Cellular context determines primary characteristics of human TRPC5 as a cold-activated channel
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GAUK 297921
Grantová Agentura, Univerzita Karlova
GACR 22-13750S
Grantová Agentura Ceské Republiky
PubMed
35762104
DOI
10.1002/jcp.30821
Knihovny.cz E-zdroje
- Klíčová slova
- HEK293T, TRPC cation channels, cold temperature, single channels, stromal interaction molecule 1, thermosensitive TRP,
- MeSH
- buněčná membrána metabolismus MeSH
- HEK293 buňky MeSH
- kationtové kanály TRPC * genetika metabolismus MeSH
- lidé MeSH
- vápník * metabolismus MeSH
- vápníkové kanály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationtové kanály TRPC * MeSH
- TRPC5 protein, human MeSH Prohlížeč
- vápník * MeSH
- vápníkové kanály MeSH
The human transient receptor potential canonical 5 (TRPC5) is a calcium-permeable, nonselective cation channel expressed in the central and peripheral nervous system and also in other tissues such as the kidney, synovium, and odontoblasts. TRPC5 has been recently confirmed to play a key role in spontaneous, inflammatory mechanical, and cold pain. Although TRPC5 activation is known to be cold sensitive, it is unclear whether this property is intrinsic to the channel protein and whether or to what extent it may be determined by the cellular environment. In this study, we explored the cold sensitivity of human TRPC5 at the single-channel level using transiently transfected HEK293T cells. Upon decreasing the temperature, the channel demonstrated prolonged mean open dwell times and a robust increase in the open probability (Po ), whereas the amplitude of unitary currents decreased ~1.5-fold per 10°C of temperature difference. In the absence of any agonists, the temperature dependence of Po was sigmoidal, with a steep slope within the temperature range of 16°C-11°C, and exhibited saturation below 8-5°C. Thermodynamic analysis revealed significant changes in enthalpy and entropy, suggesting that substantial conformational changes accompany cold-induced gating. The mutant channel T970A, in which the regulation downstream of G-protein coupled receptor signaling was abrogated, exhibited higher basal activity at room temperature and a less steep temperature response profile, with an apparent threshold below 22°C. An even more pronounced decrease in the activation threshold was observed in a mutant that disrupted the electrostatic interaction of TRPC5 with the endoplasmic reticulum calcium sensor stromal interaction molecule 1. Thus, TRPC5 exhibits features of an intrinsically cold-gated channel; its sensitivity to cold tightly depends on the phosphorylation status of the protein and intracellular calcium homeostasis.
Zobrazit více v PubMed
Akbulut, Y., Gaunt, H. J., Muraki, K., Ludlow, M. J., Amer, M. S., Bruns, A., Vasudev, N. S., Willot, M., Hahn, S., Seitz, T., Ziegler, S., Christmann, M., Beech, D. J., & Waldmann, H. (2015). (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angewandte Chemie, 54(12), 3787-3791. https://doi.org/10.1002/anie.201411511
Asanov, A., Sampieri, A., Moreno, C., Pacheco, J., Salgado, A., Sherry, R., & Vaca, L. (2015). Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium, 57(1), 1-13. https://doi.org/10.1016/j.ceca.2014.10.011
Bamps, D., Vriens, J., de Hoon, J., & Voets, T. (2021). TRP channel cooperation for nociception: Therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 61, 655-677. https://doi.org/10.1146/annurev-pharmtox-010919-023238
Bernal, L., Sotelo-Hitschfeld, P., König, C., Sinica, V., Wyatt, A., Winter, Z., Hein, A., Reinhardt, S., Tragl, A., Kusuda, R., Wartenberg, P., Sclaroff, A., Pfeifer, J. D., Ectors, F., Dahl, A., Freichel, M., Vlachova, V., Brauchi, S., Roza, C., … Zimmermann, K. (2021). Odontoblast TRPC5 channels signal cold pain in teeth. Science Advances, 7(13). https://doi.org/10.1126/sciadv.abf5567
Bodnar, D., Chung, W. Y., Yang, D., Hong, J. H., Jha, A., & Muallem, S. (2017). STIM-TRP pathways and microdomain organization: Ca(2+) influx channels: The Orai-STIM1-TRPC complexes. Advances in Experimental Medicine and Biology, 993, 139-157. https://doi.org/10.1007/978-3-319-57732-6_8
Buijs, T. J., & McNaughton, P. A. (2020). The role of cold-sensitive ion channels in peripheral thermosensation. Frontiers in Cellular Neuroscience, 14, 262. https://doi.org/10.3389/fncel.2020.00262
Dittert, I., Benedikt, J., Vyklicky, L., Zimmermann, K., Reeh, P. W., & Vlachova, V. (2006). Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. Journal of Neuroscience Methods, 151(2), 178-185.
