BACKGROUND: Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment. METHODS: In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose. Specifically, we assessed basic blood differential count, overall T cells and their subgroups, B cells, and myeloid-derived suppressor cells (MDSC). In detail, CD4 + and CD8 + T cells were assessed according to their subtypes, such as central memory T cells (TCM), effector memory T cells (TEM), and naïve T cells (TN). Furthermore, we also evaluated the predictive value of CD28 and ICOS/CD278 co-expression on T cells. RESULTS: Patients who achieved disease control on ICIs had a significantly lower baseline proportion of CD4 + TEM (p = 0.013) and tended to have a higher baseline proportion of CD4 + TCM (p = 0.059). ICI therapy-induced increase in Treg count (p = 0.012) and the proportion of CD4 + TN (p = 0.008) and CD28 + ICOS- T cells (p = 0.012) was associated with disease control. Patients with a high baseline proportion of CD4 + TCM and a low baseline proportion of CD4 + TEM showed significantly longer PFS (p = 0.011, HR 2.6 and p ˂ 0.001, HR 0.23, respectively) and longer OS (p = 0.002, HR 3.75 and p ˂ 0.001, HR 0.15, respectively). Before the second dose, the high proportion of CD28 + ICOS- T cells after ICI therapy initiation was significantly associated with prolonged PFS (p = 0.017, HR 2.51) and OS (p = 0.030, HR 2.69). Also, a high Treg count after 2 weeks of ICI treatment was associated with significantly prolonged PFS (p = 0.016, HR 2.33). CONCLUSION: In summary, our findings suggest that CD4 + TEM and TCM baselines and an early increase in the Treg count induced by PD-1 inhibitors and the proportion of CD28 + ICOS- T cells may be useful in predicting the response in NSCLC and MM patients.
- MeSH
- antigeny CD278 metabolismus MeSH
- antigeny CD279 antagonisté a inhibitory MeSH
- antigeny CD28 MeSH
- CD8-pozitivní T-lymfocyty imunologie účinky léků metabolismus MeSH
- dospělí MeSH
- inhibitory kontrolních bodů * terapeutické užití farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanom * farmakoterapie imunologie krev patologie MeSH
- nádory plic * farmakoterapie imunologie krev patologie MeSH
- nemalobuněčný karcinom plic * farmakoterapie imunologie krev patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The IMMUNOSARC trial combined an antiangiogenic agent (sunitinib) with a PD1 inhibitor (nivolumab) in advanced sarcomas. Here, we present the first correlative studies of the soft-tissue sarcoma cohort enrolled in this trial. EXPERIMENTAL DESIGN: Formalin-fixed paraffin-embedded and peripheral blood samples were collected at baseline and week 13. Formalin-fixed paraffin-embedded samples were used for transcriptomics and multiplex immunofluorescence, whereas peripheral blood samples were used for multiplexed immunoassays. Flow cytometry and Luminex assays were performed to validate translational findings in tumor-isolated cells and peripheral blood mononuclear cells derived from patients. RESULTS: The density of intratumoral CD8+ T cells, measured by multiplexed immunophenotyping, was significantly increased after treatment. This augment was accompanied by the dynamic significant increase in the gene expressions of CD86, CHI3L1, CXCL10, CXCL9, LAG3, and VCAM1 and the decrease in the expression levels of NR4A1. In peripheral blood, 12 proteins were significantly modulated by treatment at week 13. A score integrating the dynamic expression of the 7 genes and the 12 soluble factors separated 2 groups with distinct progression-free survival (PFS): 4.1 months [95% confidence interval, 3.5-not reached (NR)] versus 17 months (95% confidence interval, 12.0-NR), P = 0.014. This molecular score was predictive of PFS when applied to the normalized data determined in the baseline samples. CONCLUSIONS: Treatment with sunitinib and nivolumab inflamed the sarcoma microenvironment, increasing CD8+ T-cell density and the expression of several genes/proteins with relevance in the response to PD1 inhibitors. A molecular signature identified two groups of patients with distinct PFS for the combination of antiangiogenics plus PD1 inhibitor therapy.
- MeSH
- antigeny CD279 antagonisté a inhibitory MeSH
- CD8-pozitivní T-lymfocyty imunologie účinky léků metabolismus MeSH
- dospělí MeSH
- inhibitory angiogeneze terapeutické užití aplikace a dávkování MeSH
- inhibitory kontrolních bodů terapeutické užití farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádorové mikroprostředí účinky léků imunologie MeSH
- nivolumab terapeutické užití aplikace a dávkování MeSH
- prognóza MeSH
- protokoly antitumorózní kombinované chemoterapie terapeutické užití MeSH
- sarkom * farmakoterapie patologie genetika MeSH
- senioři MeSH
- tumor infiltrující lymfocyty imunologie metabolismus účinky léků MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Transcriptional profiling demonstrated markedly reduced type I IFN gene expression in untreated mycosis fungoides (MF) skin lesions compared with that in healthy skin. Type I IFN expression in MF correlated with antigen-presenting cell-associated IRF5 before psoralen plus UVA therapy and epithelial ULBP2 after therapy, suggesting an enhancement of epithelial type I IFN. Immunostains confirmed reduced baseline type I IFN production in MF and increased levels after psoralen plus UVA treatment in responding patients. Effective tumor clearance was associated with increased type I IFN expression, enhanced recruitment of CD8+ T cells into skin lesions, and expression of genes associated with antigen-specific T-cell activation. IFNk, a keratinocyte-derived inducer of type I IFNs, was increased by psoralen plus UVA therapy and expression correlated with upregulation of other type I IFNs. In vitro, deletion of keratinocyte IFNk decreased baseline and UVA-induced expression of type I IFN and IFN response genes. In summary, we find a baseline deficit in type I IFN production in MF that is restored by psoralen plus UVA therapy and correlates with enhanced antitumor responses. This may explain why MF generally develops in sun-protected skin and suggests that drugs that increase epithelial type I IFNs, including topical MEK and EGFR inhibitors, may be effective therapies for MF.
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
- MeSH
- aktivace lymfocytů * účinky léků imunologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buněčné linie MeSH
- buněčný receptor 2 viru hepatitidy A metabolismus MeSH
- CD8-pozitivní T-lymfocyty * imunologie účinky léků MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * imunologie účinky léků metabolismus MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- mastocyty * imunologie účinky léků metabolismus MeSH
- monocyty imunologie účinky léků metabolismus MeSH
- proliferace buněk * účinky léků MeSH
- thapsigargin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- aktivace lymfocytů imunologie genetika MeSH
- cytotoxické T-lymfocyty * imunologie metabolismus MeSH
- diabetes mellitus 1. typu imunologie genetika metabolismus MeSH
- glukokortikoidy indukovaný protein související s TNRF MeSH
- interferon gama metabolismus MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- receptory antigenů T-buněk metabolismus MeSH
- receptory OX40 metabolismus genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
- MeSH
- analýza jednotlivých buněk metody MeSH
- antigeny CD27 metabolismus imunologie MeSH
- antigeny CD45 * metabolismus imunologie MeSH
- CD8-pozitivní T-lymfocyty * imunologie MeSH
- dospělí MeSH
- fetální krev * imunologie cytologie MeSH
- imunofenotypizace metody MeSH
- lektinové receptory NK-buněk - podrodina B imunologie metabolismus MeSH
- lidé MeSH
- průtoková cytometrie * metody MeSH
- software MeSH
- T-lymfocyty - podskupiny imunologie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Authors present a pilot study of the development of innovative flow cytometry-based assay with a potential for use in tuberculosis diagnostics. Currently available tests do not provide robust discrimination between latent tuberculosis infection (TBI) and tuberculosis disease (TB). The desired application is to distinguish between the two conditions by evaluating the production of a combination of three cytokines: IL-2 (interleukin-2), IFNɣ (interferon gamma) and TNFɑ (tumor necrosis factor alpha) in CD4+ and CD8+ T cells. The study was conducted on 68 participants, divided into two arms according to age (paediatric and adults). Each arm was further split into three categories (non-infection (NI), TBI, TB) based on the immune reaction to Mycobacterium tuberculosis (M.tb) after a close contact with pulmonary TB. Each blood sample was stimulated with specific M.tb antigens present in QuantiFERON tubes (TB1 and TB2). We inferred TBI or TB based on the predominant cytokine response of the CD4+ and/or CD8+ T cells. Significant differences were detected between the NI, TBI and the TB groups in TB1 in the CD4+TNFɑ+parameter in children. Along with IL-2, TNFɑ seems to be the most promising diagnostic marker in both CD4+and CD8+ T cells. However, more detailed analyses on larger cohorts are needed to confirm the observed tendencies.
- MeSH
- antigeny bakteriální imunologie MeSH
- biologické markery krev MeSH
- CD4-pozitivní T-lymfocyty * imunologie MeSH
- CD8-pozitivní T-lymfocyty * imunologie MeSH
- cytokiny krev metabolismus MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- dospělí MeSH
- interferon gama * krev imunologie MeSH
- interleukin-2 * krev MeSH
- latentní tuberkulóza * diagnóza imunologie mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Mycobacterium tuberculosis * imunologie MeSH
- pilotní projekty MeSH
- plicní tuberkulóza diagnóza imunologie mikrobiologie krev MeSH
- prediktivní hodnota testů MeSH
- předškolní dítě MeSH
- průtoková cytometrie * metody MeSH
- senioři MeSH
- test pomocí interferonu gama metody MeSH
- TNF-alfa krev MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Intratumoral tertiary lymphoid structures (TLSs) have been associated with improved outcome in various cohorts of patients with cancer, reflecting their contribution to the development of tumor-targeting immunity. Here, we demonstrate that high-grade serous ovarian carcinoma (HGSOC) contains distinct immune aggregates with varying degrees of organization and maturation. Specifically, mature TLSs (mTLS) as forming only in 16% of HGSOCs with relatively elevated tumor mutational burden (TMB) are associated with an increased intratumoral density of CD8+ effector T (TEFF) cells and TIM3+PD1+, hence poorly immune checkpoint inhibitor (ICI)-sensitive, CD8+ T cells. Conversely, CD8+ T cells from immunologically hot tumors like non-small cell lung carcinoma (NSCLC) are enriched in ICI-responsive TCF1+ PD1+ T cells. Spatial B-cell profiling identifies patterns of in situ maturation and differentiation associated with mTLSs. Moreover, B-cell depletion promotes signs of a dysfunctional CD8+ T cell compartment among tumor-infiltrating lymphocytes from freshly isolated HGSOC and NSCLC biopsies. Taken together, our data demonstrate that - at odds with NSCLC - HGSOC is associated with a low density of follicular helper T cells and thus develops a limited number of mTLS that might be insufficient to preserve a ICI-sensitive TCF1+PD1+ CD8+ T cell phenotype. These findings point to key quantitative and qualitative differences between mTLSs in ICI-responsive vs ICI-irresponsive neoplasms that may guide the development of alternative immunotherapies for patients with HGSOC.
- MeSH
- CD8-pozitivní T-lymfocyty MeSH
- ektopické lymfoidní struktury * MeSH
- fenotyp MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory plic * MeSH
- nádory vaječníků * patologie MeSH
- nemalobuněčný karcinom plic * MeSH
- tumor infiltrující lymfocyty MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
- MeSH
- B-lymfocyty MeSH
- CD8-pozitivní T-lymfocyty * MeSH
- imunoterapie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory * terapie metabolismus MeSH
- tumor infiltrující lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite strides in immunotherapy, glioblastoma multiforme (GBM) remains challenging due to low inherent immunogenicity and suppressive tumor microenvironment. Converting "cold" GBMs to "hot" is crucial for immune activation and improved outcomes. This study comprehensively characterized a therapeutic vaccination strategy for preclinical GBM models. The vaccine consists of Mannan-BAM-anchored irradiated whole tumor cells, Toll-like receptor ligands [lipoteichoic acid (LTA), polyinosinic-polycytidylic acid (Poly (I:C)), and resiquimod (R-848)], and anti-CD40 agonistic antibody (rWTC-MBTA). Intracranial GBM models (GL261, SB28 cells) are used to evaluate the vaccine efficacy. A substantial number of vaccinated mice exhibited complete regression of GBM tumors in a T-cell-dependent manner, with no significant toxicity. Long-term tumor-specific immune memory is confirmed upon tumor rechallenge. In the vaccine-draining lymph nodes of the SB28 model, rWTC-MBTA vaccination triggered a major rise in conventional dendritic cell type 1 (cDC1) 12 h post-treatment, followed by an increase in conventional dendritic cell type 2 (cDC2), monocyte-derived dendritic cell (moDC), and plasmacytoid dendritic cell (pDC) on Day 5 and Day 13. Enhanced cytotoxicity of CD4+ and CD8+ T cells in vaccinated mice is verified in co-culture with tumor cells. Analyses of immunosuppressive signals (T-cell exhaustion, myeloid-derived suppressor cells (MDSC), M2 macrophages) in the GBM microenvironment suggest potential combinations with other immunotherapies for enhanced efficacy. In conclusion, the authors findings demonstrate that rWTC-MBTA induces potent and long-term adaptive immune responses against GBM.
- MeSH
- CD8-pozitivní T-lymfocyty MeSH
- dendritické buňky MeSH
- glioblastom * metabolismus MeSH
- imunita MeSH
- myši MeSH
- nádorové mikroprostředí MeSH
- vakcíny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH