Immunological configuration of ovarian carcinoma: features and impact on disease outcome
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
I01 BX004974
BLRD VA - United States
R01 CA208753
NCI NIH HHS - United States
PubMed
34645669
PubMed Central
PMC8515436
DOI
10.1136/jitc-2021-002873
PII: jitc-2021-002873
Knihovny.cz E-zdroje
- Klíčová slova
- female, genital neoplasms, immunologic surveillance, immunotherapy, tumor biomarkers, tumor microenvironment,
- MeSH
- epiteliální ovariální karcinom imunologie MeSH
- imunosupresivní léčba metody MeSH
- imunoterapie metody MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
Caryl and Israel Englander Institute for Precision Medicine New York NY USA
Department of Radiation Oncology Weill Cornell Medical College New York NY USA
Sandra and Edward Meyer Cancer Center New York NY USA
Zobrazit více v PubMed
Siegel RL, Miller KD, Fuchs HE, et al. . Cancer statistics, 2021. CA Cancer J Clin 2021;71:7–33. 10.3322/caac.21654 PubMed DOI
Colombo N, Sessa C, du Bois A, et al. . ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol 2019;30:672–705. 10.1093/annonc/mdz062 PubMed DOI
Milne K, Köbel M, Kalloger SE, et al. . Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FOXP3 and TIA-1 as positive prognostic factors. PLoS One 2009;4:e6412. 10.1371/journal.pone.0006412 PubMed DOI PMC
Zhou J, Wu S-G, Wang J, et al. . The effect of histological subtypes on outcomes of stage IV epithelial ovarian cancer. Front Oncol 2018;8:577. 10.3389/fonc.2018.00577 PubMed DOI PMC
Hu Z, Artibani M, Alsaadi A, et al. . The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 2020;37:226–42. 10.1016/j.ccell.2020.01.003 PubMed DOI
Gonzalez VD, Samusik N, Chen TJ, et al. . Commonly occurring cell subsets in high-grade serous ovarian tumors identified by single-cell mass cytometry. Cell Rep 2018;22:1875–88. 10.1016/j.celrep.2018.01.053 PubMed DOI PMC
Poveda A, Floquet A, Ledermann JA, et al. . Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2021;22:620-631. 10.1016/S1470-2045(21)00073-5 PubMed DOI
Galluzzi L, Chan TA, Kroemer G, et al. . The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018;10. 10.1126/scitranslmed.aat7807. [Epub ahead of print: 19 Sep 2018]. PubMed DOI
Kandalaft LE, Odunsi K, Coukos G. Immunotherapy in ovarian cancer: are we there yet? J Clin Oncol 2019;37:2460–71. 10.1200/JCO.19.00508 PubMed DOI
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019;18:197–218. 10.1038/s41573-018-0007-y PubMed DOI
Hamanishi J, Mandai M, Ikeda T, et al. . Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 2015;33:4015–22. 10.1200/JCO.2015.62.3397 PubMed DOI
Yang Y, Yang Y, Yang J, et al. . Tumor microenvironment in ovarian cancer: function and therapeutic strategy. Front Cell Dev Biol 2020;8:758. 10.3389/fcell.2020.00758 PubMed DOI PMC
Krockenberger M, Dombrowski Y, Weidler C, et al. . Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol 2008;180:7338–48. 10.4049/jimmunol.180.11.7338 PubMed DOI PMC
Horikawa N, Abiko K, Matsumura N, et al. . Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 2017;23:587–99. 10.1158/1078-0432.CCR-16-0387 PubMed DOI
Tanizaki Y, Kobayashi A, Toujima S, et al. . Indoleamine 2,3-dioxygenase promotes peritoneal metastasis of ovarian cancer by inducing an immunosuppressive environment. Cancer Sci 2014;105:966–73. 10.1111/cas.12445 PubMed DOI PMC
Baert T, Vankerckhoven A, Riva M, et al. . Myeloid derived suppressor cells: key drivers of immunosuppression in ovarian cancer. Front Immunol 2019;10:1273. 10.3389/fimmu.2019.01273 PubMed DOI PMC
Conrad C, Gregorio J, Wang Y-H, et al. . Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res 2012;72:5240–9. 10.1158/0008-5472.CAN-12-2271 PubMed DOI PMC
Labidi-Galy SI, Treilleux I, Goddard-Leon S, et al. . Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology 2012;1:380–2. 10.4161/onci.18801 PubMed DOI PMC
Etzerodt A, Moulin M, Doktor TK, et al. . Tissue-Resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med 2020;217. 10.1084/jem.20191869. [Epub ahead of print: 06 Apr 2020]. PubMed DOI PMC
Hensler M, Kasikova L, Fiser K, et al. . M2-Like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer. J Immunother Cancer 2020;8. 10.1136/jitc-2020-000979 PubMed DOI PMC
Truxova I, Kasikova L, Hensler M, et al. . Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer 2018;6:139. 10.1186/s40425-018-0446-3 PubMed DOI PMC
Santoiemma PP, Powell DJ. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther 2015;16:807–20. 10.1080/15384047.2015.1040960 PubMed DOI PMC
Pearce OMT, Delaine-Smith RM, Maniati E, et al. . Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov 2018;8:304–19. 10.1158/2159-8290.CD-17-0284 PubMed DOI PMC
Hornburg M, Desbois M, Lu S, et al. . Single-Cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 2021;39:928–44. 10.1016/j.ccell.2021.04.004 PubMed DOI
