Thermosensing ability of TRPC5: current knowledge and unsettled questions
Jazyk angličtina Země Japonsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
22-13750S
Grantová Agentura České Republiky
234823
Grantová Agentura, Univerzita Karlova
PubMed
39363236
PubMed Central
PMC11447943
DOI
10.1186/s12576-024-00942-3
PII: 10.1186/s12576-024-00942-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cold sensation, Orai1, Stromal interaction molecule 1, Thermo-TRP channel, Transient receptor potential canonical, Voltage-dependent gating,
- MeSH
- kationtové kanály TRPC * metabolismus MeSH
- kationtové kanály TRPM metabolismus MeSH
- lidé MeSH
- myši MeSH
- nízká teplota * MeSH
- spinální ganglia metabolismus fyziologie MeSH
- vnímání teploty * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kationtové kanály TRPC * MeSH
- kationtové kanály TRPM MeSH
- TRPC5 protein, human MeSH Prohlížeč
- Trpc5 protein, mouse MeSH Prohlížeč
Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely that the physiological detection of cold temperatures involves multiple different channels and mechanisms that modulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these mechanisms and what molecular features are important for its role as a cold sensor.
Zobrazit více v PubMed
Bamps D, Vriens J, de Hoon J, Voets T (2021) TRP channel cooperation for nociception: therapeutic opportunities. Annu Rev Pharmacol Toxicol 61:655–677. 10.1146/annurev-pharmtox-010919-023238 PubMed
Buijs TJ, McNaughton PA (2020) The role of cold-sensitive ion channels in peripheral thermosensation. Front Cell Neurosci 14:262. 10.3389/fncel.2020.00262 PubMed PMC
Wang H, Siemens J (2015) TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2:178–187. 10.1080/23328940.2015.1040604 PubMed PMC
Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci USA 108:18114–18119. 10.1073/pnas.1115387108 PubMed PMC
Sadler KE, Moehring F, Shiers SI, Laskowski LJ, Mikesell AR, Plautz ZR, Brezinski AN, Mecca CM, Dussor G, Price TJ et al (2021) Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci Transl Med 13:eabd7702. 10.1126/scitranslmed.abd7702 PubMed PMC
Bernal L, Sotelo-Hitschfeld P, Konig C, Sinica V, Wyatt A, Winter Z, Hein A, Touska F, Reinhardt S, Tragl A et al (2021) Odontoblast TRPC5 channels signal cold pain in teeth. Sci Adv 7:eabf5567. 10.1126/sciadv.abf5567 PubMed PMC
Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171 PubMed PMC
Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalie A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282. 10.1093/emboj/17.15.4274 PubMed PMC
Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287. 10.1074/jbc.273.17.10279 PubMed
Sossey-Alaoui K, Lyon JA, Jones L, Abidi FE, Hartung AJ, Hane B, Schwartz CE, Stevenson RE, Srivastava AK (1999) Molecular cloning and characterization of TRPC5 (HTRP5), the human homologue of a mouse brain receptor-activated capacitative Ca2+ entry channel. Genomics 60:330–340. 10.1006/geno.1999.5924 PubMed
Rohacs T (2013) Regulation of transient receptor potential channels by the phospholipase C pathway. Adv Biol Regul 53:341–355. 10.1016/j.jbior.2013.07.004 PubMed PMC
Zholos AV (2014) Trpc5. Handb Exp Pharmacol 222:129–156. 10.1007/978-3-642-54215-2_6 PubMed
Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S et al (2015) (–)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem 54:3787–3791. 10.1002/anie.201411511 PubMed PMC
Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K, Cheung SY, Tanahashi Y, Hamzah N, Musialowski KE, Blythe NM et al (2017) Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J Biol Chem 292:8158–8173. 10.1074/jbc.M116.773556 PubMed PMC
Alawi KM, Russell FA, Aubdool AA, Srivastava S, Riffo-Vasquez Y, Baldissera L Jr, Thakore P, Saleque N, Fernandes ES, Walsh DA et al (2017) Transient receptor potential canonical 5 (TRPC5) protects against pain and vascular inflammation in arthritis and joint inflammation. Ann Rheum Dis 76:252–260. 10.1136/annrheumdis-2015-208886 PubMed PMC
Umlauf F, Diebolt CM, Englisch CN, Flockerzi F, Tschernig T (2024) Distribution of TRPC5 in the human lung: a study in body donors. Exp Ther Med 28:363. 10.3892/etm.2024.12652 PubMed PMC
Leitao E, Schroder C, Parenti I, Dalle C, Rastetter A, Kuhnel T, Kuechler A, Kaya S, Gerard B, Schaefer E et al (2022) Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X. Nat Commun 13:6570. 10.1038/s41467-022-34264-y PubMed PMC
Li Y, Cacciottolo TM, Yin N, He Y, Liu H, Liu H, Yang Y, Henning E, Keogh JM, Lawler K et al (2024) Loss of transient receptor potential channel 5 causes obesity and postpartum depression. Cell 187(4176–4192):e4117. 10.1016/j.cell.2024.06.001 PubMed PMC
Rubaiy HN (2019) Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 176:832–846. 10.1111/bph.14578 PubMed PMC
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG (2020) Transient receptor potential canonical (TRPC) channels: then and now. Cells 9:1983. 10.3390/cells9091983 PubMed PMC
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX (2020) TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 209:107497. 10.1016/j.pharmthera.2020.107497 PubMed PMC
Gao YY, Tian W, Zhang HN, Sun Y, Meng JR, Cao W, Li XQ (2021) Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 44:354–377. 10.1007/s12272-021-01319-5 PubMed PMC
Bon RS, Wright DJ, Beech DJ, Sukumar P (2022) Pharmacology of TRPC channels and its potential in cardiovascular and metabolic medicine. Annu Rev Pharmacol Toxicol 62:427–446. 10.1146/annurev-pharmtox-030121-122314 PubMed
Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS (2018) Remarkable progress with small-molecule modulation of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells 7:52. 10.3390/cells7060052 PubMed PMC
Mederos YSM, Gudermann T, Storch U (2018) Emerging roles of diacylglycerol-sensitive TRPC4/5 channels. Cells 7:218. 10.3390/cells7110218 PubMed PMC
Kim J, Ko J, Hong C, So I (2019) Structure–function relationship and physiological roles of transient receptor potential canonical (TRPC) 4 and 5 channels. Cells 9:73. 10.3390/cells9010073 PubMed PMC
Kang H, Kim J, Park CH, Jeong B, So I (2024) Direct modulation of TRPC ion channels by Galpha proteins. Front Physiol 15:1362987. 10.3389/fphys.2024.1362987 PubMed PMC
Flockerzi V, Fakler B (2024) TR(i)P goes on: auxiliary TRP channel subunits? Circ Res 134:346–350. 10.1161/CIRCRESAHA.123.323178 PubMed
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Therapeut. 2024.
