Odontoblast TRPC5 channels signal cold pain in teeth

. 2021 Mar ; 7 (13) : . [epub] 20210326

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33771873

Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.

Zobrazit více v PubMed

Kassebaum N. J., Bernabé E., Dahiya M., Bhandari B., Murray C. J. L., Marcenes W., Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 94, 650–658 (2015). PubMed

Alghaithy R. A., Qualtrough A. J. E., Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: A critical review. Int. Endod. J. 50, 135–142 (2017). PubMed

Lin M., Genin G. M., Xu F., Lu T., Thermal pain in teeth: Electrophysiology governed by thermomechanics. Appl. Mech. Rev. 66, 0308011–3080114 (2014). PubMed PMC

Brännström M., Johnson G., Movements of the dentine and pulp liquids on application of thermal stimuli. An in vitro study. Acta Odontol. Scand. 28, 59–70 (1970). PubMed

Vriens J., Nilius B., Voets T., Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014). PubMed

Winter Z., Gruschwitz P., Eger S., Touska F., Zimmermann K., Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front. Mol. Neurosci. 10, 209 (2017). PubMed PMC

Kadala A., Sotelo-Hitschfeld P., Ahmad Z., Tripal P., Schmid B., Mueller A., Bernal L., Winter Z., Brauchi S., Lohbauer U., Messlinger K., Lennerz J. K., Zimmermann K., Fluorescent labeling and 2-photon imaging of mouse tooth pulp nociceptors. J. Dent. Res. 97, 460–466 (2018). PubMed

Kim Y. S., Kim T. H., McKemy D. D., Bae Y. C., Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 303, 378–388 (2015). PubMed PMC

Kim Y. S., Jung H. K., Kwon T. K., Kim C. S., Cho J. H., Ahn D. K., Bae Y. C., Expression of transient receptor potential ankyrin 1 in human dental pulp. J. Endod. 38, 1087–1092 (2012). PubMed

El Karim I. A., Linden G. J., Curtis T. M., About I., McGahon M. K., Irwin C. R., Lundy F. T., Human odontoblasts express functional thermo-sensitive TRP channels: Implications for dentin sensitivity. Pain 152, 2211–2223 (2011). PubMed

El Karim I. A., Linden G. J., Curtis T. M., About I., McGahon M. K., Irwin C. R., Killough S. A., Lundy F. T., Human dental pulp fibroblasts express the “cold-sensing” transient receptor potential channels TRPA1 and TRPM8. J. Endod. 37, 473–478 (2011). PubMed

Tazawa K., Ikeda H., Kawashima N., Okiji T., Transient receptor potential melastatin (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch. Oral Biol. 75, 55–61 (2017). PubMed

Egbuniwe O., Grover S., Duggal A. K., Mavroudis A., Yazdi M., Renton T., Di Silvio L., Grant A. D., TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J. Dent. Res. 93, 911–917 (2014). PubMed PMC

Yeon K. Y., Chung G., Shin M. S., Jung S. J., Kim J. S., Oh S. B., Adult rat odontoblasts lack noxious thermal sensitivity. J. Dent. Res. 88, 328–332 (2009). PubMed

Tsumura M., Sobhan U., Sato M., Shimada M., Nishiyama A., Kawaguchi A., Soya M., Kuroda H., Tazaki M., Shibukawa Y., Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLOS ONE 8, e82233 (2013). PubMed PMC

Michot B., Lee C. S., Gibbs J. L., TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci. Rep. 8, 13198 (2018). PubMed PMC

Zimmermann K., Lennerz J. K., Hein A., Link A. S., Kaczmarek J. S., Delling M., Uysal S., Pfeifer J. D., Riccio A., Clapham D. E., Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. U.S.A. 108, 18114–18119 (2011). PubMed PMC

Gibbs J. L., Urban R., Basbaum A. I., Paradoxical surrogate markers of dental injury-induced pain in the mouse. Pain 154, 1358–1367 (2013). PubMed PMC

Zimmermann K., Hein A., Hager U., Kaczmarek J. S., Turnquist B. P., Clapham D. E., Reeh P. W., Phenotyping sensory nerve endings in vitro in the mouse. Nat. Protoc. 4, 174–196 (2009). PubMed PMC

Memon T., Chase K., Leavitt L. S., Olivera B. M., Teichert R. W., TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons. Neuroscience 353, 76–86 (2017). PubMed PMC

Schwarz Y., Oleinikov K., Schindeldecker B., Wyatt A., Weißgerber P., Flockerzi V., Boehm U., Freichel M., Bruns D., TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLOS Biol. 17, e3000445 (2019). PubMed PMC

Alvarado L. T., Perry G. M., Hargreaves K. M., Henry M. A., TRPM8 Axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia. J. Endod. 33, 1167–1171 (2007). PubMed PMC

Byers M. R., Westenbroek R. E., Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels. Arch. Oral Biol. 56, 1199–1220 (2011). PubMed

Tanaka A., Shibukawa Y., Yamamoto M., Abe S., Yamamoto H., Shintani S., Developmental studies on the acquisition of perception conducting pathways via TRP channels in rat molar odontoblasts using immunohistochemistry and RT-qPCR. Anat. Sci. Int. 95, 251–257 (2020). PubMed PMC

Gunji T., Morphological research on the sensitivity of dentin. Arch. Histol. Jpn. 45, 45–67 (1982). PubMed

Cox C. F., Suzuki K., Yamaguchi H., Ruby J. D., Suzuki S., Akimoto N., Maeda N., Momoi Y., Sensory mechanisms in dentine: A literature review of light microscopy (LM), transmission microscopy (TEM), scanning microscopy (SEM) & electro physiological (EP) tooth sensitivity: Is the ciliary organelle on the odontoblast the elusive primary nociceptor? Dent. Oral Craniofacial Res. 4, 1–14 (2017).

Vongsavan N., Matthews B., The relationship between the discharge of intradental nerves and the rate of fluid flow through dentine in the cat. Arch. Oral Biol. 52, 640–647 (2007). PubMed

Trowbridge H. O., Franks M., Korostoff E., Emling R., Sensory response to thermal stimulation in human teeth. J. Endod. 6, 405–412 (1980). PubMed

Linsuwanont P., Palamara J. E., Messer H. H., An investigation of thermal stimulation in intact teeth. Arch. Oral Biol. 52, 218–227 (2007). PubMed

Chidchuangchai W., Vongsavan N., Matthews B., Sensory transduction mechanisms responsible for pain caused by cold stimulation of dentine in man. Arch. Oral Biol. 52, 154–160 (2007). PubMed

Muzzin K. B., Johnson R., Effects of potassium oxalate on dentin hypersensitivity in vivo. J. Periodontol. 60, 151–158 (1989). PubMed

Ajcharanukul O., Chidchuangchai W., Charoenlarp P., Vongsavan N., Matthews B., Sensory transduction in human teeth with inflamed pulps. J. Dent. Res. 90, 678–682 (2011). PubMed

Magloire H., Couble M. L., Thivichon-Prince B., Maurin J. C., Bleicher F., Odontoblast: A mechano-sensory cell. J. Exp. Zool. B Mol. Dev. Evol. 312B, 416–424 (2009). PubMed

Nikolaev Y. A., Cox C. D., Ridone P., Rohde P. R., Cordero-Morales J. F., Vasquez V., Laver D. R., Martinac B., Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019). PubMed PMC

Moparthi L., Zygmunt P. M., Human TRPA1 is an inherently mechanosensitive bilayer-gated ion channel. Cell Calcium 91, 102255 (2020). PubMed

Obukhov A. G., Nowycky M. C., TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J. Cell. Physiol. 201, 227–235 (2004). PubMed

Gomis A., Soriano S., Belmonte C., Viana F., Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J. Physiol. 586, 5633–5649 (2008). PubMed PMC

Allard B., Magloire H., Couble M. L., Maurin J. C., Bleicher F., Voltage-gated sodium channels confer excitability to human odontoblasts: Possible role in tooth pain transmission. J. Biol. Chem. 281, 29002–29010 (2006). PubMed

Byers M. R., Dental sensory receptors. Int. Rev. Neurobiol. 25, 39–94 (1984). PubMed

Ikeda H., Suda H., Odontoblastic syncytium through electrical coupling in the human dental pulp. J. Dent. Res. 92, 371–375 (2013). PubMed

Cho Y. S., Ryu C. H., Won J. H., Vang H., Oh S. B., Ro J. Y., Bae Y. C., Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience 335, 54–63 (2016). PubMed

Blair N. T., Kaczmarek J. S., Clapham D. E., Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J. Gen. Physiol. 133, 525–546 (2009). PubMed PMC

Lee P. R., Lee J. Y., Kim H. B., Lee J. H., Oh S. B., TRPM8 mediates hyperosmotic stimuli-induced nociception in dental afferents. J. Dent. Res. 99, 107–114 (2019). PubMed

Yamamoto S., Takahashi N., Mori Y., Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog. Biophys. Mol. Biol. 103, 18–27 (2010). PubMed

Curtis E. K., In pursuit of palliation: Oil of cloves in the art of dentistry. Bull. Hist. Dent. 38, 9–14 (1990). PubMed

Lucas P. W., Philip S. M., Al-Qeoud D., Al-Draihim N., Saji S., van Casteren A., Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective. Evol. Dev. 18, 54–61 (2016). PubMed

Kwan K. Y., Allchorne A. J., Vollrath M. A., Christensen A. P., Zhang D. S., Woolf C. J., Corey D. P., TRPA1 contributes to cold, mechanical, and chemical Nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006). PubMed

Dhaka A., Murray A. N., Mathur J., Earley T. J., Petrus M. J., Patapoutian A., TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007). PubMed

Xue T., Do M. T. H., Riccio A., Jiang Z., Hsieh J., Wang H. C., Merbs S. L., Welsbie D. S., Yoshioka T., Weissgerber P., Stolz S., Flockerzi V., Freichel M., Simon M. I., Clapham D. E., Yau K.-W., Melanopsin signalling in mammalian iris and retina. Nature 479, 67–73 (2011). PubMed PMC

Vetter I., Hein A., Sattler S., Hessler S., Touska F., Bressan E., Parra A., Hager U., Leffler A., Boukalova S., Nissen M., Lewis R. J., Belmonte C., Alzheimer C., Huth T., Vlachova V., Reeh P. W., Zimmermann K., Amplified cold transduction in native nociceptors by M-channel inhibition. J. Neurosci. 33, 16627–16641 (2013). PubMed PMC

Vetter I., Touska F., Hess A., Hinsbey R., Sattler S., Lampert A., Sergejeva M., Sharov A., Collins L. S., Eberhardt M., Engel M., Cabot P. J., Wood J. N., Vlachova V., Reeh P. W., Lewis R. J., Zimmermann K., Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808 (2012). PubMed PMC

Wyatt A., Wartenberg P., Candlish M., Krasteva-Christ G., Flockerzi V., Boehm U., Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 67, 91–104 (2017). PubMed

Rodriguez C. I., Buchholz F., Galloway J., Sequerra R., Kasper J., Ayala R., Stewart A. F., Dymecki S. M., High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000). PubMed

Wen S., Götze I. N., Mai O., Schauer C., Leinders-Zufall T., Boehm U., Genetic identification of GnRH receptor neurons: A new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152, 1515–1526 (2011). PubMed

Hoaglin D. C., Iglewicz B., Fine-tuning some resistant rules for outlier labeling. J. Am. Stat. Assoc. 82, 1147–1149 (1987).

Roza C., Lopez-Garcia J. A., Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axotomized sensory fibres. Pain 138, 537–545 (2008). PubMed

Matsubayashi Y., Iwai L., Kawasaki H., Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J. Neurosci. Methods 174, 71–81 (2008). PubMed

Natarajan K. N., Miao Z., Jiang M., Huang X., Zhou H., Xie J., Wang C., Qin S., Zhao Z., Wu L., Yang N., Li B., Hou Y., Liu S., Teichmann S. A., Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biol. 20, 70 (2019). PubMed PMC

Picelli S., Björklund A. K., Faridani O. R., Sagasser S., Winberg G., Sandberg R., Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013). PubMed

Wu T. D., Nacu S., Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010). PubMed PMC

Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed

Schmid B., Tripal P., Fraass T., Kersten C., Ruder B., Gruneboom A., Huisken J., Palmisano R., 3Dscript: Animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019). PubMed

Whyte M. P., McAlister W. H., Novack D. V., Clements K. L., Schoenecker P. L., Wenkert D., Bisphosphonate-induced osteopetrosis: Novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J. Bone Miner. Res. 23, 1698–1707 (2008). PubMed

Lennerz J. K., Ruhle V., Ceppa E. P., Neuhuber W. L., Bunnett N. W., Grady E. F., Messlinger K., Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J. Comp. Neurol. 507, 1277–1299 (2008). PubMed

R. A. Colby, Color Atlas of Oral Pathology; Histology and Embryology, Developmental Disturbances, Diseases of the Teeth and Supporting Structures, Diseases of the Oral Mucosa and Jaws, Neoplasms (Lippincott Williams & Wilkins, 1961).

Shuhaibar N. N., Hand A. R., Terasaki M., Odontoblast processes of the mouse incisor are plates oriented in the direction of growth. Anat. Rec. (Hoboken), 1–8 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...