Izar B, Tirosh I, Stover EH, et al. . A single-cell landscape of high-grade serous ovarian cancer. Nat Med 2020;26:1271–9. 10.1038/s41591-020-0926-0 PubMed DOI PMC
Olalekan S, Xie B, Back R, et al. . Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep 2021;35:109165. 10.1016/j.celrep.2021.109165 PubMed DOI
Hamanishi J, Mandai M, Abiko K, et al. . The comprehensive assessment of local immune status of ovarian cancer by the clustering of multiple immune factors. Clin Immunol 2011;141:338–47. 10.1016/j.clim.2011.08.013 PubMed DOI
Hwang W-T, Adams SF, Tahirovic E, et al. . Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 2012;124:192–8. 10.1016/j.ygyno.2011.09.039 PubMed DOI PMC
Leffers N, Gooden MJM, de Jong RA, et al. . Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 2009;58:449–59. 10.1007/s00262-008-0583-5 PubMed DOI PMC
Sato E, Olson SH, Ahn J, et al. . Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 2005;102:18538–43. 10.1073/pnas.0509182102 PubMed DOI PMC
Stumpf M, Hasenburg A, Riener M-O, et al. . Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 2009;101:1513–21. 10.1038/sj.bjc.6605274 PubMed DOI PMC
Wang W, Kryczek I, Dostál L, et al. . Effector T cells abrogate Stroma-Mediated chemoresistance in ovarian cancer. Cell 2016;165:1092–105. 10.1016/j.cell.2016.04.009 PubMed DOI PMC
Webb JR, Milne K, Watson P, et al. . Tumor-Infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 2014;20:434–44. 10.1158/1078-0432.CCR-13-1877 PubMed DOI
Bachmayr-Heyda A, Aust S, Heinze G, et al. . Prognostic impact of tumor infiltrating CD8+ T cells in association with cell proliferation in ovarian cancer patients--a study of the OVCAD consortium. BMC Cancer 2013;13:422. 10.1186/1471-2407-13-422 PubMed DOI PMC
Hamanishi J, Mandai M, Iwasaki M, et al. . Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 2007;104:3360–5. 10.1073/pnas.0611533104 PubMed DOI PMC
Santoiemma PP, Reyes C, Wang L-P, et al. . Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecol Oncol 2016;143:120–7. 10.1016/j.ygyno.2016.07.105 PubMed DOI
Hermans C, Anz D, Engel J, et al. . Analysis of Foxp3+ T-regulatory cells and CD8+ T-cells in ovarian carcinoma: location and tumor infiltration patterns are key prognostic markers. PLoS One 2014;9:e111757. 10.1371/journal.pone.0111757 PubMed DOI PMC
Barnett JC, Bean SM, Whitaker RS, et al. . Ovarian cancer tumor infiltrating T-regulatory (T(reg)) cells are associated with a metastatic phenotype. Gynecol Oncol 2010;116:556–62. 10.1016/j.ygyno.2009.11.020 PubMed DOI
Henriksen JR, Donskov F, Waldstrøm M, et al. . Favorable prognostic impact of natural killer cells and T cells in high-grade serous ovarian carcinoma. Acta Oncol 2020;59:652–9. 10.1080/0284186X.2019.1711173 PubMed DOI
Zhang L, Conejo-Garcia JR, Katsaros D, et al. . Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203–13. 10.1056/NEJMoa020177 PubMed DOI
Clarke B, Tinker AV, Lee C-H, et al. . Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod Pathol 2009;22:393–402. 10.1038/modpathol.2008.191 PubMed DOI
Zhang Z, Huang J, Zhang C, et al. . Infiltration of dendritic cells and T lymphocytes predicts favorable outcome in epithelial ovarian cancer. Cancer Gene Ther 2015;22:198–206. 10.1038/cgt.2015.7 PubMed DOI
Lieber S, Reinartz S, Raifer H, et al. . Prognosis of ovarian cancer is associated with effector memory CD8+ T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. Oncoimmunology 2018;7:e1424672. 10.1080/2162402X.2018.1424672 PubMed DOI PMC
Ovarian Tumor Tissue Analysis (OTTA) Consortium, Goode EL, Block MS, et al. . Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol 2017;3:e173290. 10.1001/jamaoncol.2017.3290 PubMed DOI PMC
Fucikova J, Rakova J, Hensler M, et al. . Tim-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin Cancer Res 2019;25:4820–31. 10.1158/1078-0432.CCR-18-4175 PubMed DOI
Facciabene A, Motz GT, Coukos G. T-Regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012;72:2162–71. 10.1158/0008-5472.CAN-11-3687 PubMed DOI PMC
Komdeur FL, Wouters MCA, Workel HH, et al. . CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget 2016;7:75130–44. 10.18632/oncotarget.12077 PubMed DOI PMC
Chihara N, Madi A, Kondo T, et al. . Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 2018;558:454–9. 10.1038/s41586-018-0206-z PubMed DOI PMC
Zhu C, Sakuishi K, Xiao S, et al. . An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun 2015;6:6072. 10.1038/ncomms7072 PubMed DOI PMC
Wolf Y, Anderson AC, Kuchroo VK. Tim3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020;20:173–85. 10.1038/s41577-019-0224-6 PubMed DOI PMC
Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 2019;16:356–71. 10.1038/s41571-019-0175-7 PubMed DOI
Sakaguchi S, Mikami N, Wing JB, et al. . Regulatory T cells and human disease. Annu Rev Immunol 2020;38:541–66. 10.1146/annurev-immunol-042718-041717 PubMed DOI
