Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1236218
Grant Agency of Charles University - International
74417
Grant Agency of Charles University - International
19-03777S
Czech Science Foundation - International
PubMed
31116904
DOI
10.1111/febs.14931
Knihovny.cz E-zdroje
- Klíčová slova
- TRP channel, ankyrin transient receptor potential, gating, peptide-lipid interaction, rectification,
- MeSH
- biofyzikální jevy MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- HEK293 buňky MeSH
- kationtový kanál TRPA1 chemie genetika MeSH
- kinetika MeSH
- lidé MeSH
- membránové potenciály genetika MeSH
- metabolismus lipidů genetika MeSH
- peptidy chemie MeSH
- sekundární struktura proteinů MeSH
- signální transdukce genetika MeSH
- vápník chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- fosfolipidy MeSH
- kationtový kanál TRPA1 MeSH
- peptidy MeSH
- vápník MeSH
The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP2 -interaction site (Y1006-Q1031) is involved in TRPA1 regulation. The interactions of two specific peptides (L992-N1008 and T1003-P1034) with model lipid membranes were characterized by biophysical approaches to obtain information about affinity, peptide secondary structure, and peptide effect in the lipid organization. The results indicate that the two peptides interact with lipid membranes only if PIP2 is present and their affinities depend on the presence of calcium. Using whole-cell electrophysiology, we demonstrate that mutation at F1020 produced channels with faster activation kinetics and with a rightward shifted voltage-dependent activation curve by altering the allosteric constant that couples voltage sensing to pore opening. We assert that the presence of PIP2 is essential for the interaction of the two peptide sequences with the lipid membrane. The putative phosphoinositide-interacting domain comprising the highly conserved F1020 contributes to the stabilization of the TRPA1 channel gate.
CBMN UMR 5248 CNRS IPB University of Bordeaux Pessac France
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829.
Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID & Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260-265.
Nilius B, Appendino G & Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464, 425-458.
Laursen WJ, Bagriantsev SN & Gracheva EO (2014) TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74, 89-112.
Baraldi PG, Preti D, Materazzi S & Geppetti P (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53, 5085-5107.
Zygmunt PM & Hogestatt ED (2014) Trpa1. Handb Exp Pharmacol 222, 583-630.
Wang YY, Chang RB, Allgood SD, Silver WL & Liman ER (2011) A TRPA1-dependent mechanism for the pungent sensation of weak acids. J Gen Physiol 137, 493-505.
Hasan R, Leeson-Payne AT, Jaggar JH & Zhang X (2017) Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 Channels. Sci Rep 7, 45098.
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ & Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857.
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H & Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117, 1979-1987.
Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223, 1143-1176.
Rohacs T (2013) Regulation of transient receptor potential channels by the phospholipase C pathway. Adv Biol Regul 53, 341-355.
Rohacs T (2016) Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 61, 2-16.
Nilius B, Prenen J & Owsianik G (2011) Irritating channels: the case of TRPA1. J Physiol (Lond) 589, 1543-1549.
Witschas K, Jobin ML, Korkut DN, Vladan MM, Salgado G, Lecomte S, Vlachova V & Alves ID (2015) Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane. Biochim Biophys Acta 1848, 1147-1156.
Gao Y, Cao E, Julius D & Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347-351.
Paulsen CE, Armache JP, Gao Y, Cheng Y & Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511-517.
Samad A, Sura L, Benedikt J, Ettrich R, Minofar B, Teisinger J & Vlachova V (2011) The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem J 433, 197-204.
Castano S & Desbat B (2005) Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy. Biochim Biophys Acta 1715, 81-95.
Salamon Z, Macleod HA & Tollin G (1997) Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J 73, 2791-2797.
Arosio P, Muller T, Rajah L, Yates EV, Aprile FA, Zhang Y, Cohen SI, White DA, Herling TW, De Genst EJ et al. (2016) Microfluidic diffusion analysis of the sizes and interactions of proteins under native solution conditions. ACS Nano 10, 333-341.
Gang H, Galvagnion C, Meisl G, Muller T, Pfammatter M, Buell AK, Levin A, Dobson CM, Mu B & Knowles TPJ (2018) Microfluidic diffusion platform for characterizing the sizes of lipid vesicles and the thermodynamics of protein-lipid interactions. Anal Chem 90, 3284-3290.
Sura L, Zima V, Marsakova L, Hynkova A, Barvik I & Vlachova V (2012) C-terminal acidic cluster is involved in Ca2+-induced regulation of human transient receptor potential ankyrin 1 channel. J Biol Chem 287, 18067-18077.
Hynkova A, Marsakova L, Vaskova J & Vlachova V (2016) N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci Rep 6, 28700.
Zimova L, Sinica V, Kadkova A, Vyklicka L, Zima V, Barvik I & Vlachova V (2018) Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Sci Signal 11. https://doi.org/10.1126/scisignal.aan8621
Suh BC & Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37, 175-195.
Horrigan FT & Aldrich RW (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120, 267-305.
Brauchi S, Orio P & Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101, 15494-15499.
Akopian AN, Ruparel NB, Jeske NA & Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583, 175-193.
Vetter I & Lewis RJ (2010) Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 79, 908-920.
Yin K, Baillie GJ & Vetter I (2016) Neuronal cell lines as model dorsal root ganglion neurons: a transcriptomic comparison. Mol Pain 12, 1-17.
Kadkova A, Synytsya V, Krusek J, Zimova L & Vlachova V (2017) Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol Res 66, 425-439.
Prucha J, Krusek J, Dittert I, Sinica V, Kadkova A & Vlachova V (2018) Acute exposure to high-induction electromagnetic field affects activity of model peripheral sensory neurons. J Cell Mol Med 22, 1355-1362.
Moparthi L, Survery S, Kreir M, Simonsen C, Kjellbom P, Hogestatt ED, Johanson U & Zygmunt PM (2014) Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci USA 111, 16901-16906.
Hirono M, Denis CS, Richardson GP & Gillespie PG (2004) Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44, 309-320.
Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T & Nilius B (2008) Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch 457, 77-89.
Lata S, Sharma BK & Raghava GP (2007) Analysis and prediction of antibacterial peptides. BMC Bioinformatics 8, 263.
Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788, 1687-1692.
Gallo V, Dijk FN, Holloway JW, Ring SM, Koppelman GH, Postma DS, Strachan DP, Granell R, de Jongste JC, Jaddoe VW et al. (2017) TRPA1 gene polymorphisms and childhood asthma. Pediatr Allergy Immunol 28, 191-198.
Akopian AN (2011) Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. Curr Pharm Biotechnol 12, 89-94.
Rohacs T (2015) Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch 467, 1851-1869.
Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV & Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957-962.
Dittert I, Benedikt J, Vyklicky L, Zimmermann K, Reeh PW & Vlachova V (2006) Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J Neurosci Methods 151, 178-185.
Grethen A, Oluwole AO, Danielczak B, Vargas C & Keller S (2017) Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Sci Rep 7, 11517.
Rouser G, Fkeischer S & Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494-496.
Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Refregiers M & Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci USA 112, E3095-E3103.
Alves ID, Park CK & Hruby VJ (2005) Plasmon resonance methods in GPCR signaling and other membrane events. Curr Protein Pept Sci 6, 293-312.
Harte E, Maalouli N, Shalabney A, Texier E, Berthelot K, Lecomte S & Alves ID (2014) Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance. Chem Commun 50, 4168-4171.
Alves ID & Lecomte S (2019) Study of G-protein coupled receptor signaling in membrane environment by plasmon waveguide resonance. Acc Chem Res 52, 1059-1067.
Goormaghtigh E, Raussens V & Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422, 105-185.
Mendes P, Hoops S, Sahle S, Gauges R, Dada J & Kummer U (2009) Computational modeling of biochemical networks using COPASI. Methods Mol Biol 500, 17-59.
Crooks GE, Hon G, Chandonia JM & Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14, 1188-1190.
Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor
Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage