Chemotherapy Drives Tertiary Lymphoid Structures That Correlate with ICI-Responsive TCF1+CD8+ T Cells in Metastatic Ovarian Cancer
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
I01 BX004974
BLRD VA - United States
R01 CA103924
NCI NIH HHS - United States
R01 CA208753
NCI NIH HHS - United States
U54 CA274291
NCI NIH HHS - United States
I01 BX006020
BLRD VA - United States
R01 CA271915
NCI NIH HHS - United States
PubMed
39163092
PubMed Central
PMC11701433
DOI
10.1158/1078-0432.ccr-24-1594
PII: 747086
Knihovny.cz E-zdroje
- MeSH
- CD8-pozitivní T-lymfocyty * imunologie účinky léků MeSH
- ektopické lymfoidní struktury * imunologie patologie MeSH
- hepatocytární jaderný faktor 1-alfa * genetika metabolismus MeSH
- inhibitory kontrolních bodů * terapeutické užití farmakologie MeSH
- karboplatina aplikace a dávkování farmakologie terapeutické užití MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie účinky léků MeSH
- nádory vaječníků * farmakoterapie imunologie patologie MeSH
- neoadjuvantní terapie metody MeSH
- paclitaxel aplikace a dávkování terapeutické užití farmakologie MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití farmakologie MeSH
- serózní cystadenokarcinom farmakoterapie patologie imunologie MeSH
- stres endoplazmatického retikula účinky léků imunologie MeSH
- tumor infiltrující lymfocyty imunologie účinky léků metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hepatocytární jaderný faktor 1-alfa * MeSH
- inhibitory kontrolních bodů * MeSH
- karboplatina MeSH
- paclitaxel MeSH
PURPOSE: Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication. EXPERIMENTAL DESIGN: We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts. RESULTS: We found NACT-driven endoplasmic reticulum stress and calreticulin exposure in metastatic HGSOC lesions culminates with the establishment of a dense immune infiltrate including follicular T cells (TFH cells), a prerequisite for mature tertiary lymphoid structure (TLS) formation. In this context, TLS maturation was associated with an increased intratumoral density of ICI-sensitive TCF1+PD1+ CD8+ T cells over their ICI-insensitive TIM-3+PD1+ counterparts. Consistent with this notion, chemotherapy coupled with a PD1-targeting ICI provided a significant survival benefit over either therapeutic approach in syngeneic models of HGSOC bearing high (but not low) tumor mutational burden. CONCLUSIONS: Altogether, our findings suggest that NACT promotes TLS formation and maturation in HGSOC lesions, de facto preserving an intratumoral ICI-sensitive T-cell phenotype. These observations emphasize the role of rational design, especially relative to the administration schedule, for clinical trials testing chemotherapy plus ICIs in patients with HGSOC. See related commentary by Bravo Melgar and Laoui, p. 10.
Caryl and Israel Englander Institute for Precision Medicine New York New York
Department of Radiation Oncology Weill Cornell Medical College New York New York
Department of Veterans Affairs Greater Los Angeles Healthcare System Los Angeles California
Sandra and Edward Meyer Cancer Center New York New York
Zobrazit více v PubMed
Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. . ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol 2019;30:672–705. PubMed
González-Martín A, Harter P, Leary A, Lorusso D, Miller RE, Pothuri B, et al. . Newly diagnosed and relapsed epithelial ovarian cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 2023;34:833–48. PubMed
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. Nat Cancer 2023;4:1239–57. PubMed
Olalekan S, Xie B, Back R, Eckart H, Basu A. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep 2021;35:109165. PubMed
Hensler M, Kasikova L, Fiser K, Rakova J, Skapa P, Laco J, et al. . M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer. J Immunother Cancer 2020;8:e000979. PubMed PMC
Ledermann JA, Matias-Guiu X, Amant F, Concin N, Davidson B, Fotopoulou C, et al. . ESGO-ESMO-ESP consensus conference recommendations on ovarian cancer: pathology and molecular biology and early, advanced and recurrent disease. Ann Oncol 2024;35:248–66. PubMed
Vitale I, Sistigu A, Manic G, Rudqvist N-P, Trajanoski Z, Galluzzi L. Mutational and antigenic landscape in tumor progression and cancer immunotherapy. Trends Cell Biol 2019;29:396–416. PubMed
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. . Immune checkpoint therapy-current perspectives and future directions. Cell 2023;186:1652–69. PubMed
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2022;21:509–28. PubMed