Cao E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol. 2020;152. 10.1085/jgp.201811998. PubMed PMC
Hilton JK, Kim M, Van Horn WD (2019) Structural and evolutionary insights point to allosteric regulation of TRP ion channels. Acc Chem Res 52:1643–1652. 10.1021/acs.accounts.9b00075 PubMed PMC
Duan J, Li J, Chen GL, Ge Y, Liu J, Xie K, Peng X, Zhou W, Zhong J, Zhang Y et al (2019) Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci Adv 5:eaaw7935. 10.1126/sciadv.aaw7935 PubMed PMC
Song K, Wei M, Guo W, Quan L, Kang Y, Wu JX, Chen L (2021) Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. Elife 10:63429. 10.7554/eLife.63429 PubMed PMC
Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I et al (2023) Molecular architecture of the Galpha(i)-bound TRPC5 ion channel. Nat Commun 14:2550. 10.1038/s41467-023-38281-3 PubMed PMC
Yang Y, Wei M, Chen L (2022) Structural identification of riluzole-binding site on human TRPC5. Cell Discov 8:67. 10.1038/s41421-022-00410-5 PubMed PMC
Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS (2020) Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun Biol 3:704. 10.1038/s42003-020-01437-8 PubMed PMC
Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655 PubMed
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W et al (2022) Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 110:4162-4175.e4167. 10.1016/j.neuron.2022.09.029 PubMed
Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466. 10.1073/pnas.102596199 PubMed PMC
Verkest C, Schaefer I, Nees TA, Wang N, Jegelka JM, Taberner FJ, Lechner SG (2022) Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2. Nat Commun 13:1365. 10.1038/s41467-022-28974-6 PubMed PMC
Sanganna Gari RR, Tagiltsev G, Pumroy RA, Jiang Y, Blackledge M, Moiseenkova-Bell VY, Scheuring S (2023) Intrinsically disordered regions in TRPV2 mediate protein-protein interactions. Commun Biol 6:966. 10.1038/s42003-023-05343-7 PubMed PMC
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA (2021) Unstructural biology of TRP ion channels: the role of intrinsically disordered regions in channel function and regulation. J Mol Biol 433:166931. 10.1016/j.jmb.2021.166931 PubMed
Goretzki B, Wiedemann C, McCray BA, Schäfer SL, Jansen J, Tebbe F, Mitrovic SA, Nöth J, Cabezudo AC, Donohue JK et al (2023) Crosstalk between regulatory elements in disordered TRPV4 N-terminus modulates lipid-dependent channel activity. Nat Commun 14:4165. 10.1038/s41467-023-39808-4 PubMed PMC
Tantos A, Friedrich P, Tompa P (2009) Cold stability of intrinsically disordered proteins. FEBS Lett 583:465–469. 10.1016/j.febslet.2008.12.054 PubMed
Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29. 10.1038/nrm3920 PubMed PMC
Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ, Jin NG, Yang DK, So I, Kim KW (2005) Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Phys Cell Phys 289:C591-600. 10.1152/ajpcell.00440.2004 PubMed
Lichtenegger M, Tiapko O, Svobodova B, Stockner T, Glasnov TN, Schreibmayer W, Platzer D, de la Cruz GG, Krenn S, Schober R et al (2018) An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat Chem Biol 14:396–404. 10.1038/s41589-018-0015-6 PubMed PMC
Storch U, Mederos YSM, Gudermann T (2021) A greasy business: identification of a diacylglycerol binding site in human TRPC5 channels by cryo-EM. Cell Calcium 97:102414. 10.1016/j.ceca.2021.102414 PubMed
Storch U, Forst AL, Pardatscher F, Erdogmus S, Philipp M, Gregoritza M, Mederos YSM, Gudermann T (2017) Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. Proc Natl Acad Sci USA 114:E37–E46. 10.1073/pnas.1612263114 PubMed PMC
Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526. 10.1074/jbc.275.23.17517 PubMed
Zimova L, Ptakova A, Mitro M, Krusek J, Vlachova V (2022) Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. Biomed Pharmacother 152:113262. 10.1016/j.biopha.2022.113262 PubMed
Ningoo M, Plant LD, Greka A, Logothetis DE (2021) PIP2 regulation of TRPC5 channel activation and desensitization. J Biol Chem 296:100726. 10.1016/j.jbc.2021.100726 PubMed PMC
Winter Z, Gruschwitz P, Eger S, Touska F, Zimmermann K (2017) Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front Mol Neurosci 10:209. 10.3389/fnmol.2017.00209 PubMed PMC
Namer B, Seifert F, Handwerker HO, Maihofner C (2005) TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. NeuroReport 16:955–959. 10.1097/00001756-200506210-00015 PubMed
Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD (2010) TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150:340–350. 10.1016/j.pain.2010.05.021 PubMed PMC
McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16. 10.1186/1744-8069-1-16 PubMed PMC
Namer B, Kleggetveit IP, Handwerker H, Schmelz M, Jorum E (2008) Role of TRPM8 and TRPA1 for cold allodynia in patients with cold injury. Pain 139:63–72. 10.1016/j.pain.2008.03.007 PubMed
Wasner G, Schattschneider J, Binder A, Baron R (2004) Topical menthol—a human model for cold pain by activation and sensitization of C nociceptors. Brain 127:1159–1171. 10.1093/brain/awh134 PubMed
Michot B, Lee CS, Gibbs JL (2018) TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci Rep 8:13198. 10.1038/s41598-018-31487-2 PubMed PMC
Gibbs JL, Urban R, Basbaum AI (2013) Paradoxical surrogate markers of dental injury-induced pain in the mouse. Pain 154:1358–1367. 10.1016/j.pain.2013.04.018 PubMed PMC
Alghaithy RA, Qualtrough AJ (2017) Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: a critical review. Int Endod J 50:135–142. 10.1111/iej.12611 PubMed
Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 133:525–546. 10.1085/jgp.200810153 PubMed PMC
Voets T (2012) Quantifying and modeling the temperature-dependent gating of TRP channels. Rev Physiol Biochem Pharmacol. 10.1007/112_2011_5 PubMed
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I (2019) TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 471:1045–1053. 10.1007/s00424-019-02289-w PubMed
Ptakova A, Mitro M, Zimova L, Vlachova V (2022) Cellular context determines primary characteristics of human TRPC5 as a cold-activated channel. J Cell Physiol 237:3614–3626. 10.1002/jcp.30821 PubMed
Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384. 10.1146/annurev-cellbio-101011-155833 PubMed
Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573–589. 10.1038/nrn3784 PubMed
Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010. 10.1038/ncb1454 PubMed
Bodnar D, Chung WY, Yang D, Hong JH, Jha A, Muallem S (2017) STIM-TRP pathways and microdomain organization: Ca(2+) influx channels: the orai-STIM1-TRPC complexes. Adv Exp Med Biol 993:139–157. 10.1007/978-3-319-57732-6_8 PubMed
Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2010) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027. 10.1016/j.febslet.2009.11.078 PubMed PMC
Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436. 10.1152/physrev.00020.2014 PubMed PMC
Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990. 10.1074/jbc.M604589200 PubMed PMC
DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298. 10.1113/jphysiol.2009.170431 PubMed PMC
Asanov A, Sampieri A, Moreno C, Pacheco J, Salgado A, Sherry R, Vaca L (2015) Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium 57:1–13. 10.1016/j.ceca.2014.10.011 PubMed
Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010) STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J Biol Chem 285:38666–38673. 10.1074/jbc.M110.155036 PubMed PMC
Xiao B, Coste B, Mathur J, Patapoutian A (2011) Temperature-dependent STIM1 activation induces Ca(2)+ influx and modulates gene expression. Nat Chem Biol 7:351–358. 10.1038/nchembio.558 PubMed PMC
Liu X, Wang H, Jiang Y, Zheng Q, Petrus M, Zhang M, Zheng S, Schmedt C, Dong X, Xiao B (2019) STIM1 thermosensitivity defines the optimal preference temperature for warm sensation in mice. Cell Res 29:95–109. 10.1038/s41422-018-0129-0 PubMed PMC
Gross SA, Guzman GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalie A (2009) TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 284:34423–34432. 10.1074/jbc.M109.018192 PubMed PMC
Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289:6372–6382. 10.1074/jbc.M113.546556 PubMed PMC
Buijs TJ, Vilar B, Tan CH, McNaughton PA (2023) STIM1 and ORAI1 form a novel cold transduction mechanism in sensory and sympathetic neurons. EMBO J 42:e111348. 10.15252/embj.2022111348 PubMed PMC
Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405. 10.1074/jbc.M002822200 PubMed
Viana F, de la Peña E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260. 10.1038/nn809 PubMed
Noel J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A et al (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–1318. 10.1038/emboj.2009.57 PubMed PMC
Pereira V, Busserolles J, Christin M, Devilliers M, Poupon L, Legha W, Alloui A, Aissouni Y, Bourinet E, Lesage F et al (2014) Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 155:2534–2544. 10.1016/j.pain.2014.09.013 PubMed
Liu H, Lin WY, Leibow SR, Morateck AJ, Ahuja M, Muallem S (2022) TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1. J Cell Biol 221:e202107120. 10.1083/jcb.202107120 PubMed PMC
Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, Takahashi N, Shirakawa H, Mori Y, Nakagawa T et al (2016) Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat Commun 7:12840. 10.1038/ncomms12840 PubMed PMC
Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ et al (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72. 10.1038/nature06414 PubMed PMC
Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607. 10.1038/nchembio821 PubMed
Duan J, Li J, Zeng B, Chen GL, Peng X, Zhang Y, Wang J, Clapham DE, Li Z, Zhang J (2018) Structure of the mouse TRPC4 ion channel. Nat Commun 9:3102. 10.1038/s41467-018-05247-9 PubMed PMC
Hong C, Kwak M, Myeong J, Ha K, Wie J, Jeon JH, So I (2015) Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Arch 467:703–712. 10.1007/s00424-014-1540-0 PubMed
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S (2018) Electron cryo-microscopy structure of the canonical TRPC4 ion channel. Elife 7:e36615. 10.7554/eLife.36615 PubMed PMC
Walsh L, Reilly JF, Cornwall C, Gaich GA, Gipson DS, Heerspink HJL, Johnson L, Trachtman H, Tuttle KR, Farag YMK et al (2021) Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int Rep 6:2575–2584. 10.1016/j.ekir.2021.07.006 PubMed PMC
Yoon J, Sharma V, Harada A (2024) Safety, tolerability, and pharmacokinetics of oral BI 1358894 in healthy Japanese Male Volunteers. Clin Drug Investig 44:319–328. 10.1007/s40261-024-01357-z PubMed PMC
Bymaster FP, Lee TC, Knadler MP, Detke MJ, Iyengar S (2005) The dual transporter inhibitor duloxetine: a review of its preclinical pharmacology, pharmacokinetic profile, and clinical results in depression. Curr Pharm Des 11:1475–1493. 10.2174/1381612053764805 PubMed
Wang SY, Calderon J, Kuo Wang G (2010) Block of neuronal Na+ channels by antidepressant duloxetine in a state-dependent manner. Anesthesiology 113:655–665. 10.1097/ALN.0b013e3181e89a93 PubMed
Perahia DG, Pritchett YL, Desaiah D, Raskin J (2006) Efficacy of duloxetine in painful symptoms: an analgesic or antidepressant effect? Int Clin Psychopharmacol 21:311–317. 10.1097/01.yic.0000224782.83287.3c PubMed
Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO Guideline Update. J Clin Oncol 38:3325–3348. 10.1200/JCO.20.01399 PubMed
Stoetzer C, Papenberg B, Doll T, Völker M, Heineke J, Stoetzer M, Wegner F, Leffler A (2016) Differential inhibition of cardiac and neuronal Na(+) channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine. Eur J Pharmacol 783:1–10. 10.1016/j.ejphar.2016.04.051 PubMed
Durand JP, Deplanque G, Montheil V, Gornet JM, Scotte F, Mir O, Cessot A, Coriat R, Raymond E, Mitry E et al (2012) Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol 23:200–205. 10.1093/annonc/mdr045 PubMed
Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281:4977–4982. 10.1074/jbc.M510301200 PubMed
Ptakova A, Zimova L, Barvik I, Bon RS, Vlachova V (2024) Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel. Cell Mol Life Sci 81:374. 10.1007/s00018-024-05417-7 PubMed PMC
Kiper AK, Wegner S, Kadala A, Rinne S, Schutte S, Winter Z, Bertoune MAR, Touska F, Matschke V, Wrobel E et al (2024) KCNQ1 is an essential mediator of the sex-dependent perception of moderate cold temperatures. Proc Natl Acad Sci USA 121:e2322475121. 10.1073/pnas.2322475121 PubMed PMC
Cai W, Zhang W, Zheng Q, Hor CC, Pan T, Fatima M, Dong X, Duan B, Xu XZS (2024) The kainate receptor GluK2 mediates cold sensing in mice. Nat Neurosci 27:679–688. 10.1038/s41593-024-01585-8 PubMed
Sinica V, Zimova L, Barvikova K, Macikova L, Barvik I, Vlachova V (2020) Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage. Cells 9:57. 10.3390/cells9010057 PubMed PMC