Wolf D, Wolf AM, Rumpold H, et al. . The expression of the regulatory T cell-specific forkhead box transcription factor FOXP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005;11:8326–31. 10.1158/1078-0432.CCR-05-1244 PubMed DOI
Curiel TJ, Coukos G, Zou L, et al. . Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942–9. 10.1038/nm1093 PubMed DOI
Shang B, Liu Y, Jiang S-juan, et al. . Prognostic value of tumor-infiltrating Foxp3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015;5:15179. 10.1038/srep15179 PubMed DOI PMC
Kryczek I, Wei S, Zhu G, et al. . Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 2007;67:8900–5. 10.1158/0008-5472.CAN-07-1866 PubMed DOI
Knutson KL, Maurer MJ, Preston CC, et al. . Regulatory T cells, inherited variation, and clinical outcome in epithelial ovarian cancer. Cancer Immunol Immunother 2015;64:1495–504. 10.1007/s00262-015-1753-x PubMed DOI PMC
Tanchot C, Terme M, Pere H, et al. . Tumor-Infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 2013;6:147–57. 10.1007/s12307-012-0122-y PubMed DOI PMC
Fialová A, Partlová S, Sojka L, et al. . Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer 2013;132:1070–9. 10.1002/ijc.27759 PubMed DOI
Zhou J, Li X, Wu X, et al. . Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 2018;6:1578–92. 10.1158/2326-6066.CIR-17-0479 PubMed DOI
Facciabene A, Peng X, Hagemann IS, et al. . Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011;475:226–30. 10.1038/nature10169 PubMed DOI
Toker A, Nguyen LT, Stone SC, et al. . Regulatory T cells in ovarian cancer are characterized by a highly activated phenotype distinct from that in melanoma. Clin Cancer Res 2018;24:5685–96. 10.1158/1078-0432.CCR-18-0554 PubMed DOI
Wculek SK, Cueto FJ, Mujal AM, et al. . Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020;20:7–24. 10.1038/s41577-019-0210-z PubMed DOI
Martinek J, Wu T-C, Cadena D, et al. . Interplay between dendritic cells and cancer cells. Int Rev Cell Mol Biol 2019;348:179–215. 10.1016/bs.ircmb.2019.07.008 PubMed DOI
Reinartz S, Schumann T, Finkernagel F, et al. . Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 2014;134:32–42. 10.1002/ijc.28335 PubMed DOI PMC
Wu M, Chen X, Lou J, et al. . TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget 2016;7:44534–44. 10.18632/oncotarget.10003 PubMed DOI PMC
Cai DL, Jin L-P. Immune cell population in ovarian tumor microenvironment. J Cancer 2017;8:2915–23. 10.7150/jca.20314 PubMed DOI PMC
Chen F, Hou M, Ye F, et al. . Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophagelike cells in vitro. Int J Gynecol Cancer 2009;19:1487–93. 10.1111/IGC.0b013e3181bb70c6 PubMed DOI
Curiel TJ, Wei S, Dong H, et al. . Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003;9:562–7. 10.1038/nm863 PubMed DOI
Bronger H, Singer J, Windmüller C, et al. . Cxcl9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br J Cancer 2016;115:553–63. 10.1038/bjc.2016.172 PubMed DOI PMC
Amon L, Lehmann CHK, Baranska A, et al. . Transcriptional control of dendritic cell development and functions. Int Rev Cell Mol Biol 2019;349:55–151. 10.1016/bs.ircmb.2019.10.001 PubMed DOI
Broz ML, Binnewies M, Boldajipour B, et al. . Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26:938. 10.1016/j.ccell.2014.11.010 PubMed DOI
Sautès-Fridman C, Petitprez F, Calderaro J, et al. . Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019;19:307–25. 10.1038/s41568-019-0144-6 PubMed DOI
MacGregor HL, Garcia-Batres C, Sayad A, et al. . Tumor cell expression of B7-H4 correlates with higher frequencies of tumor-infiltrating APCS and higher CXCL17 expression in human epithelial ovarian cancer. Oncoimmunology 2019;8:e1665460. 10.1080/2162402X.2019.1665460 PubMed DOI PMC
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: function, heterogeneity, and plasticity. Int Rev Cell Mol Biol 2019;349:177–211. 10.1016/bs.ircmb.2019.10.002 PubMed DOI
Demoulin S, Herfs M, Delvenne P, et al. . Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J Leukoc Biol 2013;93:343–52. 10.1189/jlb.0812397 PubMed DOI
Labidi-Galy SI, Sisirak V, Meeus P, et al. . Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res 2011;71:5423–34. 10.1158/0008-5472.CAN-11-0367 PubMed DOI
Inaba T, Ino K, Kajiyama H, et al. . Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol 2009;115:185–92. 10.1016/j.ygyno.2009.07.015 PubMed DOI
Zou W, Machelon V, Coulomb-L'Hermin A, et al. . Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001;7:1339–46. 10.1038/nm1201-1339 PubMed DOI
Fucikova J, Palova-Jelinkova L, Bartunkova J, et al. . Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications. Front Immunol 2019;10:2393. 10.3389/fimmu.2019.02393 PubMed DOI PMC
Nielsen JS, Sahota RA, Milne K, et al. . CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 2012;18:3281–92. 10.1158/1078-0432.CCR-12-0234 PubMed DOI
Iglesia MD, Vincent BG, Parker JS, et al. . Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res 2014;20:3818–29. 10.1158/1078-0432.CCR-13-3368 PubMed DOI PMC
