Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage

. 2019 Dec 24 ; 9 (1) : . [epub] 20191224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31878344

Grantová podpora
19-03777S Grantová Agentura České Republiky
1236218 Grantová Agentura, Univerzita Karlova

Transient receptor potential ankyrin 1 channel (TRPA1) serves as a key sensor for reactive electrophilic compounds across all species. Its sensitivity to temperature, however, differs among species, a variability that has been attributed to an evolutionary divergence. Mouse TRPA1 was implicated in noxious cold detection but was later also identified as one of the prime noxious heat sensors. Moreover, human TRPA1, originally considered to be temperature-insensitive, turned out to act as an intrinsic bidirectional thermosensor that is capable of sensing both cold and heat. Using electrophysiology and modeling, we compare the properties of human and mouse TRPA1, and we demonstrate that both orthologues are activated by heat, and their kinetically distinct components of voltage-dependent gating are differentially modulated by heat and cold. Furthermore, we show that both orthologues can be strongly activated by cold after the concurrent application of voltage and heat. We propose an allosteric mechanism that could account for the variability in TRPA1 temperature responsiveness.

Zobrazit více v PubMed

Kang K., Pulver S.R., Panzano V.C., Chang E.C., Griffith L.C., Theobald D.L., Garrity P.A. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 2010;464:597–600. doi: 10.1038/nature08848. PubMed DOI PMC

Arenas O.M., Zaharieva E.E., Para A., Vasquez-Doorman C., Petersen C.P., Gallio M. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat. Neurosci. 2017;20:1686–1693. doi: 10.1038/s41593-017-0005-0. PubMed DOI PMC

Viana F. TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. J. Physiol. 2016;594:4151–4169. doi: 10.1113/JP270935. PubMed DOI PMC

Cordero-Morales J.F., Gracheva E.O., Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. USA. 2011;108:E1184–E1191. doi: 10.1073/pnas.1114124108. PubMed DOI PMC

Gracheva E.O., Bagriantsev S.N. Evolutionary adaptation to thermosensation. Curr. Opin. Neurobiol. 2015;34:67–73. doi: 10.1016/j.conb.2015.01.021. PubMed DOI

Saito S., Saito C.T., Nozawa M., Tominaga M. Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction. Mol. Ecol. 2019;28:3561–3571. doi: 10.1111/mec.15170. PubMed DOI

Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., Sanchez E.E., Perez J.C., Weissman J.S., Julius D. Molecular basis of infrared detection by snakes. Nature. 2010;464:1006–1011. doi: 10.1038/nature08943. PubMed DOI PMC

Kohno K., Sokabe T., Tominaga M., Kadowaki T. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J. Neurosci. 2010;30:12219–12229. doi: 10.1523/JNEUROSCI.2001-10.2010. PubMed DOI PMC

Kang K., Panzano V.C., Chang E.C., Ni L., Dainis A.M., Jenkins A.M., Regna K., Muskavitch M.A., Garrity P.A. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. 2011;481:76–80. doi: 10.1038/nature10715. PubMed DOI PMC

Saito S., Nakatsuka K., Takahashi K., Fukuta N., Imagawa T., Ohta T., Tominaga M. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 2012;287:30743–30754. doi: 10.1074/jbc.M112.362194. PubMed DOI PMC

Saito S., Banzawa N., Fukuta N., Saito C.T., Takahashi K., Imagawa T., Ohta T., Tominaga M. Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol. Biol. Evol. 2014;31:708–722. doi: 10.1093/molbev/msu001. PubMed DOI

Saito S., Tominaga M. Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium. 2015;57:214–221. doi: 10.1016/j.ceca.2014.12.001. PubMed DOI

Story G.M., Peier A.M., Reeve A.J., Eid S.R., Mosbacher J., Hricik T.R., Earley T.J., Hergarden A.C., Andersson D.A., Hwang S.W., et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. doi: 10.1016/S0092-8674(03)00158-2. PubMed DOI

Viswanath V., Story G.M., Peier A.M., Petrus M.J., Lee V.M., Hwang S.W., Patapoutian A., Jegla T. Opposite thermosensor in fruitfly and mouse. Nature. 2003;423:822–823. doi: 10.1038/423822a. PubMed DOI

Bandell M., Story G.M., Hwang S.W., Viswanath V., Eid S.R., Petrus M.J., Earley T.J., Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–857. doi: 10.1016/S0896-6273(04)00150-3. PubMed DOI

Kwan K.Y., Allchorne A.J., Vollrath M.A., Christensen A.P., Zhang D.S., Woolf C.J., Corey D.P. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron. 2006;50:277–289. doi: 10.1016/j.neuron.2006.03.042. PubMed DOI

Karashima Y., Talavera K., Everaerts W., Janssens A., Kwan K.Y., Vennekens R., Nilius B., Voets T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 2009;106:1273–1278. doi: 10.1073/pnas.0808487106. PubMed DOI PMC