Kurtz J-E, Pujade-Lauraine E, Oaknin A, Belin L, Leitner K, Cibula D, et al. . Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: placebo-controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J Clin Oncol 2023;41:4768–78. PubMed PMC
Gonzalez Martin A, Sanchez Lorenzo L, Colombo N, dePont Christensen R, Heitz F, Meirovitz M, et al. . A phase III, randomized, double blinded trial of platinum based chemotherapy with or without atezolizumab followed by niraparib maintenance with or without atezolizumab in patients with recurrent ovarian, tubal, or peritoneal cancer and platinum treatment free interval of more than 6 months: ENGOT-Ov41/GEICO 69-O/ANITA trial. Int J Gynecol Cancer 2021;31:617–22. PubMed
Kasikova L, Rakova J, Hensler M, Lanickova T, Tomankova J, Pasulka J, et al. . Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat Commun 2024;15:2528. PubMed PMC
Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer 2022;22:640–56. PubMed
Truxova I, Kasikova L, Hensler M, Skapa P, Laco J, Pecen L, et al. . Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer 2018;6:139. PubMed PMC
Vázquez-García I, Uhlitz F, Ceglia N, Lim JLP, Wu M, Mohibullah N, et al. . Ovarian cancer mutational processes drive site-specific immune evasion. Nature 2022;612:778–86. PubMed PMC
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023;11:e005968. PubMed PMC
Kandalaft LE, Odunsi K, Coukos G. Immunotherapy in ovarian cancer: are we there yet? J Clin Oncol 2019;37:2460–71. PubMed
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. . Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 2018;10:eaao5931. PubMed
Rob L, Cibula D, Knapp P, Mallmann P, Klat J, Minar L, et al. . Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. J Immunother Cancer 2022;10:e003190. PubMed PMC
Fucikova J, Hensler M, Kasikova L, Lanickova T, Pasulka J, Rakova J, et al. . An autologous dendritic cell vaccine promotes anticancer immunity in patients with ovarian cancer with low mutational burden and cold tumors. Clin Cancer Res 2022;28:3053–65. PubMed
Cibula D, Rob L, Mallmann P, Knapp P, Klat J, Chovanec J, et al. . Dendritic cell-based immunotherapy (DCVAC/OvCa) combined with second-line chemotherapy in platinum-sensitive ovarian cancer (SOV02): a randomized, open-label, phase 2 trial. Gynecol Oncol 2021;162:652–60. PubMed
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024;23:445–60. PubMed PMC
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022;23:487–500. PubMed
Galluzzi L, Kepp O, Hett E, Kroemer G, Marincola FM. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med 2023;21:162. PubMed PMC
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. . Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020;11:1013. PubMed PMC
Petroni G, Buqué A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021;39:310–45. PubMed
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020;21:120–34. PubMed
Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020;17:725–41. PubMed
Fucikova J, Palova-Jelinkova L, Klapp V, Holicek P, Lanickova T, Kasikova L, et al. . Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 2022;8:426–44. PubMed
Monk BJ, Colombo N, Oza AM, Fujiwara K, Birrer MJ, Randall L, et al. . Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol 2021;22:1275–89. PubMed
Moore KN, Bookman M, Sehouli J, Miller A, Anderson C, Scambia G, et al. . Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J Clin Oncol 2021;39:1842–55. PubMed PMC
Lo CS, Sanii S, Kroeger DR, Milne K, Talhouk A, Chiu DS, et al. . Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor-infiltrating lymphocyte response with distinct implications for immunotherapy. Clin Cancer Res 2017;23:925–34. PubMed
Napoletano C, Ruscito I, Bellati F, Zizzari IG, Rahimi H, Gasparri ML, et al. . Bevacizumab-based chemotherapy triggers immunological effects in responding multi-treated recurrent ovarian cancer patients by favoring the recruitment of effector T cell subsets. J Clin Med 2019;8:380. PubMed PMC
Mesnage SJL, Auguste A, Genestie C, Dunant A, Pain E, Drusch F, et al. . Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann Oncol 2017;28:651–7. PubMed
Wu X, Feng Q-M, Wang Y, Shi J, Ge H-L, Di W. The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol Immunother 2010;59:279–91. PubMed PMC
O’Sullivan B, Brierley J, Byrd D, Bosman F, Kehoe S, Kossary C, et al. . The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol 2017;18:849–51. PubMed PMC
Zhang K, Erkan EP, Jamalzadeh S, Dai J, Andersson N, Kaipio K, et al. . Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer. Sci Adv 2022;8:eabm1831. PubMed PMC
Fucikova J, Rakova J, Hensler M, Kasikova L, Belicova L, Hladikova K, et al. . TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin Cancer Res 2019;25:4820–31. PubMed
Glass G, Papin JA, Mandell JW. SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem 2009;57:899–905. PubMed PMC
Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. . Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016;17:218. PubMed PMC
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019;20:163–72. PubMed PMC
Andreatta M, Corria-Osorio J, Müller S, Cubas R, Coukos G, Carmona SJ. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun 2021;12:2965. PubMed PMC
Bachmayr-Heyda A, Aust S, Heinze G, Polterauer S, Grimm C, Braicu EI, et al. . Prognostic impact of tumor infiltrating CD8+ T cells in association with cell proliferation in ovarian cancer patients—a study of the OVCAD consortium. BMC Cancer 2013;13:422. PubMed PMC
Stumpf M, Hasenburg A, Riener M-O, Jütting U, Wang C, Shen Y, et al. . Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 2009;101:1513–21. PubMed PMC
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. . Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203–13. PubMed
Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 2014;20:434–44. PubMed
King HW, Orban N, Riches JC, Clear AJ, Warnes G, Teichmann SA, et al. . Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci Immunol 2021;6:eabe6291. PubMed
Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, et al. . Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022;55:527–41.e5. PubMed
Zhu W, Germain C, Liu Z, Sebastian Y, Devi P, Knockaert S, et al. . A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality. Oncoimmunology 2015;4:e1051922. PubMed PMC
Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, et al. . Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 2019;50:195–211.e10. PubMed
Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020;20:173–85. PubMed PMC
Anadon CM, Yu X, Hänggi K, Biswas S, Chaurio RA, Martin A, et al. . Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 2022;40:545–57.e13. PubMed PMC
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. . Comprehensive integration of single-cell data. Cell 2019;177:1888–902.e21. PubMed PMC
Böhm S, Montfort A, Pearce OMT, Topping J, Chakravarty P, Everitt GLA, et al. . Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res 2016;22:3025–36. PubMed
Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, et al. . Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res 2020;8:1099–111. PubMed
Wanderley CW, Colón DF, Luiz JPM, Oliveira FF, Viacava PR, Leite CA, et al. . Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res 2018;78:5891–900. PubMed
Lodewijk I, Bernardini A, Suárez-Cabrera C, Bernal E, Sánchez R, Garcia JL, et al. . Genomic landscape and immune-related gene expression profiling of epithelial ovarian cancer after neoadjuvant chemotherapy. NPJ Precis Oncol 2022;6:7. PubMed PMC
Wouters MCA, Nelson BH. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res 2018;24:6125–35. PubMed
Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res 2016;22:3005–15. PubMed
Petitprez F, de Reyniès A, Keung EZ, Chen TW-W, Sun C-M, Calderaro J, et al. . B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020;577:556–60. PubMed
Kasikova L, Hensler M, Truxova I, Skapa P, Laco J, Belicova L, et al. . Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients. J Immunother Cancer 2019;7:312. PubMed PMC
Jiménez-Sánchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, et al. . Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 2017;170:927–38.e20. PubMed PMC
Berckmans Y, Vankerckhoven A, Caro AA, Kempeneers J, Ceusters J, Thirion G, et al. . TIM3 checkpoint inhibition fails to prolong survival in ovarian cancer-bearing mice. Cancers (Basel) 2024;16:1147. PubMed PMC
Liu B, Hu X, Feng K, Gao R, Xue Z, Zhang S, et al. . Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat Cancer 2022;3:108–21. PubMed
Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. PubMed
Mark J, Fisher DT, Kim M, Emmons T, Khan ANMN, Alqassim E, et al. . Carboplatin enhances lymphocyte-endothelial interactions to promote CD8+ T cell trafficking into the ovarian tumor microenvironment. Gynecol Oncol 2023;168:92–9. PubMed PMC
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. . Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124–8. PubMed PMC
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, et al. . Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024;15:3178. PubMed PMC