Kroeger DR, Milne K, Nelson BH. Tumor-Infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res 2016;22:3005–15. 10.1158/1078-0432.CCR-15-2762 PubMed DOI
Zhu Y, Zhang Z, Jiang Z, et al. . Cd38 predicts favorable prognosis by enhancing immune infiltration and antitumor immunity in the epithelial ovarian cancer microenvironment. Front Genet 2020;11:369. 10.3389/fgene.2020.00369 PubMed DOI PMC
Lundgren S, Berntsson J, Nodin B, et al. . Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J Ovarian Res 2016;9:21. 10.1186/s13048-016-0232-0 PubMed DOI PMC
Helmink BA, Reddy SM, Gao J, et al. . B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020;577:549–55. 10.1038/s41586-019-1922-8 PubMed DOI PMC
Germain C, Gnjatic S, Tamzalit F, et al. . Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 2014;189:832–44. 10.1164/rccm.201309-1611OC PubMed DOI
Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 2010;185:4977–82. 10.4049/jimmunol.1001323 PubMed DOI
Montfort A, Pearce O, Maniati E, et al. . A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin Cancer Res 2017;23:250–62. 10.1158/1078-0432.CCR-16-0081 PubMed DOI PMC
Vitale I, Shema E, Loi S, et al. . Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 2021;27:212–24. 10.1038/s41591-021-01233-9 PubMed DOI
Vankerckhoven A, Wouters R, Mathivet T, et al. . Opposite macrophage polarization in different subsets of ovarian cancer: observation from a pilot study. Cells 2020;9. 10.3390/cells9020305. [Epub ahead of print: 27 Jan 2020]. PubMed DOI PMC
Vitale I, Manic G, Coussens LM, et al. . Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36–50. 10.1016/j.cmet.2019.06.001 PubMed DOI
Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018;17:887–904. 10.1038/nrd.2018.169 PubMed DOI
Yin M, Li X, Tan S, et al. . Tumor-Associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest 2016;126:4157–73. 10.1172/JCI87252 PubMed DOI PMC
Yuan X, Zhang J, Li D, et al. . Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis. Gynecol Oncol 2017;147:181–7. 10.1016/j.ygyno.2017.07.007 PubMed DOI
Le Page C, Marineau A, Bonza PK, et al. . BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. PLoS One 2012;7:e38541. 10.1371/journal.pone.0038541 PubMed DOI PMC
Lan C, Huang X, Lin S, et al. . Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 2013;12:259–67. 10.7785/tcrt.2012.500312 PubMed DOI
He Y-feng, Zhang M-ying, Wu X, et al. . High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time. PLoS One 2013;8:e79769. 10.1371/journal.pone.0079769 PubMed DOI PMC
Hagemann T, Robinson SC, Thompson RG, et al. . Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol Cancer Ther 2007;6:1993–2002. 10.1158/1535-7163.MCT-07-0118 PubMed DOI
Zhou Y, Xu Y, Chen L, et al. . B7-H6 expression correlates with cancer progression and patient's survival in human ovarian cancer. Int J Clin Exp Pathol 2015;8:9428–33. PubMed PMC
Zhang M, He Y, Sun X, et al. . A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 2014;7:19. 10.1186/1757-2215-7-19 PubMed DOI PMC
Macciò A, Gramignano G, Cherchi MC, et al. . Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep 2020;10:6096. 10.1038/s41598-020-63276-1 PubMed DOI PMC
Guerriero JL. Macrophages: their untold story in T cell activation and function. Int Rev Cell Mol Biol 2019;342:73–93. 10.1016/bs.ircmb.2018.07.001 PubMed DOI
Gharpure KM, Pradeep S, Sans M, et al. . Fabp4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun 2018;9:2923. 10.1038/s41467-018-04987-y PubMed DOI PMC
Hao J, Yan F, Zhang Y, et al. . Expression of Adipocyte/Macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Res 2018;78:2343–55. 10.1158/0008-5472.CAN-17-2465 PubMed DOI PMC
Nieman KM, Kenny HA, Penicka CV, et al. . Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498–503. 10.1038/nm.2492 PubMed DOI PMC
Goossens P, Rodriguez-Vita J, Etzerodt A, et al. . Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab 2019;29:1376–89. 10.1016/j.cmet.2019.02.016 PubMed DOI
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-Derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 2021;21:485-498. 10.1038/s41577-020-00490-y PubMed DOI PMC
Gabrilovich DI, Nagaraj S. Myeloid-Derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162–74. 10.1038/nri2506 PubMed DOI PMC
Okła K, Czerwonka A, Wawruszak A, et al. . Clinical relevance and immunosuppressive pattern of circulating and infiltrating subsets of myeloid-derived suppressor cells (MDSCs) in epithelial ovarian cancer. Front Immunol 2019;10:691. 10.3389/fimmu.2019.00691 PubMed DOI PMC
Wu L, Deng Z, Peng Y, et al. . Ascites-derived IL-6 and IL-10 synergistically expand CD14+HLA-DR-/low myeloid-derived suppressor cells in ovarian cancer patients. Oncotarget 2017;8:76843–56. 10.18632/oncotarget.20164 PubMed DOI PMC
