study of iron deficiency and the risk of febrile seizures in children in South Korea. BMC Pediatr. 2019;19:309. doi: 10.1186/s12887-019-1675-4. PubMed DOI PMC
Kubota J, et al. Predictors of recurrent febrile seizures during the same febrile illness in children with febrile seizures. J. Neurol. Sci. 2020;411:116682. doi: 10.1016/j.jns.2020.116682. PubMed DOI
Subcommittee on Febrile Seizures & American Academy of Pediatrics. Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics127, 389–394 (2011). 10.1542/peds.2010-3318 PubMed
Steering Committee on Quality, Improvement Management, Subcommittee on Febrile Seizures. Febrile seizures: Clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics121, 1281–1286 (2008). 10.1542/peds.2008-0939 PubMed
Seinfeld SA, Pellock JM, Kjeldsen MJ, Nakken KO, Corey LA. Epilepsy after febrile seizures: Twins suggest genetic influence. Pediatr. Neurol. 2016;55:14–16. doi: 10.1016/j.pediatrneurol.2015.10.008. PubMed DOI PMC
Dreier JW, Pedersen CB, Cotsapas C, Christensen J. Childhood seizures and risk of psychiatric disorders in adolescence and early adulthood: A Danish nationwide cohort study. Lancet Child Adolesc. Health. 2019;3:99–108. doi: 10.1016/S2352-4642(18)30351-1. PubMed DOI PMC
Kimia AA, Bachur RG, Torres A, Harper MB. Febrile seizures: Emergency medicine perspective. Curr. Opin. Pediatr. 2015;27:292–297. doi: 10.1097/MOP.0000000000000220. PubMed DOI
Kwak BO, Kim K, Kim SN, Lee R. Relationship between iron deficiency anemia and febrile seizures in children: A systematic review and meta-analysis. Seizure. 2017;52:27–34. doi: 10.1016/j.seizure.2017.09.009. PubMed DOI
Bidabadi E, Mashouf M. Association between iron deficiency anemia and first febrile convulsion: A case-control study. Seizure. 2009;18:347–351. doi: 10.1016/j.seizure.2009.01.008. PubMed DOI
Kobrinsky NL, Yager JY, Cheang MS, Yatscoff RW, Tenenbein M. Does iron deficiency raise the seizure threshold? J. Child Neurol. 1995;10:105–109. doi: 10.1177/088307389501000207. PubMed DOI
Zareifar S, Hosseinzadeh HR, Cohan N. Association between iron status and febrile seizures in children. Seizure. 2012;21:603–605. doi: 10.1016/j.seizure.2012.06.010. PubMed DOI
Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994;308:1552. doi: 10.1136/bmj.308.6943.1552. PubMed DOI PMC
Haibo, H., Yang, B., Garcia, E. A. & Shutao, L. in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). 1322–1328.
He H, Garcia EA. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009;21:1263–1284. doi: 10.1109/TKDE.2008.239. DOI
Georgieff MK. Iron assessment to protect the developing brain. Am. J. Clin. Nutr. 2017;106:1588S–1593S. doi: 10.3945/ajcn.117.155846. PubMed DOI PMC
Lozoff B, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006;64:34–43. doi: 10.1301/nr.2006.may.s34-s43. PubMed DOI PMC
Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin. Pediatr. Neurol. 2006;13:158–165. doi: 10.1016/j.spen.2006.08.004. PubMed DOI
Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N. Engl. J. Med. 1987;316:493–498. doi: 10.1056/NEJM198702263160901. PubMed DOI
Aulicka S, et al. Cytokine-chemokine profiles in the hippocampus of patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy Res. 2022;180:106858. doi: 10.1016/j.eplepsyres.2022.106858. PubMed DOI
Nilsson G, Lundstrom S, Fernell E, Gillberg C. Neurodevelopmental problems in children with febrile seizures followed to young school age: A prospective longitudinal community-based study in Sweden. Acta Paediatr. 2021 doi: 10.1111/apa.16171. PubMed DOI
Rudy M, Mayer-Proschel M. Iron deficiency affects seizure susceptibility in a time- and sex-specific manner. ASN Neuro. 2017;9:175909141774652. doi: 10.1177/1759091417746521. PubMed DOI PMC
Daoud AS, et al. Iron status: A possible risk factor for the first febrile seizure. Epilepsia. 2002;43:740–743. doi: 10.1046/j.1528-1157.2002.32501.x. PubMed DOI
Domellof M, et al. Iron requirements of infants and toddlers. J. Pediatr. Gastroenterol. Nutr. 2014;58:119–129. doi: 10.1097/MPG.0000000000000206. PubMed DOI
Gunnarsson BS, Thorsdottir I, Palsson G. Iron status in 6-y-old children: Associations with growth and earlier iron status. Eur. J. Clin. Nutr. 2005;59:761–767. doi: 10.1038/sj.ejcn.1602137. PubMed DOI
McCarthy EK, et al. Iron status, body size, and growth in the first 2 years of life. Matern. Child Nutr. 2018;14:e12458. doi: 10.1111/mcn.12458. PubMed DOI PMC
Thorsdottir I, Gunnarsson BS, Atladottir H, Michaelsen KF, Palsson G. Iron status at 12 months of age—Effects of body size, growth and diet in a population with high birth weight. Eur. J. Clin. Nutr. 2003;57:505–513. doi: 10.1038/sj.ejcn.1601594. PubMed DOI
Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. Biochim. Biophys. Acta. 2010;1800:760–769. doi: 10.1016/j.bbagen.2010.03.011. PubMed DOI PMC
Domellof M, et al. Sex differences in iron status during infancy. Pediatrics. 2002;110:545–552. doi: 10.1542/peds.110.3.545. PubMed DOI