Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor

. 2021 Jul 12 ; 70 (3) : 363-381. [epub] 20210512

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33982589

The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.

Zobrazit více v PubMed

AKASHI HD, SAITO S, CADIZ DIAZ A, MAKINO T, TOMINAGA M, KAWATA M. Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards. Mol Ecol. 2018;27:2234–2242. doi: 10.1111/mec.14572. PubMed DOI

ARENAS OM, ZAHARIEVA EE, PARA A, VASQUEZ-DOORMAN C, PETERSEN CP, GALLIO M. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat Neurosci. 2017;20:1686–1693. doi: 10.1038/s41593-017-0005-0. PubMed DOI PMC

ARRIGONI C, ROHAIM A, SHAYA D, FINDEISEN F, STEIN RA, NURVA SR, MISHRA S, McHAOURAB HS, MINOR DL., JR Unfolding of a temperature-sensitive domain controls voltage-gated channel activation. Cell. 2016;164:922–936. doi: 10.1016/j.cell.2016.02.001. PubMed DOI PMC

AUTZEN HE, MYASNIKOV AG, CAMPBELL MG, ASARNOW D, JULIUS D, CHENG Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science. 2018;359:228–232. doi: 10.1126/science.aar4510. PubMed DOI PMC

BANDELL M, STORY GM, HWANG SW, VISWANATH V, EID SR, PETRUS MJ, EARLEY TJ, PATAPOUTIAN A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–857. doi: 10.1016/S0896-6273(04)00150-3. PubMed DOI

BAUTISTA DM, JORDT SE, NIKAI T, TSURUDA PR, READ AJ, POBLETE J, YAMOAH EN, BASBAUM AI, JULIUS D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–1282. doi: 10.1016/j.cell.2006.02.023. PubMed DOI

BAUTISTA DM, SIEMENS J, GLAZER JM, TSURUDA PR, BASBAUM AI, STUCKY CL, JORDT SE, JULIUS D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 2007;448:204–208. doi: 10.1038/nature05910. PubMed DOI

BIANCHI BR, ZHANG XF, REILLY RM, KYM PR, YAO BB, CHEN J. Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J Pharmacol Exp Ther. 2012;341:360–368. doi: 10.1124/jpet.111.189902. PubMed DOI

CHEN J, JOSHI SK, DIDOMENICO S, PERNER RJ, MIKUSA JP, GAUVIN DM, SEGRETI JA, HAN P, ZHANG XF, NIFORATOS W, BIANCHI BR, BAKER SJ, ZHONG C, SIMLER GH, McDONALD HA, SCHMIDT RG, McGARAUGHTY SP, CHU KL, FALTYNEK CR, KORT ME, REILLY RM, KYM PR. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain. 2011;152:1165–1172. doi: 10.1016/j.pain.2011.01.049. PubMed DOI

CHEN J, KANG D, XU J, LAKE M, HOGAN JO, SUN C, WALTER K, YAO B, KIM D. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun. 2013;4:2501. doi: 10.1038/ncomms3501. PubMed DOI PMC

CHEN J, KYM PR. TRPA1: the species difference. J Gen Physiol. 2009;133:623–625. doi: 10.1085/jgp.200910246. PubMed DOI PMC

CHOWDHURY S, JARECKI BW, CHANDA B. A molecular framework for temperature-dependent gating of ion channels. Cell. 2014;158:1148–1158. doi: 10.1016/j.cell.2014.07.026. PubMed DOI PMC

CLAPHAM DE, MILLER C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A. 2011;108:19492–19497. doi: 10.1073/pnas.1117485108. PubMed DOI PMC

CORDERO-MORALES JF, GRACHEVA EO, JULIUS D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A. 2011;108:E1184–E1191. doi: 10.1073/pnas.1114124108. PubMed DOI PMC

DAI Y. TRPs and pain. Semin Immunopathol. 2016;38:277–291. doi: 10.1007/s00281-015-0526-0. PubMed DOI

Del CAMINO D, MURPHY S, HEIRY M, BARRETT LB, EARLEY TJ, COOK CA, PETRUS MJ, ZHAO M, D’AMOURS M, DEERING N, BRENNER GJ, COSTIGAN M, HAYWARD NJ, CHONG JA, FANGER CM, WOOLF CJ, PATAPOUTIAN A, MORAN MM. TRPA1 contributes to cold hypersensitivity. J Neurosci. 2010;30:15165–15174. doi: 10.1523/JNEUROSCI.2580-10.2010. PubMed DOI PMC

DIAZ-FRANULIC I, RADDATZ N, CASTILLO K, GONZALEZ-NILO FD, LATORRE R. A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. Proc Natl Acad Sci U S A. 2020;117:20298–20304. doi: 10.1073/pnas.2004303117. PubMed DOI PMC

DIVER MM, CHENG Y, JULIUS D. Structural insights into TRPM8 inhibition and desensitization. Science. 2019;365:1434–1440. doi: 10.1126/science.aax6672. PubMed DOI PMC

DU EJ, KANG K. A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas. Mol Cells. 2020;43:572–580. PubMed PMC

DUAN J, LI J, CHEN GL, GE Y, LIU J, XIE K, PENG X, ZHOU W, ZHONG J, ZHANG Y, XU J, XUE C, LIANG B, ZHU L, LIU W, ZHANG C, TIAN XL, WANG J, CLAPHAM DE, ZENG B, LI Z, ZHANG J. Cryo-EM structure of TRPC5 at 2-A resolution reveals unique and conserved structural elements essential for channel function. Sci Adv. 2019;5:eaaw7935. doi: 10.1126/sciadv.aaw7935. PubMed DOI PMC

DUAN J, LI J, ZENG B, CHEN GL, PENG X, ZHANG Y, WANG J, CLAPHAM DE, LI Z, ZHANG J. Structure of the mouse TRPC4 ion channel. Nat Commun. 2018;9:3102. doi: 10.1038/s41467-018-05247-9. PubMed DOI PMC

EIGENBROD O, DEBUS KY, REZNICK J, BENNETT NC, SANCHEZ-CARRANZA O, OMERBASIC D, HART DW, BARKER AJ, ZHONG W, LUTERMANN H, KATANDUKILA JV, MGODE G, PARK TJ, LEWIN GR. Rapid molecular evolution of pain insensitivity in multiple African rodents. Science. 2019;364:852–859. doi: 10.1126/science.aau0236. PubMed DOI

GAO Y, CAO E, JULIUS D, CHENG Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–351. doi: 10.1038/nature17964. PubMed DOI PMC

GAU P, POON J, UFRET-VINCENTY C, SNELSON CD, GORDON SE, RAIBLE DW, DHAKA A. The zebrafish ortholog of TRPV1 is required for heat-induced locomotion. J Neurosci. 2013;33:5249–5260. doi: 10.1523/JNEUROSCI.5403-12.2013. PubMed DOI PMC

GENG J, LIANG D, JIANG K, ZHANG P. Molecular evolution of the infrared sensory gene TRPA1 in snakes and implications for functional studies. PLoS One. 2011;6:e28644. doi: 10.1371/journal.pone.0028644. PubMed DOI PMC

GHOSH M, SCHEPETKIN IA, OZEK G, OZEK T, KHLEBNIKOV AI, DAMRON DS, QUINN MT. Essential Oils from Monarda fistulosa: Chemical composition and activation of transient receptor potential A1 (TRPA1) Channels. Molecules. 2020;25:4873. doi: 10.3390/molecules25214873. PubMed DOI PMC

GRACHEVA EO, CORDERO-MORALES JF, GONZALEZ-CARCACIA JA, INGOLIA NT, MANNO C, ARANGUREN CI, WEISSMAN JS, JULIUS D. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature. 2011;476:88–91. doi: 10.1038/nature10245. PubMed DOI PMC

GRACHEVA EO, INGOLIA NT, KELLY YM, CORDERO-MORALES JF, HOLLOPETER G, CHESLER AT, SANCHEZ EE, PEREZ JC, WEISSMAN JS, JULIUS D. Molecular basis of infrared detection by snakes. Nature. 2010;464:1006–1011. doi: 10.1038/nature08943. PubMed DOI PMC

GU P, GONG J, SHANG Y, WANG F, RUPPELL KT, MA Z, SHEEHAN AE, FREEMAN MR, XIANG Y. Polymodal nociception in drosophila requires alternative splicing of TrpA1. Curr Biol. 2019;29:3961–3973 e3966. doi: 10.1016/j.cub.2019.09.070. PubMed DOI PMC

GUPTA R, SAITO S, MORI Y, ITOH SG, OKUMURA H, TOMINAGA M. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci Rep. 2016;6:37460. doi: 10.1038/srep37460. PubMed DOI PMC

HAMADA FN, ROSENZWEIG M, KANG K, PULVER SR, GHEZZI A, JEGLA TJ, GARRITY PA. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–220. doi: 10.1038/nature07001. PubMed DOI PMC

HASAN R, LEESON-PAYNE AT, JAGGAR JH, ZHANG X. Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 Channels. Sci Rep. 2017;7:45098. doi: 10.1038/srep46588. PubMed DOI PMC

HILTON JK, KIM M, Van HORN WD. Structural and evolutionary insights point to allosteric regulation of TRP ion channels. Acc Chem Res. 2019;52:1643–1652. doi: 10.1021/acs.accounts.9b00075. PubMed DOI PMC

HOFFMANN T, KISTNER K, MIERMEISTER F, WINKELMANN R, WITTMANN J, FISCHER MJ, WEIDNER C, REEH PW. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain. 2013;17:1472–1482. doi: 10.1002/j.1532-2149.2013.00331.x. PubMed DOI

HOFFSTAETTER LJ, BAGRIANTSEV SN, GRACHEVA EO, TRPs, et al. a molecular toolkit for thermosensory adaptations. Pflugers Arch. 2018;470:745–759. doi: 10.1007/s00424-018-2120-5. PubMed DOI PMC

HUFFER KE, ALEKSANDROVA AA, JARA-OSEGUERA A, FORREST LR, SWARTZ KJ. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Elife. 2020;9:e58660. doi: 10.7554/eLife.58660. PubMed DOI PMC

HWANG RY, STEARNS NA, TRACEY WD. The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception. PLoS One. 2012;7:e30090. doi: 10.1371/journal.pone.0030090. PubMed DOI PMC

HYNKOVA A, MARSAKOVA L, VASKOVA J, VLACHOVA V. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci Rep. 2016;6:28700. doi: 10.1038/srep28700. PubMed DOI PMC

JABBA S, GOYAL R, SOSA-PAGAN JO, MOLDENHAUER H, WU J, KALMETA B, BANDELL M, LATORRE R, PATAPOUTIAN A, GRANDL J. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron. 2014;82:1017–1031. doi: 10.1016/j.neuron.2014.04.016. PubMed DOI PMC

JARA-OSEGUERA A, ISLAS LD. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys J. 2013;104:2160–2169. doi: 10.1016/j.bpj.2013.03.055. PubMed DOI PMC

JIANG Y, RUTA V, CHEN J, LEE A, MacKINNON R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003;423:42–48. doi: 10.1038/nature01581. PubMed DOI

JORDT SE, BAUTISTA DM, CHUANG HH, McKEMY DD, ZYGMUNT PM, HOGESTATT ED, MENG ID, JULIUS D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–265. doi: 10.1038/nature02282. PubMed DOI

KANG K. Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude. Biochim Biophys Acta. 2016;1858:318–325. doi: 10.1016/j.bbamem.2015.12.011. PubMed DOI

KANG K, PANZANO VC, CHANG EC, NI L, DAINIS AM, JENKINS AM, REGNA K, MUSKAVITCH MA, GARRITY PA. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. 2011;481:76–80. doi: 10.1038/nature10715. PubMed DOI PMC

KANG K, PULVER SR, PANZANO VC, CHANG EC, GRIFFITH LC, THEOBALD DL, GARRITY PA. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 2010;464:597–600. doi: 10.1038/nature08848. PubMed DOI PMC

KARASHIMA Y, DAMANN N, PRENEN J, TALAVERA K, SEGAL A, VOETS T, NILIUS B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci. 2007;27:9874–9884. doi: 10.1523/JNEUROSCI.2221-07.2007. PubMed DOI PMC

KARASHIMA Y, TALAVERA K, EVERAERTS W, JANSSENS A, KWAN KY, VENNEKENS R, NILIUS B, VOETS T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A. 2009;106:1273–1278. doi: 10.1073/pnas.0808487106. PubMed DOI PMC

KASTENHUBER E, GESEMANN M, MICKOLEIT M, NEUHAUSS SC. Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev Dyn. 2013;242:1236–1249. doi: 10.1002/dvdy.24020. PubMed DOI

KNOWLTON WM, BIFOLCK-FISHER A, BAUTISTA DM, McKEMY DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain. 2010;150:340–350. doi: 10.1016/j.pain.2010.05.021. PubMed DOI PMC

KOHNO K, SOKABE T, TOMINAGA M, KADOWAKI T. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J Neurosci. 2010;30:12219–12229. doi: 10.1523/JNEUROSCI.2001-10.2010. PubMed DOI PMC

KREMEYER B, LOPERA F, COX JJ, MOMIN A, RUGIERO F, MARSH S, WOODS CG, JONES NG, PATERSON KJ, FRICKER FR, VILLEGAS A, ACOSTA N, PINEDA-TRUJILLO NG, RAMIREZ JD, ZEA J, BURLEY MW, BEDOYA G, BENNETT DL, WOOD JN, RUIZ-LINARES A. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 2010;66:671–680. doi: 10.1016/j.neuron.2010.04.030. PubMed DOI PMC

LATA S, SHARMA BK, RAGHAVA GP. Analysis and prediction of antibacterial peptides. BMC Bioinformatics. 2007;8:263. doi: 10.1186/1471-2105-8-263. PubMed DOI PMC

LAURSEN WJ, BAGRIANTSEV SN, GRACHEVA EO. TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr. 2014;74:89–112. doi: 10.1016/B978-0-12-800181-3.00004-X. PubMed DOI

LIU C, REESE R, VU S, ROUGE L, SHIELDS SD, KAKIUCHI-KIYOTA S, CHEN H, JOHNSON K, SHI YP, CHERNOV-ROGAN T, GREINER DMZ, KOHLI PB, HACKOS D, BRILLANTES B, TAM C, LI T, WANG J, SAFINA B, MAGNUSON S, VOLGRAF M, PAYANDEH J, ZHENG J, ROHOU A, CHEN J. A non-covalent ligand reveals biased agonism of the TRPA1 ion channel. Neuron. 2021;109:273–284.e4. doi: 10.1016/j.neuron.2020.10.014. PubMed DOI PMC

LUO J, SHEN WL, MONTELL C. TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nat Neurosci. 2017;20:34–41. doi: 10.1038/nn.4416. PubMed DOI PMC

MACIKOVA L, SINICA V, KADKOVA A, VILLETTE S, CIACCAFAVA A, FAHERTY J, LECOMTE S, ALVES ID, VLACHOVA V. Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS J. 2019;286:3664–3683. doi: 10.1111/febs.14931. PubMed DOI

MARONE IM, De LOGU F, NASSINI R, DE CARVALHO GONCALVES M, BENEMEI S, FERREIRA J, JAIN P, LI PUMA S, BUNNETT NW, GEPPETTI P, MATERAZZI S. TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain. 2018;141:2312–2328. doi: 10.1093/brain/awy177. PubMed DOI PMC

MARTINEZ GQ, GORDON SE. Multimerization of Homo sapiens TRPA1 ion channel cytoplasmic domains. PLoS One. 2019;14:e0207835. doi: 10.1371/journal.pone.0207835. PubMed DOI PMC

MATTA JA, AHERN GP. Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol. 2007;585:469–482. doi: 10.1113/jphysiol.2007.144287. PubMed DOI PMC

MIYAKE T, NAKAMURA S, ZHAO M, SO K, INOUE K, NUMATA T, TAKAHASHI N, SHIRAKAWA H, MORI Y, NAKAGAWA T, KANEKO S. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat Commun. 2016;7:12840. doi: 10.1038/ncomms12840. PubMed DOI PMC

MOPARTHI L, KICHKO TI, EBERHARDT M, HOGESTATT ED, KJELLBOM P, JOHANSON U, REEH PW, LEFFLER A, FILIPOVIC MR, ZYGMUNT PM. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci Rep. 2016;6:28763. doi: 10.1038/srep28763. PubMed DOI PMC

MOPARTHI L, SURVERY S, KREIR M, SIMONSEN C, KJELLBOM P, HOGESTATT ED, JOHANSON U, ZYGMUNT PM. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci U S A. 2014;111:16901–16906. doi: 10.1073/pnas.1412689111. PubMed DOI PMC

NAGATOMO K, KUBO Y. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A. 2008;105:17373–17378. doi: 10.1073/pnas.0809769105. PubMed DOI PMC

NASSINI R, GEES M, HARRISON S, De SIENA G, MATERAZZI S, MORETTO N, FAILLI P, PRETI D, MARCHETTI N, CAVAZZINI A, MANCINI F, PEDRETTI P, NILIUS B, PATACCHINI R, GEPPETTI P. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain. 2011;152:1621–1631. doi: 10.1016/j.pain.2011.02.051. PubMed DOI

NATIVI C, GUALDANI R, DRAGONI E, Di CESARE MANNELLI L, SOSTEGNI S, NORCINI M, GABRIELLI G, LA MARCA G, RICHICHI B, FRANCESCONI O, MONCELLI MR, GHELARDINI C, ROELENS S. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci Rep. 2013;3:2005. doi: 10.1038/srep02005. PubMed DOI PMC

NILIUS B, TALAVERA K, OWSIANIK G, PRENEN J, DROOGMANS G, VOETS T. Gating of TRP channels: a voltage connection? J Physiol. 2005;567:35–44. doi: 10.1113/jphysiol.2005.088377. PubMed DOI PMC

ODA M, KUBO Y, SAITOH O. Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system. Neuroreport. 2018;29:280–285. doi: 10.1097/WNR.0000000000000939. PubMed DOI

ODA M, KUROGI M, KUBO Y, SAITOH O. Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems. Chem Senses. 2016;41:261–272. doi: 10.1093/chemse/bjv091. PubMed DOI

ODA M, SAITO K, HATTA S, KUBO Y, SAITOH O. Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system. Biochem Biophys Res Commun. 2017;494:194–201. doi: 10.1016/j.bbrc.2017.10.057. PubMed DOI

PARK JH, CHAE J, ROH K, KIL EJ, LEE M, AUH CK, LEE MA, YEOM CH, LEE S. Oxaliplatin-induced peripheral neuropathy via TRPA1 stimulation in mice dorsal root ganglion is correlated with aluminum accumulation. PLoS One. 2015;10:e0124875. doi: 10.1371/journal.pone.0124875. PubMed DOI PMC

PATIL MJ, SALAS M, BIALUHIN S, BOYD JT, JESKE NA, AKOPIAN AN. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB J. 2020;34:287–302. doi: 10.1096/fj.201902026R. PubMed DOI PMC

PAULSEN CE, ARMACHE JP, GAO Y, CHENG Y, JULIUS D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;520:511–517. doi: 10.1038/nature14367. PubMed DOI PMC

PROBER DA, ZIMMERMAN S, MYERS BR, McDERMOTT BM, JR, KIM SH, CARON S, RIHEL J, SOLNICA-KREZEL L, JULIUS D, HUDSPETH AJ, SCHIER AF. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci. 2008;28:10102–10110. doi: 10.1523/JNEUROSCI.2740-08.2008. PubMed DOI PMC

SAITO S, NAKATSUKA K, TAKAHASHI K, FUKUTA N, IMAGAWA T, OHTA T, TOMINAGA M. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J Biol Chem. 2012;287:30743–30754. doi: 10.1074/jbc.M112.362194. PubMed DOI PMC

SAITO S, OHKITA M, SAITO CT, TAKAHASHI K, TOMINAGA M, OHTA T. Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches. J Biol Chem. 2016;291:11446–11459. doi: 10.1074/jbc.M115.702498. PubMed DOI PMC

SAITO S, SAITO CT, NOZAWA M, TOMINAGA M. Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction. Mol Ecol. 2019;28:3561–3571. doi: 10.1111/mec.15170. PubMed DOI

SAITO S, TOMINAGA M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature. 2017;4:141–152. doi: 10.1080/23328940.2017.1315478. PubMed DOI PMC

SANCHEZ-MORENO A, GUEVARA-HERNANDEZ E, CONTRERAS-CERVERA R, RANGEL-YESCAS G, LADRON-DE-GUEVARA E, ROSENBAUM T, ISLAS LD. Irreversible temperature gating in trpv1 sheds light on channel activation. Elife. 2018;7:e36372. doi: 10.7554/eLife.36372. PubMed DOI PMC

SAWADA Y, HOSOKAWA H, HORI A, MATSUMURA K, KOBAYASHI S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 2007;1160:39–46. doi: 10.1016/j.brainres.2007.05.047. PubMed DOI

SINICA V, ZIMOVA L, BARVIKOVA K, MACIKOVA L, BARVIK I, VLACHOVA V. Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage. Cells. 2019;9:57. doi: 10.3390/cells9010057. PubMed DOI PMC

SMITH ESJ, PARK TJ, LEWIN GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020;206:313–325. doi: 10.1007/s00359-020-01414-w. PubMed DOI PMC

STARTEK JB, BOONEN B, LOPEZ-REQUENA A, TALAVERA A, ALPIZAR YA, GHOSH D, Van RANST N, NILIUS B, VOETS T, TALAVERA K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife. 2019a;8:e46084. doi: 10.7554/eLife.46084. PubMed DOI PMC

STARTEK JB, VOETS T, TALAVERA K. To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflugers Arch. 2019b;471:213–236. doi: 10.1007/s00424-018-2205-1. PubMed DOI

STORY GM, PEIER AM, REEVE AJ, EID SR, MOSBACHER J, HRICIK TR, EARLEY TJ, HERGARDEN AC, ANDERSSON DA, HWANG SW, McINTYRE P, JEGLA T, BEVAN S, PATAPOUTIAN A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. doi: 10.1016/S0092-8674(03)00158-2. PubMed DOI

SUO Y, WANG Z, ZUBCEVIC L, HSU AL, HE Q, BORGNIA MJ, JI RR, LEE SY. Structural insights into electrophile irritant sensing by the human TRPA1 channel. Neuron. 2020;105:882–894 e885. doi: 10.1016/j.neuron.2019.11.023. PubMed DOI PMC

SURVERY S, MOPARTHI L, KJELLBOM P, HOGESTATT ED, ZYGMUNT PM, JOHANSON U. The N-terminal ankyrin repeat domain is not required for electrophile and heat activation of the purified mosquito TRPA1 receptor. J Biol Chem. 2016;291:26899–26912. doi: 10.1074/jbc.M116.743443. PubMed DOI PMC

TAKAHASHI N, KUWAKI T, KIYONAKA S, NUMATA T, KOZAI D, MIZUNO Y, YAMAMOTO S, NAITO S, KNEVELS E, CARMELIET P, OGA T, KANEKO S, SUGA S, NOKAMI T, YOSHIDA J, MORI Y. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol. 2011;7:701–711. doi: 10.1038/nchembio.640. PubMed DOI

TALAVERA K, GEES M, KARASHIMA Y, MESEGUER VM, VANOIRBEEK JA, DAMANN N, EVERAERTS W, BENOIT M, JANSSENS A, VENNEKENS R, VIANA F, NEMERY B, NILIUS B, VOETS T. Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci. 2009;12:1293–1299. doi: 10.1038/nn.2379. PubMed DOI

TALAVERA K, STARTEK JB, ALVAREZ-COLLAZO J, BOONEN B, ALPIZAR YA, SANCHEZ A, NAERT R, NILIUS B. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev. 2020;100:725–803. doi: 10.1152/physrev.00005.2019. PubMed DOI

TERRETT JA, CHEN H, SHORE DG, VILLEMURE E, LAROUCHE-GAUTHIER R, DERY M, BEAUMIER F, CONSTANTINEAU-FORGET L, GRAND-MAITRE C, LEPISSIER L, CIBLAT S, STURINO C, CHEN Y, HU B, LU A, WANG Y, CRIDLAND AP, WARD SI, HACKOS DH, REESE RM, ET AL. Tetrahydrofuran-based transient receptor potential ankyrin 1 (TRPA1) antagonists: Ligand-based discovery, activity in a rodent asthma model, and mechanism-of-action via cryogenic electron microscopy. J Med Chem. 2021;64:3843–3869. doi: 10.1021/acs.jmedchem.0c02023. PubMed DOI

TU N, LIANG D, ZHANG P. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers. Sci Rep. 2020;10:13033. doi: 10.1038/s41598-020-69843-w. PubMed DOI PMC

VANDEWAUW I, De CLERCQ K, MULIER M, HELD K, PINTO S, Van RANST N, SEGAL A, VOET T, VENNEKENS R, ZIMMERMANN K, VRIENS J, VOETS T. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–666. doi: 10.1038/nature26137. PubMed DOI

VIANA F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol. 2016;594:4151–4169. doi: 10.1113/JP270935. PubMed DOI PMC

Von NIEDERHAUSERN V, KASTENHUBER E, STAUBLE A, GESEMANN M, NEUHAUSS SC. Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Dev Dyn. 2013;242:1427–1441. doi: 10.1002/dvdy.24041. PubMed DOI

WAN X, LU Y, CHEN X, XIONG J, ZHOU Y, LI P, XIA B, LI M, ZHU MX, GAO Z. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation. Pflugers Arch. 2014;466:1273–1287. doi: 10.1007/s00424-013-1345-6. PubMed DOI PMC

WANG H, SCHUPP M, ZURBORG S, HEPPENSTALL PA. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J Physiol. 2013;591:185–201. doi: 10.1113/jphysiol.2012.242842. PubMed DOI PMC

WANG S, LEE J, RO JY, CHUNG MK. Warmth suppresses and desensitizes damage-sensing ion channel TRPA1. Mol Pain. 2012;8:22. doi: 10.1186/1744-8069-8-22. PubMed DOI PMC

WEI H, CHAPMAN H, SAARNILEHTO M, KUOKKANEN K, KOIVISTO A, PERTOVAARA A. Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology. 2010;58:578–584. doi: 10.1016/j.neuropharm.2009.12.001. PubMed DOI

WILSON SR, NELSON AM, BATIA L, MORITA T, ESTANDIAN D, OWENS DM, LUMPKIN EA, BAUTISTA DM. The ion channel TRPA1 is required for chronic itch. J Neurosci. 2013;33:9283–9294. doi: 10.1523/JNEUROSCI.5318-12.2013. PubMed DOI PMC

WINTER Z, GRUSCHWITZ P, EGER S, TOUSKA F, ZIMMERMANN K. Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front Mol Neurosci. 2017;10:209. doi: 10.3389/fnmol.2017.00209. PubMed DOI PMC

WITSCHAS K, JOBIN ML, KORKUT DN, VLADAN MM, SALGADO G, LECOMTE S, VLACHOVA V, ALVES ID. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane. Biochim Biophys Acta. 2015;1848:1147–1156. doi: 10.1016/j.bbamem.2015.02.003. PubMed DOI

XIAO B, DUBIN AE, BURSULAYA B, VISWANATH V, JEGLA TJ, PATAPOUTIAN A. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci. 2008;28:9640–9651. doi: 10.1523/JNEUROSCI.2772-08.2008. PubMed DOI PMC

YAMAKI S, CHAU A, GONZALES L, McKEMY DD. Nociceptive afferent phenotyping reveals that transient receptor potential ankyrin 1 promotes cold pain through neurogenic inflammation upstream of the neurotrophic factor receptor GFRalpha3 and the menthol receptor transient receptor potential melastatin 8. Pain. 2020;162:609–618. doi: 10.1097/j.pain.0000000000002043. PubMed DOI PMC

YIN Y, LE SC, HSU AL, BORGNIA MJ, YANG H, LEE SY. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science. 2019;363:eaav9334. doi: 10.1126/science.aav9334. PubMed DOI PMC

ZHANG Z, TOTH B, SZOLLOSI A, CHEN J, CSANADY L. Structure of a TRPM2 channel in complex with Ca(2+) explains unique gating regulation. Elife. 2018;7:e36409. doi: 10.7554/eLife.36409. PubMed DOI PMC

ZHAO J, LIN KING JV, PAULSEN CE, CHENG Y, JULIUS D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature. 2020;585:141–145. doi: 10.1038/s41586-020-2480-9. PubMed DOI PMC

ZHONG L, BELLEMER A, YAN H, KEN H, JESSICA R, HWANG RY, PITT GS, TRACEY WD. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep. 2012;1:43–55. doi: 10.1016/j.celrep.2011.11.002. PubMed DOI PMC

ZHOU Y, SUZUKI Y, UCHIDA K, TOMINAGA M. Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat Commun. 2013;4:2399. doi: 10.1038/ncomms3399. PubMed DOI PMC

ZIMA V, WITSCHAS K, HYNKOVA A, ZIMOVA L, BARVIK I, VLACHOVA V. Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state. Neuropharmacology. 2015;93:294–307. doi: 10.1016/j.neuropharm.2015.02.018. PubMed DOI

ZIMOVA L, BARVIKOVA K, MACIKOVA L, VYKLICKA L, SINICA V, BARVIK I, VLACHOVA V. Proximal C-terminus serves as a signaling hub for TRPA1 channel regulation via its interacting molecules and supramolecular complexes. Front Physiol. 2020;11:189. doi: 10.3389/fphys.2020.00189. PubMed DOI PMC

ZIMOVA L, SINICA V, KADKOVA A, VYKLICKA L, ZIMA V, BARVIK I, VLACHOVA V. Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Sci Signal. 2018;11:eaan8621. doi: 10.1126/scisignal.aan8621. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...