Rodríguez-Ubreva J, Català-Moll F, Obermajer N, et al. . Prostaglandin E2 leads to the acquisition of DNMT3A-Dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep 2017;21:154–67. 10.1016/j.celrep.2017.09.018 PubMed DOI
Obermajer N, Muthuswamy R, Odunsi K, et al. . PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 2011;71:7463–70. 10.1158/0008-5472.CAN-11-2449 PubMed DOI PMC
Li X, Wang J, Wu W, et al. . Myeloid-Derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signalling pathway. Febs J 2020;287:5218–35. 10.1111/febs.15311 PubMed DOI PMC
Taki M, Abiko K, Baba T, et al. . Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun 2018;9:1685. 10.1038/s41467-018-03966-7 PubMed DOI PMC
Komura N, Mabuchi S, Shimura K, et al. . The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer. Cancer Immunol Immunother 2020;69:2477–99. 10.1007/s00262-020-02628-2 PubMed DOI PMC
Okła K, Rajtak A, Czerwonka A, et al. . Accumulation of blood-circulating PD-L1-expressing M-MDSCs and monocytes/macrophages in pretreatment ovarian cancer patients is associated with soluble PD-L1. J Transl Med 2020;18:220. 10.1186/s12967-020-02389-7 PubMed DOI PMC
Li L, Wang L, Li J, et al. . Metformin-Induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res 2018;78:1779–91. 10.1158/0008-5472.CAN-17-2460 PubMed DOI PMC
Obermajer N, Wong JL, Edwards RP, et al. . Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent no signaling. J Exp Med 2013;210:1433–45. 10.1084/jem.20121277 PubMed DOI PMC
Wong JL, Obermajer N, Odunsi K, et al. . Synergistic COX2 induction by IFNγ and TNFα self-limits type-1 immunity in the human tumor microenvironment. Cancer Immunol Res 2016;4:303–11. 10.1158/2326-6066.CIR-15-0157 PubMed DOI PMC
Condamine T, Dominguez GA, Youn J-I, et al. . Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016;1. 10.1126/sciimmunol.aaf8943. [Epub ahead of print: 05 Aug 2016]. PubMed DOI PMC
Mabuchi S, Komura N, Sasano T, et al. . Pretreatment tumor-related leukocytosis misleads positron emission tomography-computed tomography during lymph node staging in gynecological malignancies. Nat Commun 2020;11:1364. 10.1038/s41467-020-15186-z PubMed DOI PMC
Cui TX, Kryczek I, Zhao L, et al. . Myeloid-Derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013;39:611–21. 10.1016/j.immuni.2013.08.025 PubMed DOI PMC
Trillo-Tinoco J, Sierra RA, Mohamed E, et al. . Ampk alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cells. Cancer Res 2019;79:5034–47. 10.1158/0008-5472.CAN-19-0880 PubMed DOI PMC
Huntington ND, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. Nat Rev Cancer 2020;20:437–54. 10.1038/s41568-020-0272-z PubMed DOI
Cózar B, Greppi M, Carpentier S, et al. . Tumor-Infiltrating natural killer cells. Cancer Discov 2021;11:34-44. 10.1158/2159-8290.CD-20-0655 PubMed DOI PMC
Hoogstad-van Evert JS, Maas RJ, van der Meer J, et al. . Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients. Oncotarget 2018;9:34810–20. 10.18632/oncotarget.26199 PubMed DOI PMC
Nersesian S, Glazebrook H, Toulany J, et al. . Naturally killing the silent killer: NK cell-based immunotherapy for ovarian cancer. Front Immunol 2019;10:10. 10.3389/fimmu.2019.01782 PubMed DOI PMC
Yigit R, Massuger LFAG, Figdor CG, et al. . Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol 2010;117:366–72. 10.1016/j.ygyno.2010.01.019 PubMed DOI
Krockenberger M, Kranke P, Häusler S, et al. . Macrophage migration-inhibitory factor levels in serum of patients with ovarian cancer correlates with poor prognosis. Anticancer Res 2012;32:5233–8. PubMed
Pesce S, Tabellini G, Cantoni C, et al. . B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 2015;4:e1001224. 10.1080/2162402X.2014.1001224 PubMed DOI PMC
Böttcher JP, Bonavita E, Chakravarty P, et al. . Nk cells stimulate recruitment of cdc1 into the tumor microenvironment promoting cancer immune control. Cell 2018;172:1022–37. 10.1016/j.cell.2018.01.004 PubMed DOI PMC
Wong JL, Berk E, Edwards RP, et al. . IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 2013;73:4653–62. 10.1158/0008-5472.CAN-12-4366 PubMed DOI PMC
Sahai E, Astsaturov I, Cukierman E, et al. . A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020;20:174–86. 10.1038/s41568-019-0238-1 PubMed DOI PMC
Dasari S, Fang Y, Mitra AK. Cancer associated fibroblasts: Naughty neighbors that drive ovarian cancer progression. Cancers 2018;10. 10.3390/cancers10110406. [Epub ahead of print: 29 Oct 2018]. PubMed DOI PMC
Spaeth EL, Dembinski JL, Sasser AK, et al. . Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009;4:e4992. 10.1371/journal.pone.0004992 PubMed DOI PMC
McLean K, Gong Y, Choi Y, et al. . Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011;121:3206–19. 10.1172/JCI45273 PubMed DOI PMC
Mhawech-Fauceglia P, Wang D, Samrao D, et al. . Clinical implications of marker expression of carcinoma-associated fibroblasts (CAFs) in patients with epithelial ovarian carcinoma after treatment with neoadjuvant chemotherapy. Cancer Microenviron 2014;7:33–9. 10.1007/s12307-013-0140-4 PubMed DOI PMC
Sun Y, Fan X, Zhang Q, et al. . Cancer-Associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. Tumour Biol 2017;39:1010428317712592. 10.1177/1010428317712592 PubMed DOI
Vitale I, Manic G, Galassi C, et al. . Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019;200:55–68. 10.1016/j.pharmthera.2019.04.004 PubMed DOI
Schauer IG, Sood AK, Mok S, et al. . Cancer-Associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia 2011;13:393–405. 10.1593/neo.101720 PubMed DOI PMC
Schauer IG, Zhang J, Xing Z, et al. . Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 2013;15:409–20. 10.1593/neo.121228 PubMed DOI PMC
Mitra AK, Zillhardt M, Hua Y, et al. . Micrornas reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2012;2:1100–8. 10.1158/2159-8290.CD-12-0206 PubMed DOI PMC
Curtis M, Kenny HA, Ashcroft B, et al. . Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab 2019;29:141–55. 10.1016/j.cmet.2018.08.007 PubMed DOI PMC
Tsukishiro S, Suzumori N, Nishikawa H, et al. . Elevated serum RANTES levels in patients with ovarian cancer correlate with the extent of the disorder. Gynecol Oncol 2006;102:542–5. 10.1016/j.ygyno.2006.01.029 PubMed DOI
Yeung T-L, Leung CS, Wong K-K, et al. . TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 2013;73:5016–28. 10.1158/0008-5472.CAN-13-0023 PubMed DOI PMC
Orimo A, Gupta PB, Sgroi DC, et al. . Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335–48. 10.1016/j.cell.2005.02.034 PubMed DOI
Ladanyi A, Mukherjee A, Kenny HA, et al. . Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 2018;37:2285–301. 10.1038/s41388-017-0093-z PubMed DOI PMC
Leung CS, Yeung T-L, Yip K-P, et al. . Cancer-Associated fibroblasts regulate endothelial adhesion protein LPP to promote ovarian cancer chemoresistance. J Clin Invest 2018;128:589–606. 10.1172/JCI95200 PubMed DOI PMC
Yan H, Guo B-Y, Zhang S. Cancer-Associated fibroblasts attenuate cisplatin-induced apoptosis in ovarian cancer cells by promoting STAT3 signaling. Biochem Biophys Res Commun 2016;470:947–54. 10.1016/j.bbrc.2016.01.131 PubMed DOI
Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 2019;10:10. 10.3389/fimmu.2019.01835 PubMed DOI PMC
Lakins MA, Ghorani E, Munir H, et al. . Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T Cells to protect tumour cells. Nat Commun 2018;9:948. 10.1038/s41467-018-03347-0 PubMed DOI PMC
Ko SY, Barengo N, Ladanyi A, et al. . Hoxa9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 2012;122:3603–17. 10.1172/JCI62229 PubMed DOI PMC
Li W, Zhang X, Wang J, et al. . Tgfβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget 2017;8:96035–47. 10.18632/oncotarget.21635 PubMed DOI PMC
Zsiros E, Duttagupta P, Dangaj D, et al. . The ovarian cancer chemokine landscape is conducive to homing of Vaccine-Primed and CD3/CD28-Costimulated T cells prepared for adoptive therapy. Clin Cancer Res 2015;21:2840–50. 10.1158/1078-0432.CCR-14-2777 PubMed DOI PMC
Kulbe H, Chakravarty P, Leinster DA, et al. . A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2012;72:66–75. 10.1158/0008-5472.CAN-11-2178 PubMed DOI PMC
Coward J, Kulbe H, Chakravarty P, et al. . Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011;17:6083–96. 10.1158/1078-0432.CCR-11-0945 PubMed DOI PMC
Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 2005;65:10794–800. 10.1158/0008-5472.CAN-05-0623 PubMed DOI PMC
Isobe A, Sawada K, Kinose Y, et al. . Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One 2015;10:e0118080. 10.1371/journal.pone.0118080 PubMed DOI PMC
Browning L, Patel MR, Horvath EB, et al. . Il-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res 2018;10:6685–93. 10.2147/CMAR.S179189 PubMed DOI PMC
Saini U, Naidu S, ElNaggar AC, et al. . Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: a potential therapeutic target. Oncogene 2017;36:168–81. 10.1038/onc.2016.197 PubMed DOI PMC
Colomiere M, Ward AC, Riley C, et al. . Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 2009;100:134–44. 10.1038/sj.bjc.6604794 PubMed DOI PMC
Alsina-Sanchis E, Figueras A, Lahiguera Álvaro, et al. . The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels. Int J Cancer 2016;139:1894–903. 10.1002/ijc.30233 PubMed DOI
Kassim SK, El-Salahy EM, Fayed ST, et al. . Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin Biochem 2004;37:363–9. 10.1016/j.clinbiochem.2004.01.014 PubMed DOI
Charles KA, Kulbe H, Soper R, et al. . The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 2009;119:3011–23. 10.1172/JCI39065 PubMed DOI PMC
Coosemans AN, Baert T, D'Heygere V, et al. . Increased immunosuppression is related to increased amounts of ascites and inferior prognosis in ovarian cancer. Anticancer Res 2019;39:5953–62. 10.21873/anticanres.13800 PubMed DOI
Rao S, Gharib K, Han A. Cancer immunosurveillance by T cells. Int Rev Cell Mol Biol 2019;342:149–73. 10.1016/bs.ircmb.2018.08.001 PubMed DOI
Kolomeyevskaya N, Eng KH, Khan ANH, et al. . Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer. Gynecol Oncol 2015;138:352–7. 10.1016/j.ygyno.2015.05.009 PubMed DOI PMC
Mir H, Kaur G, Kapur N, et al. . Higher CXCL16 exodomain is associated with aggressive ovarian cancer and promotes the disease by CXCR6 activation and MMP modulation. Sci Rep 2019;9:2527. 10.1038/s41598-019-38766-6 PubMed DOI PMC
Negus RP, Stamp GW, Relf MG, et al. . The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 1995;95:2391–6. 10.1172/JCI117933 PubMed DOI PMC
Nesbeth YC, Martinez DG, Toraya S, et al. . Cd4+ T cells elicit host immune responses to MHC class II-negative ovarian cancer through CCL5 secretion and CD40-mediated licensing of dendritic cells. J Immunol 2010;184:5654–62. 10.4049/jimmunol.0903247 PubMed DOI PMC
Franciszkiewicz K, Boutet M, Gauthier L, et al. . Synaptic release of CCL5 storage vesicles triggers CXCR4 surface expression promoting CTL migration in response to CXCL12. J Immunol 2014;193:4952–61. 10.4049/jimmunol.1401184 PubMed DOI
Jiang Y-P, Wu X-H, Shi B, et al. . Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol 2006;103:226–33. 10.1016/j.ygyno.2006.02.036 PubMed DOI
Lane D, Matte I, Laplante C, et al. . Ccl18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling. Mol Cancer 2016;15:58. 10.1186/s12943-016-0542-2 PubMed DOI PMC
Wang Q, Tang Y, Yu H, et al. . Ccl18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog 2016;55:1688–99. 10.1002/mc.22419 PubMed DOI PMC
Huang R-Y, Francois A, McGray AR, et al. . Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 2017;6:e1249561. 10.1080/2162402X.2016.1249561 PubMed DOI PMC
Sha D, Jin Z, Budczies J, et al. . Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 2020;10:1808–25. 10.1158/2159-8290.CD-20-0522 PubMed DOI PMC
Galluzzi L, Humeau J, Buqué A, et al. . Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020;17:725–41. 10.1038/s41571-020-0413-z PubMed DOI
Lhuillier C, Rudqvist N-P, Yamazaki T, et al. . Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J Clin Invest 2021;131. 10.1172/JCI138740. [Epub ahead of print: 01 Mar 2021]. PubMed DOI PMC
Galluzzi L, Vitale I, Warren S, et al. . Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020;8:e000337. 10.1136/jitc-2019-000337 PubMed DOI PMC
Kasikova L, Hensler M, Truxova I, et al. . Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients. J Immunother Cancer 2019;7:312. 10.1186/s40425-019-0781-z PubMed DOI PMC
Fucikova J, Spisek R, Kroemer G, et al. . Calreticulin and cancer. Cell Res 2021;31:5–16. 10.1038/s41422-020-0383-9 PubMed DOI PMC
Disis ML, Taylor MH, Kelly K, et al. . Efficacy and safety of Avelumab for patients with recurrent or refractory ovarian cancer: phase 1B results from the javelin solid tumor trial. JAMA Oncol 2019;5:393–401. 10.1001/jamaoncol.2018.6258 PubMed DOI PMC
Pujade-Lauraine E, Fujiwara K, Dychter SS, et al. . Avelumab (anti-PD-L1) in platinum-resistant/refractory ovarian cancer: javelin ovarian 200 phase III study design. Future Oncol 2018;14:2103–13. 10.2217/fon-2018-0070 PubMed DOI
Monk BJ, Brady MF, Aghajanian C, et al. . A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study. Ann Oncol 2017;28:996–1004. 10.1093/annonc/mdx049 PubMed DOI PMC
Senovilla L, Vitale I, Martins I, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. 10.1126/science.1224922 PubMed DOI
Wanderley CW, Colón DF, Luiz JPM, et al. . Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res 2018;78:5891–900. 10.1158/0008-5472.CAN-17-3480 PubMed DOI
Noordam L, Kaijen MEH, Bezemer K, et al. . Low-Dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy. Oncoimmunology 2018;7:e1474318. 10.1080/2162402X.2018.1474318 PubMed DOI PMC
Zsiros E, Lynam S, Attwood KM, et al. . Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol 2021;7:78–85. 10.1001/jamaoncol.2020.5945 PubMed DOI PMC
Yang M, Lu J, Zhang G, et al. . Cxcl13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J Immunother Cancer 2021;9. 10.1136/jitc-2020-001136 PubMed DOI PMC
Matulonis UA, Shapira-Frommer R, Santin AD, et al. . Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol 2019;30:1080–7. 10.1093/annonc/mdz135 PubMed DOI
Zamarin D, Burger RA, Sill MW, et al. . Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J Clin Oncol 2020;38:1814–23. 10.1200/JCO.19.02059 PubMed DOI PMC
Rossi L, Verrico M, Zaccarelli E, et al. . Bevacizumab in ovarian cancer: a critical review of phase III studies. Oncotarget 2017;8:12389–405. 10.18632/oncotarget.13310 PubMed DOI PMC
Shrimali RK, Yu Z, Theoret MR, et al. . Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010;70:6171–80. 10.1158/0008-5472.CAN-10-0153 PubMed DOI PMC
Liu JF, Herold C, Gray KP, et al. . Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol 2019;5:1731–8. 10.1001/jamaoncol.2019.3343 PubMed DOI PMC