Duan, J., Li, J., Chen, G. L., Ge, Y., Liu, J., Xie, K., Peng, X., Zhong, J., Zhang, Y., Xu, J., Xue, C., Liang, B., Zhu, L., Liu, W., Zhang, C., Tian, X. L., Wang, J., Clapham, D. E., Zeng, B., … Zhang, J. (2019). Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Science Advances, 5(7), eaaw7935. https://doi.org/10.1126/sciadv.aaw7935
Duan, J., Li, J., Zeng, B., Chen, G. L., Peng, X., Zhang, Y., Wang, J., Li, Z., & Zhang, J. (2018). Structure of the mouse TRPC4 ion channel. Nature Communications, 9(1), 3102. https://doi.org/10.1038/s41467-018-05247-9
Gross, S. A., Guzman, G. A., Wissenbach, U., Philipp, S. E., Zhu, M. X., Bruns, D., & Cavalie, A. (2009). TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. The Journal of Biological Chemistry, 284(49), 34423-34432. https://doi.org/10.1074/jbc.M109.018192
Julius, D. (2013). TRP channels and pain. Annual Review of Cell and Developmental Biology, 29, 355-384. https://doi.org/10.1146/annurev-cellbio-101011-155833
Lee, K. P., Choi, S., Hong, J. H., Ahuja, M., Graham, S., Ma, R., So, I., Muallem, S., & Yuan, J. P. (2014). Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). The Journal of Biological Chemistry, 289(10), 6372-6382. https://doi.org/10.1074/jbc.M113.546556
Lee, K. P., Yuan, J. P., So, I., Worley, P. F., & Muallem, S. (2010). STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. The Journal of Biological Chemistry, 285(49), 38666-38673. https://doi.org/10.1074/jbc.M110.155036
Ningoo, M., Plant, L. D., Greka, A., & Logothetis, D. E. (2021). PIP2 regulation of TRPC5 channel activation and desensitization. The Journal of Biological Chemistry, 296, 100726. https://doi.org/10.1016/j.jbc.2021.100726
Obukhov, A. G., & Nowycky, M. C. (2005). A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. Journal of Neuroscience, 25(5), 1234-1239. https://doi.org/10.1523/JNEUROSCI.4451-04.2005
Rohacs, T. (2013). Regulation of transient receptor potential channels by the phospholipase C pathway. Advances in Biological Regulation, 53(3), 341-355. https://doi.org/10.1016/j.jbior.2013.07.004
Rubaiy, H. N., Ludlow, M. J., Henrot, M., Gaunt, H. J., Miteva, K., Cheung, S. Y., Tanahashi, Y., Musialowski, K. E., Blythe, N. M., Appleby, H. L., Bailey, M. A., McKeown, L., Taylor, R., Foster, R., Waldmann, H., Nussbaumer, P., Christmann, M., Bon, R. S., Muraki, K., & Beech, D. J. (2017). Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. The Journal of Biological Chemistry, 292(20), 8158-8173. https://doi.org/10.1074/jbc.M116.773556
Sadler, K. E., Moehring, F., Shiers, S. I., Laskowski, L. J., Mikesell, A. R., Plautz, Z. R., Brezinski, A. N., Dussor, G., Price, T. J., McCorvy, J. D., & Stucky, C. L. (2021). Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Science Translational Medicine, 13(595). https://doi.org/10.1126/scitranslmed.abd7702
Song, K., Wei, M., Guo, W., Quan, L., Kang, Y., Wu, J. X., & Chen, L. (2021). Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife, 10. https://doi.org/10.7554/eLife.63429