Kremeyer B., Lopera F., Cox J.J., Momin A., Rugiero F., Marsh S., Woods C.G., Jones N.G., Paterson K.J., Fricker F.R., et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 2010;66:671–680. doi: 10.1016/j.neuron.2010.04.030. PubMed DOI PMC

Hoffmann T., Kistner K., Miermeister F., Winkelmann R., Wittmann J., Fischer M.J., Weidner C., Reeh P.W. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur. J. Pain. 2013;17:1472–1482. doi: 10.1002/j.1532-2149.2013.00331.x. PubMed DOI

Yarmolinsky D.A., Peng Y., Pogorzala L.A., Rutlin M., Hoon M.A., Zuker C.S. Coding and Plasticity in the Mammalian Thermosensory System. Neuron. 2016;92:1079–1092. doi: 10.1016/j.neuron.2016.10.021. PubMed DOI PMC

Vandewauw I., De Clercq K., Mulier M., Held K., Pinto S., Van Ranst N., Segal A., Voet T., Vennekens R., Zimmermann K., et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–666. doi: 10.1038/nature26137. PubMed DOI

Del Camino D., Murphy S., Heiry M., Barrett L.B., Earley T.J., Cook C.A., Petrus M.J., Zhao M., D’Amours M., Deering N., et al. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 2010;30:15165–15174. doi: 10.1523/JNEUROSCI.2580-10.2010. PubMed DOI PMC

Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 2007;1160:39–46. doi: 10.1016/j.brainres.2007.05.047. PubMed DOI

Jordt S.E., Bautista D.M., Chuang H.H., McKemy D.D., Zygmunt P.M., Hogestatt E.D., Meng I.D., Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–265. doi: 10.1038/nature02282. PubMed DOI

Zurborg S., Yurgionas B., Jira J.A., Caspani O., Heppenstall P.A. Direct activation of the ion channel TRPA1 by Ca2+ Nat. Neurosci. 2007;10:277–279. doi: 10.1038/nn1843. PubMed DOI

Chen J., Kang D., Xu J., Lake M., Hogan J.O., Sun C., Walter K., Yao B., Kim D. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat. Commun. 2013;4:2501. doi: 10.1038/ncomms3501. PubMed DOI PMC

Knowlton W.M., Bifolck-Fisher A., Bautista D.M., McKemy D.D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain. 2010;150:340–350. doi: 10.1016/j.pain.2010.05.021. PubMed DOI PMC

Jabba S., Goyal R., Sosa-Pagan J.O., Moldenhauer H., Wu J., Kalmeta B., Bandell M., Latorre R., Patapoutian A., Grandl J. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron. 2014;82:1017–1031. doi: 10.1016/j.neuron.2014.04.016. PubMed DOI PMC

Moparthi L., Kichko T.I., Eberhardt M., Hogestatt E.D., Kjellbom P., Johanson U., Reeh P.W., Leffler A., Filipovic M.R., Zygmunt P.M. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci. Rep. 2016;6:28763. doi: 10.1038/srep28763. PubMed DOI PMC

Xiao B., Dubin A.E., Bursulaya B., Viswanath V., Jegla T.J., Patapoutian A. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 2008;28:9640–9651. doi: 10.1523/JNEUROSCI.2772-08.2008. PubMed DOI PMC

Paulsen C.E., Armache J.P., Gao Y., Cheng Y., Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;520:511–517. doi: 10.1038/nature14367. PubMed DOI PMC

Meents J.E., Fischer M.J., McNaughton P.A. Agonist-induced sensitisation of the irritant receptor ion channel TRPA1. J. Physiol. 2016 doi: 10.1113/JP272237. PubMed DOI PMC

De la Roche J., Eberhardt M.J., Klinger A.B., Stanslowsky N., Wegner F., Koppert W., Reeh P.W., Lampert A., Fischer M.J., Leffler A. The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6. J. Biol. Chem. 2013;288:20280–20292. doi: 10.1074/jbc.M113.479337. PubMed DOI PMC

Zima V., Witschas K., Hynkova A., Zimova L., Barvik I., Vlachova V. Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state. Neuropharmacology. 2015;93:294–307. doi: 10.1016/j.neuropharm.2015.02.018. PubMed DOI

Voets T., Droogmans G., Wissenbach U., Janssens A., Flockerzi V., Nilius B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature. 2004;430:748–754. doi: 10.1038/nature02732. PubMed DOI

Brauchi S., Orio P., Latorre R. Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA. 2004;101:15494–15499. doi: 10.1073/pnas.0406773101. PubMed DOI PMC

Matta J.A., Ahern G.P. Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 2007;585:469–482. doi: 10.1113/jphysiol.2007.144287. PubMed DOI PMC

Yao J., Liu B., Qin F. Kinetic and energetic analysis of thermally activated TRPV1 channels. Biophys. J. 2010;99:1743–1753. doi: 10.1016/j.bpj.2010.07.022. PubMed DOI PMC

Jara-Oseguera A., Islas L.D. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys. J. 2013;104:2160–2169. doi: 10.1016/j.bpj.2013.03.055. PubMed DOI PMC

Salazar M., Moldenhauer H., Baez-Nieto D. Could an allosteric gating model explain the role of TRPA1 in cold hypersensitivity? J. Neurosci. 2011;31:5554–5556. doi: 10.1523/JNEUROSCI.6775-10.2011. PubMed DOI PMC

Dittert I., Benedikt J., Vyklicky L., Zimmermann K., Reeh P.W., Vlachova V. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 2006;151:178–185. doi: 10.1016/j.jneumeth.2005.07.005. PubMed DOI

Zimova L., Sinica V., Kadkova A., Vyklicka L., Zima V., Barvik I., Vlachova V. Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Sci. Signal. 2018;11 doi: 10.1126/scisignal.aan8621. PubMed DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Beglov D., Roux B. Finite Representation of an Infinite Bulk System - Solvent Boundary Potential for Computer-Simulations. J. Chem. Phys. 1994;100:9050–9063. doi: 10.1063/1.466711. DOI

Schlenkrich M., Brickmann J., MacKerell J.A.D., Karplus M. An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In: Roux K.M.M.A.B., editor. Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhauser Boston; Boston, MA, USA: 1996. pp. 31–81.

MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289. PubMed DOI PMC

Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Trabuco L.G., Villa E., Mitra K., Frank J., Schulten K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure. 2008;16:673–683. doi: 10.1016/j.str.2008.03.005. PubMed DOI PMC

Trabuco L.G., Villa E., Schreiner E., Harrison C.B., Schulten K. Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods. 2009;49:174–180. doi: 10.1016/j.ymeth.2009.04.005. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Mendes P., Hoops S., Sahle S., Gauges R., Dada J., Kummer U. Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. 2009;500:17–59. doi: 10.1007/978-1-59745-525-1_2. PubMed DOI

Hasan R., Leeson-Payne A.T., Jaggar J.H., Zhang X. Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 Channels. Sci. Rep. 2017;7:45098. doi: 10.1038/srep45098. PubMed DOI PMC

Marsakova L., Barvik I., Zima V., Zimova L., Vlachova V. The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel. Front. Mol. Neurosci. 2017;10:16. doi: 10.3389/fnmol.2017.00016. PubMed DOI PMC

Macikova L., Sinica V., Kadkova A., Villette S., Ciaccafava A., Faherty J., Lecomte S., Alves I.D., Vlachova V. Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS J. 2019;286:3664–3683. doi: 10.1111/febs.14931. PubMed DOI

Rosenbaum T., Gordon S.E. Quickening the pace: Looking into the heart of HCN channels. Neuron. 2004;42:193–196. doi: 10.1016/S0896-6273(04)00199-0. PubMed DOI

Yin K., Baillie G.J., Vetter I. Neuronal cell lines as model dorsal root ganglion neurons: A transcriptomic comparison. Mol. Pain. 2016;12 doi: 10.1177/1744806916646111. PubMed DOI PMC

Weng H.J., Patel K.N., Jeske N.A., Bierbower S.M., Zou W., Tiwari V., Zheng Q., Tang Z., Mo G.C., Wang Y., et al. Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain. Neuron. 2015;85:833–846. doi: 10.1016/j.neuron.2014.12.065. PubMed DOI PMC

Bianchi B.R., Zhang X.F., Reilly R.M., Kym P.R., Yao B.B., Chen J. Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J. Pharmacol. Exp. Ther. 2012;341:360–368. doi: 10.1124/jpet.111.189902. PubMed DOI

Koivisto A., Jalava N., Bratty R., Pertovaara A. TRPA1 Antagonists for Pain Relief. Pharmaceuticals. 2018;11:117. doi: 10.3390/ph11040117. PubMed DOI PMC

Zubcevic L., Lee S.Y. The role of pi-helices in TRP channel gating. Curr. Opin. Struct. Biol. 2019;58:314–323. doi: 10.1016/j.sbi.2019.06.011. PubMed DOI PMC

Singh A.K., McGoldrick L.L., Demirkhanyan L., Leslie M., Zakharian E., Sobolevsky A.I. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 2019 doi: 10.1038/s41594-019-0318-7. PubMed DOI PMC

Suo Y., Wang Z., Zubcevic L., Hsu A.L., He Q., Borgnia M.J., Ji R.R., Lee S.Y. Structural insights into Electrophile Irritant Sensing by the human TRPA1 channel. Neuron. 2020:105. doi: 10.1016/j.neuron.2019.11.023. PubMed DOI PMC

Liu B., Qin F. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2. Biophys. J. 2016;110:1523–1537. doi: 10.1016/j.bpj.2016.03.005. PubMed DOI PMC

Liu B., Qin F. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc. Natl. Acad. Sci. USA. 2017;114:1589–1594. doi: 10.1073/pnas.1615304114. PubMed DOI PMC

Macikova L., Vyklicka L., Barvik I., Sobolevsky A.I., Vlachova V. Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel. Int. J. Mol. Sci. 2019;20:3990. doi: 10.3390/ijms20163990. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...