Lee J-M, Cimino-Mathews A, Peer CJ, et al. . Safety and clinical activity of the programmed Death-Ligand 1 inhibitor Durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women's cancers: a dose-escalation, phase I study. J Clin Oncol 2017;35:2193–202. 10.1200/JCO.2016.72.1340 PubMed DOI PMC
Moore KN, Bookman M, Sehouli J, et al. . Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J Clin Oncol 2021;39:1842–55. 10.1200/JCO.21.00306 PubMed DOI PMC
Mirza MR, Coleman RL, González-Martín A, et al. . The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol 2020;31:1148–59. 10.1016/j.annonc.2020.06.004 PubMed DOI
Mirza MR, Monk BJ, Herrstedt J, et al. . Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375:2154–64. 10.1056/NEJMoa1611310 PubMed DOI
Petroni G, Buqué A, Zitvogel L, et al. . Immunomodulation by targeted anticancer agents. Cancer Cell 2021;39:310–45. 10.1016/j.ccell.2020.11.009 PubMed DOI
Konstantinopoulos PA, Waggoner S, Vidal GA, et al. . Single-Arm phases 1 and 2 trial of Niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol 2019;5:1141–9. 10.1001/jamaoncol.2019.1048 PubMed DOI PMC
Yamazaki T, Kirchmair A, Sato A, et al. . Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat Immunol 2020;21:1160–71. 10.1038/s41590-020-0751-0 PubMed DOI
Chabanon RM, Muirhead G, Krastev DB, et al. . Parp inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J Clin Invest 2019;129:1211–28. 10.1172/JCI123319 PubMed DOI PMC
Sprooten J, Ceusters J, Coosemans A, et al. . Trial Watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019;8:e1638212. 10.1080/2162402X.2019.1638212 PubMed DOI PMC
Odunsi K, Matsuzaki J, James SR, et al. . Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2014;2:37–49. 10.1158/2326-6066.CIR-13-0126 PubMed DOI PMC
Chow S, Berek JS, Dorigo O. Development of therapeutic vaccines for ovarian cancer. Vaccines 2020;8. 10.3390/vaccines8040657. [Epub ahead of print: 05 Nov 2020]. PubMed DOI PMC
Zhang X, He T, Li Y, et al. . Dendritic cell vaccines in ovarian cancer. Front Immunol 2020;11:613773. 10.3389/fimmu.2020.613773 PubMed DOI PMC
Belderbos RA, Aerts JGJV, Vroman H. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional treatment. Mol Ther Oncolytics 2019;13:67–81. 10.1016/j.omto.2019.03.007 PubMed DOI PMC
Overwijk WW, Theoret MR, Finkelstein SE, et al. . Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003;198:569–80. 10.1084/jem.20030590 PubMed DOI PMC
Westergaard MCW, Andersen R, Chong C, et al. . Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019;120:424–34. 10.1038/s41416-019-0384-y PubMed DOI PMC
Pedersen M, Westergaard MCW, Milne K, et al. . Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 2018;7:e1502905. 10.1080/2162402X.2018.1502905 PubMed DOI PMC
Zhang AW, McPherson A, Milne K, et al. . Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 2018;173:1755–69. 10.1016/j.cell.2018.03.073 PubMed DOI
Wagner DL, Fritsche E, Pulsipher MA, et al. . Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol 2021;18:379–93. 10.1038/s41571-021-00476-2 PubMed DOI PMC
Liu G, Rui W, Zhao X, et al. . Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021;18:1085–95. 10.1038/s41423-021-00655-2 PubMed DOI PMC
Kershaw MH, Westwood JA, Parker LL, et al. . A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12:6106–15. 10.1158/1078-0432.CCR-06-1183 PubMed DOI PMC
Fucà G, Reppel L, Landoni E, et al. . Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin Cancer Res 2020;26:2444–51. 10.1158/1078-0432.CCR-19-1835 PubMed DOI PMC
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in car T cell therapy. Nat Rev Clin Oncol 2020;17:147–67. 10.1038/s41571-019-0297-y PubMed DOI PMC
Fang J, Ding N, Guo X, et al. . αPD-1-mesoCAR-T cells partially inhibit the growth of advanced/refractory ovarian cancer in a patient along with daily apatinib. J Immunother Cancer 2021;9:e001162. 10.1136/jitc-2020-001162 PubMed DOI PMC
Kaufman HL, Maciorowski D. Advancing oncolytic virus therapy by understanding the biology. Nat Rev Clin Oncol 2021;18:197–8. 10.1038/s41571-021-00490-4 PubMed DOI
Andtbacka RHI, Collichio F, Harrington KJ, et al. . Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 2019;7:145. 10.1186/s40425-019-0623-z PubMed DOI PMC
Santos JM, Heiniö C, Cervera-Carrascon V, et al. . Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J Immunother Cancer 2020;8:e000188. 10.1136/jitc-2019-000188 PubMed DOI PMC
Chesney J, Puzanov I, Collichio F, et al. . Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene Laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2018;36:1658–67. 10.1200/JCO.2017.73.7379 PubMed DOI PMC
Petroni G, Galluzzi L. Impact of treatment schedule on the efficacy of cytostatic and immunostimulatory agents. Oncoimmunology 2021;10:1889101. 10.1080/2162402X.2021.1889101 PubMed DOI PMC
Wang L, Zhang F, Cui J-Y, et al. . CAFs enhance paclitaxel resistance by inducing EMT through the IL‑6/JAK2/STAT3 pathway. Oncol Rep 2018;39:2081–90. 10.3892/or.2018.6311 PubMed DOI PMC