Storch, U., Forst, A. L., Pardatscher, F., Erdogmus, S., Philipp, M., Gregoritza, M., & Mederos Y Schnitzler, M. (2017). Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. Proceedings of the National Academy of Sciences of the United States of America, 114(1), E37-E46. https://doi.org/10.1073/pnas.1612263114
Vinayagam, D., Mager, T., Apelbaum, A., Bothe, A., Merino, F., Hofnagel, O., & Gatsogiannis, C. (2018). Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife, 7. https://doi.org/10.7554/eLife.36615
Vinayagam, D., Quentin, D., Yu-Strzelczyk, J., Sitsel, O., Merino, F., Stabrin, M., Hofnagel, O., Ledeboer, M. W., Nagel, G., Malojcic, G., & Raunser, S. (2020). Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife, 9. https://doi.org/10.7554/eLife.60603
Voets, T. (2012). Quantifying and modeling the temperature-dependent gating of TRP channels. Reviews of Physiology, Biochemistry and Pharmacology, 162, 91-119. https://doi.org/10.1007/112_2011_5
Vriens, J., Nilius, B., & Voets, T. (2014). Peripheral thermosensation in mammals. Nature Reviews Neuroscience, 15(9), 573-589. https://doi.org/10.1038/nrn3784
Wang, H., Cheng, X., Tian, J., Xiao, Y., Tian, T., Xu, F., & Hong, X. (2020). TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacology and Therapeutics, 209, 107497. https://doi.org/10.1016/j.pharmthera.2020.107497
Wang, H., & Siemens, J. (2015). TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature: Multidisciplinary Biomedical Journal, 2(2), 178-187. https://doi.org/10.1080/23328940.2015.1040604
Wright, D. J., Simmons, K. J., Johnson, R. M., Beech, D. J., Muench, S. P., & Bon, R. S. (2020). Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Communications Biology, 3(1), 704. https://doi.org/10.1038/s42003-020-01437-8
Xiao, B., Coste, B., Mathur, J., & Patapoutian, A. (2011). Temperature-dependent STIM1 activation induces Ca(2)+ influx and modulates gene expression. Nature Chemical Biology, 7(6), 351-358. https://doi.org/10.1038/nchembio.558
Zeng, F., Xu, S. Z., Jackson, P. K., McHugh, D., Kumar, B., Fountain, S. J., & Beech, D. J. (2004). Human TRPC5 channel activated by a multiplicity of signals in a single cell. The Journal of Physiology, 559(Pt 3), 739-750. https://doi.org/10.1113/jphysiol.2004.065391
Zeng, W., Yuan, J. P., Kim, M. S., Choi, Y. J., Huang, G. N., Worley, P. F., & Muallem, S. (2008). STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Molecular Cell, 32(3), 439-448. https://doi.org/10.1016/j.molcel.2008.09.020
Zhu, M. H., Chae, M., Kim, H. J., Lee, Y. M., Kim, M. J., Jin, N. G., Yang, D. K., & Kim, K. W. (2005). Desensitization of canonical transient receptor potential channel 5 by protein kinase C. American Journal of Physiology Cell Physiology, 289(3), C591-C600. https://doi.org/10.1152/ajpcell.00440.2004
Zimmermann, K., Lennerz, J. K., Hein, A., Link, A. S., Kaczmarek, J. S., Delling, M., Uysal, S., Riccio, A., & Clapham, D. E. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 18114-18119. https://doi.org/10.1073/pnas.1115387108
Thermosensing ability of TRPC5: current knowledge and unsettled questions