Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29363587
DOI
10.1126/scisignal.aan8621
PII: 11/514/eaan8621
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- gating iontového kanálu * MeSH
- HEK293 buňky MeSH
- kationtový kanál TRPA1 chemie fyziologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- membránové potenciály * MeSH
- molekulární modely MeSH
- mutace MeSH
- mutageneze cílená MeSH
- proteinové domény MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationtový kanál TRPA1 MeSH
- TRPA1 protein, human MeSH Prohlížeč
- vápník MeSH
Transient receptor potential ankyrin 1 (TRPA1) is a temperature-sensitive ion channel activated by various pungent and irritant compounds that can produce pain in humans. Its activation involves an allosteric mechanism whereby electrophilic agonists evoke interactions within cytosolic domains and open the channel pore through an integrated nexus formed by intracellular membrane proximal regions that are densely packed beneath the lower segment of the S1-S4 sensor domain. Studies indicate that this part of the channel may contain residues that form a water-accessible cavity that undergoes changes in solvation during channel gating. We identified conserved polar residues facing the putative lower crevice of the sensor domain that were crucial determinants of the electrophilic, voltage, and calcium sensitivity of the TRPA1 channel. This part of the sensor may also comprise a domain capable of binding to membrane phosphoinositides through which gating of the channel is regulated in a state-dependent manner.
Citace poskytuje Crossref.org
Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor
Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage