Odontoblast TRPC5 channels signal cold pain in teeth
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33771873
PubMed Central
PMC7997515
DOI
10.1126/sciadv.abf5567
PII: 7/13/eabf5567
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.
Center for Molecular and Cellular Bioengineering Technische Universität Dresden Dresden Germany
Department of Otolaryngology Washington University School of Medicine St Louis MO USA
Department of Pathology Washington University School of Medicine St Louis MO USA
FARAH Mammalian Transgenics Platform Liège University Liège Belgium
Institute of Pharmacology University of Heidelberg Heidelberg Germany
Millennium Nucleus of Ion Channel associated Diseases Santiago Chile
Zobrazit více v PubMed
Kassebaum N. J., Bernabé E., Dahiya M., Bhandari B., Murray C. J. L., Marcenes W., Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 94, 650–658 (2015). PubMed
Alghaithy R. A., Qualtrough A. J. E., Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: A critical review. Int. Endod. J. 50, 135–142 (2017). PubMed
Lin M., Genin G. M., Xu F., Lu T., Thermal pain in teeth: Electrophysiology governed by thermomechanics. Appl. Mech. Rev. 66, 0308011–3080114 (2014). PubMed PMC
Brännström M., Johnson G., Movements of the dentine and pulp liquids on application of thermal stimuli. An in vitro study. Acta Odontol. Scand. 28, 59–70 (1970). PubMed
Vriens J., Nilius B., Voets T., Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014). PubMed
Winter Z., Gruschwitz P., Eger S., Touska F., Zimmermann K., Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front. Mol. Neurosci. 10, 209 (2017). PubMed PMC
Kadala A., Sotelo-Hitschfeld P., Ahmad Z., Tripal P., Schmid B., Mueller A., Bernal L., Winter Z., Brauchi S., Lohbauer U., Messlinger K., Lennerz J. K., Zimmermann K., Fluorescent labeling and 2-photon imaging of mouse tooth pulp nociceptors. J. Dent. Res. 97, 460–466 (2018). PubMed
Kim Y. S., Kim T. H., McKemy D. D., Bae Y. C., Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 303, 378–388 (2015). PubMed PMC
Kim Y. S., Jung H. K., Kwon T. K., Kim C. S., Cho J. H., Ahn D. K., Bae Y. C., Expression of transient receptor potential ankyrin 1 in human dental pulp. J. Endod. 38, 1087–1092 (2012). PubMed
El Karim I. A., Linden G. J., Curtis T. M., About I., McGahon M. K., Irwin C. R., Lundy F. T., Human odontoblasts express functional thermo-sensitive TRP channels: Implications for dentin sensitivity. Pain 152, 2211–2223 (2011). PubMed
El Karim I. A., Linden G. J., Curtis T. M., About I., McGahon M. K., Irwin C. R., Killough S. A., Lundy F. T., Human dental pulp fibroblasts express the “cold-sensing” transient receptor potential channels TRPA1 and TRPM8. J. Endod. 37, 473–478 (2011). PubMed
Tazawa K., Ikeda H., Kawashima N., Okiji T., Transient receptor potential melastatin (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch. Oral Biol. 75, 55–61 (2017). PubMed
Egbuniwe O., Grover S., Duggal A. K., Mavroudis A., Yazdi M., Renton T., Di Silvio L., Grant A. D., TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J. Dent. Res. 93, 911–917 (2014). PubMed PMC
Yeon K. Y., Chung G., Shin M. S., Jung S. J., Kim J. S., Oh S. B., Adult rat odontoblasts lack noxious thermal sensitivity. J. Dent. Res. 88, 328–332 (2009). PubMed
Tsumura M., Sobhan U., Sato M., Shimada M., Nishiyama A., Kawaguchi A., Soya M., Kuroda H., Tazaki M., Shibukawa Y., Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLOS ONE 8, e82233 (2013). PubMed PMC
Michot B., Lee C. S., Gibbs J. L., TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci. Rep. 8, 13198 (2018). PubMed PMC
Zimmermann K., Lennerz J. K., Hein A., Link A. S., Kaczmarek J. S., Delling M., Uysal S., Pfeifer J. D., Riccio A., Clapham D. E., Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. U.S.A. 108, 18114–18119 (2011). PubMed PMC
Gibbs J. L., Urban R., Basbaum A. I., Paradoxical surrogate markers of dental injury-induced pain in the mouse. Pain 154, 1358–1367 (2013). PubMed PMC
Zimmermann K., Hein A., Hager U., Kaczmarek J. S., Turnquist B. P., Clapham D. E., Reeh P. W., Phenotyping sensory nerve endings in vitro in the mouse. Nat. Protoc. 4, 174–196 (2009). PubMed PMC
Memon T., Chase K., Leavitt L. S., Olivera B. M., Teichert R. W., TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons. Neuroscience 353, 76–86 (2017). PubMed PMC
Schwarz Y., Oleinikov K., Schindeldecker B., Wyatt A., Weißgerber P., Flockerzi V., Boehm U., Freichel M., Bruns D., TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLOS Biol. 17, e3000445 (2019). PubMed PMC
Alvarado L. T., Perry G. M., Hargreaves K. M., Henry M. A., TRPM8 Axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia. J. Endod. 33, 1167–1171 (2007). PubMed PMC
Byers M. R., Westenbroek R. E., Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels. Arch. Oral Biol. 56, 1199–1220 (2011). PubMed
Tanaka A., Shibukawa Y., Yamamoto M., Abe S., Yamamoto H., Shintani S., Developmental studies on the acquisition of perception conducting pathways via TRP channels in rat molar odontoblasts using immunohistochemistry and RT-qPCR. Anat. Sci. Int. 95, 251–257 (2020). PubMed PMC
Gunji T., Morphological research on the sensitivity of dentin. Arch. Histol. Jpn. 45, 45–67 (1982). PubMed
Cox C. F., Suzuki K., Yamaguchi H., Ruby J. D., Suzuki S., Akimoto N., Maeda N., Momoi Y., Sensory mechanisms in dentine: A literature review of light microscopy (LM), transmission microscopy (TEM), scanning microscopy (SEM) & electro physiological (EP) tooth sensitivity: Is the ciliary organelle on the odontoblast the elusive primary nociceptor? Dent. Oral Craniofacial Res. 4, 1–14 (2017).
Vongsavan N., Matthews B., The relationship between the discharge of intradental nerves and the rate of fluid flow through dentine in the cat. Arch. Oral Biol. 52, 640–647 (2007). PubMed
Trowbridge H. O., Franks M., Korostoff E., Emling R., Sensory response to thermal stimulation in human teeth. J. Endod. 6, 405–412 (1980). PubMed
Linsuwanont P., Palamara J. E., Messer H. H., An investigation of thermal stimulation in intact teeth. Arch. Oral Biol. 52, 218–227 (2007). PubMed
Chidchuangchai W., Vongsavan N., Matthews B., Sensory transduction mechanisms responsible for pain caused by cold stimulation of dentine in man. Arch. Oral Biol. 52, 154–160 (2007). PubMed
Muzzin K. B., Johnson R., Effects of potassium oxalate on dentin hypersensitivity in vivo. J. Periodontol. 60, 151–158 (1989). PubMed
Ajcharanukul O., Chidchuangchai W., Charoenlarp P., Vongsavan N., Matthews B., Sensory transduction in human teeth with inflamed pulps. J. Dent. Res. 90, 678–682 (2011). PubMed
Magloire H., Couble M. L., Thivichon-Prince B., Maurin J. C., Bleicher F., Odontoblast: A mechano-sensory cell. J. Exp. Zool. B Mol. Dev. Evol. 312B, 416–424 (2009). PubMed
Nikolaev Y. A., Cox C. D., Ridone P., Rohde P. R., Cordero-Morales J. F., Vasquez V., Laver D. R., Martinac B., Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019). PubMed PMC
Moparthi L., Zygmunt P. M., Human TRPA1 is an inherently mechanosensitive bilayer-gated ion channel. Cell Calcium 91, 102255 (2020). PubMed
Obukhov A. G., Nowycky M. C., TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J. Cell. Physiol. 201, 227–235 (2004). PubMed
Gomis A., Soriano S., Belmonte C., Viana F., Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J. Physiol. 586, 5633–5649 (2008). PubMed PMC
Allard B., Magloire H., Couble M. L., Maurin J. C., Bleicher F., Voltage-gated sodium channels confer excitability to human odontoblasts: Possible role in tooth pain transmission. J. Biol. Chem. 281, 29002–29010 (2006). PubMed
Byers M. R., Dental sensory receptors. Int. Rev. Neurobiol. 25, 39–94 (1984). PubMed
Ikeda H., Suda H., Odontoblastic syncytium through electrical coupling in the human dental pulp. J. Dent. Res. 92, 371–375 (2013). PubMed
Cho Y. S., Ryu C. H., Won J. H., Vang H., Oh S. B., Ro J. Y., Bae Y. C., Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience 335, 54–63 (2016). PubMed
Blair N. T., Kaczmarek J. S., Clapham D. E., Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J. Gen. Physiol. 133, 525–546 (2009). PubMed PMC
Lee P. R., Lee J. Y., Kim H. B., Lee J. H., Oh S. B., TRPM8 mediates hyperosmotic stimuli-induced nociception in dental afferents. J. Dent. Res. 99, 107–114 (2019). PubMed
Yamamoto S., Takahashi N., Mori Y., Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog. Biophys. Mol. Biol. 103, 18–27 (2010). PubMed
Curtis E. K., In pursuit of palliation: Oil of cloves in the art of dentistry. Bull. Hist. Dent. 38, 9–14 (1990). PubMed
Lucas P. W., Philip S. M., Al-Qeoud D., Al-Draihim N., Saji S., van Casteren A., Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective. Evol. Dev. 18, 54–61 (2016). PubMed
Kwan K. Y., Allchorne A. J., Vollrath M. A., Christensen A. P., Zhang D. S., Woolf C. J., Corey D. P., TRPA1 contributes to cold, mechanical, and chemical Nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006). PubMed
Dhaka A., Murray A. N., Mathur J., Earley T. J., Petrus M. J., Patapoutian A., TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007). PubMed
Xue T., Do M. T. H., Riccio A., Jiang Z., Hsieh J., Wang H. C., Merbs S. L., Welsbie D. S., Yoshioka T., Weissgerber P., Stolz S., Flockerzi V., Freichel M., Simon M. I., Clapham D. E., Yau K.-W., Melanopsin signalling in mammalian iris and retina. Nature 479, 67–73 (2011). PubMed PMC
Vetter I., Hein A., Sattler S., Hessler S., Touska F., Bressan E., Parra A., Hager U., Leffler A., Boukalova S., Nissen M., Lewis R. J., Belmonte C., Alzheimer C., Huth T., Vlachova V., Reeh P. W., Zimmermann K., Amplified cold transduction in native nociceptors by M-channel inhibition. J. Neurosci. 33, 16627–16641 (2013). PubMed PMC
Vetter I., Touska F., Hess A., Hinsbey R., Sattler S., Lampert A., Sergejeva M., Sharov A., Collins L. S., Eberhardt M., Engel M., Cabot P. J., Wood J. N., Vlachova V., Reeh P. W., Lewis R. J., Zimmermann K., Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808 (2012). PubMed PMC
Wyatt A., Wartenberg P., Candlish M., Krasteva-Christ G., Flockerzi V., Boehm U., Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 67, 91–104 (2017). PubMed
Rodriguez C. I., Buchholz F., Galloway J., Sequerra R., Kasper J., Ayala R., Stewart A. F., Dymecki S. M., High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000). PubMed
Wen S., Götze I. N., Mai O., Schauer C., Leinders-Zufall T., Boehm U., Genetic identification of GnRH receptor neurons: A new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152, 1515–1526 (2011). PubMed
Hoaglin D. C., Iglewicz B., Fine-tuning some resistant rules for outlier labeling. J. Am. Stat. Assoc. 82, 1147–1149 (1987).
Roza C., Lopez-Garcia J. A., Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axotomized sensory fibres. Pain 138, 537–545 (2008). PubMed
Matsubayashi Y., Iwai L., Kawasaki H., Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J. Neurosci. Methods 174, 71–81 (2008). PubMed
Natarajan K. N., Miao Z., Jiang M., Huang X., Zhou H., Xie J., Wang C., Qin S., Zhao Z., Wu L., Yang N., Li B., Hou Y., Liu S., Teichmann S. A., Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biol. 20, 70 (2019). PubMed PMC
Picelli S., Björklund A. K., Faridani O. R., Sagasser S., Winberg G., Sandberg R., Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013). PubMed
Wu T. D., Nacu S., Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010). PubMed PMC
Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed
Schmid B., Tripal P., Fraass T., Kersten C., Ruder B., Gruneboom A., Huisken J., Palmisano R., 3Dscript: Animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019). PubMed
Whyte M. P., McAlister W. H., Novack D. V., Clements K. L., Schoenecker P. L., Wenkert D., Bisphosphonate-induced osteopetrosis: Novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J. Bone Miner. Res. 23, 1698–1707 (2008). PubMed
Lennerz J. K., Ruhle V., Ceppa E. P., Neuhuber W. L., Bunnett N. W., Grady E. F., Messlinger K., Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J. Comp. Neurol. 507, 1277–1299 (2008). PubMed
R. A. Colby, Color Atlas of Oral Pathology; Histology and Embryology, Developmental Disturbances, Diseases of the Teeth and Supporting Structures, Diseases of the Oral Mucosa and Jaws, Neoplasms (Lippincott Williams & Wilkins, 1961).
Shuhaibar N. N., Hand A. R., Terasaki M., Odontoblast processes of the mouse incisor are plates oriented in the direction of growth. Anat. Rec. (Hoboken), 1–8 (2020). PubMed PMC
Thermosensing ability of TRPC5: current knowledge and unsettled questions
Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel