Investigating antibacterial and anti-inflammatory properties of synthetic curcuminoids
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39534226
PubMed Central
PMC11554473
DOI
10.3389/fmed.2024.1478122
Knihovny.cz E-resources
- Keywords
- anti-inflammatory, antibacterial, curcuminoids, immunomodulatory, lipopolysaccharide,
- Publication type
- Journal Article MeSH
The concept of intratumoral microbiota is gaining attention in current research. Tumor-associated microbiota can activate oncogenic signaling pathways such as NF-κB, thereby promoting tumor development and progression. Numerous studies have demonstrated that curcumin and its analogs possess strong antitumor effects by targeting the NF-κB signaling pathway, along with potent antibacterial properties. In this study, we tested the antibacterial activity of two curcuminoids, Py-cPen and V-cPen, against the Gram-negative bacterial strains Pseudomonas aeruginosa and Escherichia coli and the Gram-positive bacterial strain Streptococcus aureus using in vitro assays and fluorescent microscopy. We observed that both Py-cPen and V-cPen reduced NF-κB activation upon lipopolysacharide (LPS) challenge in cell assays. In addition, our findings indicate that Py-cPen and V-cPen interact with LPS, as demonstrated by transmission electron microscopy and confirmed using in silico analyses, thereby modulating LPS activity. Overall, our data indicate that Py-cPen and V-cPen exhibit strong antibacterial and antiinflammatory properties, suggesting their potential as candidates for new multitarget therapeutic strategies.
See more in PubMed
Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. (2017) 57:2889–95. doi: 10.1080/10408398.2015.1077195 PubMed DOI
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol. (2008) 75:787–809. doi: 10.1016/j.bcp.2007.08.016 PubMed DOI
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, et al. . Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics (Basel). (2022) 11:322. doi: 10.3390/antibiotics11030322 PubMed DOI PMC
Adamczak A, Ożarowski M, Karpiński TM. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel). (2020) 13:153. doi: 10.3390/ph13070153, PMID: PubMed DOI PMC
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, et al. . Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther. (2024) 9:15. doi: 10.1038/s41392-023-01693-0, PMID: PubMed DOI PMC
Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, et al. . Microbiota in tumors: from understanding to application. Adv Sci. (2022) 9:e2200470. doi: 10.1002/advs.202200470, PMID: PubMed DOI PMC
Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. (2023) 8:35. doi: 10.1038/s41392-022-01304-4, PMID: PubMed DOI PMC
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience. (2024) 27:109893. doi: 10.1016/j.isci.2024.109893, PMID: PubMed DOI PMC
Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, et al. . Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. (2022) 185:1356–72.e26. doi: 10.1016/j.cell.2022.02.027, PMID: PubMed DOI
Zhang L, Yu L. The role of the microscopic world: exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore). (2024) 103:e38078. doi: 10.1097/MD.0000000000038078, PMID: PubMed DOI PMC
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, et al. . The natural product curcumin as an antibacterial agent: current achievements and problems. Antioxidants (Basel). (2022) 11:459. doi: 10.3390/antiox11030459 PubMed DOI PMC
Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, et al. . Antibacterial mechanism of curcumin: a review. Chem Biodivers. (2020) 17:e2000171. doi: 10.1002/cbdv.202000171 PubMed DOI
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. . Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. (2021) 15:4503–25. doi: 10.2147/DDDT.S327378, PMID: PubMed DOI PMC
Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, et al. . Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. (2012) 12:368–77. doi: 10.1016/j.intimp.2011.12.009, PMID: PubMed DOI PMC
Kurago ZB, Lam-ubol A, Stetsenko A, De La Mater C, Chen Y, Dawson DV. Lipopolysaccharide-squamous cell carcinoma-monocyte interactions induce cancer-supporting factors leading to rapid STAT3 activation. Head Neck Pathol. (2008) 2:1–12. doi: 10.1007/s12105-007-0038-x, PMID: PubMed DOI PMC
Ju H, Hu Z, Lu Y, Wu Y, Zhang L, Wei D, et al. . TLR4 activation leads to anti-EGFR therapy resistance in head and neck squamous cell carcinoma. Am J Cancer Res. (2020) 10:454–72. PMID: PubMed PMC
Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, et al. . Selective protein aggregation confines and inhibits endotoxins in wounds: linking host defense to amyloid formation. iScience. (2023) 26:107951. doi: 10.1016/j.isci.2023.107951, PMID: PubMed DOI PMC
Meng Z, Yan C, Deng Q, Gao D-f, Niu X-l. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin. (2013) 34:901–11. doi: 10.1038/aps.2013.24, PMID: PubMed DOI PMC
Lopresti AL. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr. (2018) 9:41–50. doi: 10.1093/advances/nmx011, PMID: PubMed DOI PMC
Dei Cas M, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients. (2019) 11:2147. doi: 10.3390/nu11092147, PMID: PubMed DOI PMC
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: what we learned from clinical trials thus far? ACS Omega. (2023) 8:10713–46. doi: 10.1021/acsomega.2c07326 PubMed DOI PMC
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: structural characteristics and molecular targets. Expert Opin Drug Discov. (2019) 14:821–42. doi: 10.1080/17460441.2019.1614560, PMID: PubMed DOI
Katsori AM, Palagani A, Bougarne N, Hadjipavlou-Litina D, Haegeman G, Vanden BW. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules. (2015) 20:863–78. doi: 10.3390/molecules20010863, PMID: PubMed DOI PMC
Zusso M, Mercanti G, Belluti F, Di Martino RMC, Pagetta A, Marinelli C, et al. . Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism. Br J Pharmacol. (2017) 174:1090–103. doi: 10.1111/bph.13746, PMID: PubMed DOI PMC
Pae HO, Jeong SO, Kim HS, Kim SH, Song YS, Kim SK, et al. . Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-kappaB activation in RAW264.7 macrophages activated with LPS. Mol Nutr Food Res. (2008) 52:1082–91. doi: 10.1002/mnfr.200700333, PMID: PubMed DOI
Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin uptake and metabolism. Biofactors. (2013) 39:14–20. doi: 10.1002/biof.1042 PubMed DOI
Bhagat S, Sharma R, Chakraborti AK. Dual-activation protocol for tandem cross-aldol condensation: an easy and highly efficient synthesis of α,α′-bis(aryl/alkylmethylidene)ketones. J Mol Catal A Chem. (2006) 260:235–40. doi: 10.1016/j.molcata.2006.07.018 DOI
Tan K-L, Koh S-B, Ee RP-L, Khan M, Go M-L. Curcumin analogues with potent and selective anti-proliferative activity on acute Promyelocytic leukemia: involvement of accumulated misfolded nuclear receptor co-repressor (N-CoR) protein as a basis for selective activity. ChemMedChem. (2012) 7:1567–79. doi: 10.1002/cmdc.201200293, PMID: PubMed DOI
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol. (2022) 13:944147. doi: 10.3389/fphar.2022.944147 PubMed DOI PMC
Neshani A, Zare H, Akbari Eidgahi MR, Kamali Kakhki R, Safdari H, Khaledi A, et al. . LL-37: review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. (2019) 17:100519. doi: 10.1016/j.genrep.2019.100519 DOI
Puthia M, Marzinek JK, Petruk G, Ertürk Bergdahl G, Bond PJ, Petrlova J. Antibacterial and anti-inflammatory effects of apolipoprotein E. Biomedicines. (2022) 10:1430. doi: 10.3390/biomedicines10061430 PubMed DOI PMC
Petruk G, Elvén M, Hartman E, Davoudi M, Schmidtchen A, Puthia M, et al. . The role of full-length apoE in clearance of gram-negative bacteria and their endotoxins. J Lipid Res. (2021) 62:100086. doi: 10.1016/j.jlr.2021.100086, PMID: PubMed DOI PMC
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. (2015) 10:e0121313. doi: 10.1371/journal.pone.0121313, PMID: PubMed DOI PMC
Ji H, Jiang Z, Wei C, Ma Y, Zhao J, Wang F, et al. . Intratumoural microbiota: from theory to clinical application. Cell Commun Signal. (2023) 21:164. doi: 10.1186/s12964-023-01134-z, PMID: PubMed DOI PMC
Subramaniam N, Muthukrishnan A. Oral mucositis and microbial colonization in oral cancer patients undergoing radiotherapy and chemotherapy: a prospective analysis in a tertiary care dental hospital. J Investig Clin Dent. (2019) 10:e12454. doi: 10.1111/jicd.12454, PMID: PubMed DOI
Stringer AM, Logan RM. The role of oral flora in the development of chemotherapy-induced oral mucositis. J Oral Pathol Med. (2015) 44:81–7. doi: 10.1111/jop.12152, PMID: PubMed DOI
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, et al. . Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother. (2023) 163:114758. doi: 10.1016/j.biopha.2023.114758, PMID: PubMed DOI
Kejík Z, Kaplánek R, Dytrych P, Masařík M, Veselá K, Abramenko N, et al. . Circulating tumour cells (CTCs) in NSCLC: from prognosis to therapy design. Pharmaceutics. (2021) 13:1879. doi: 10.3390/pharmaceutics13111879, PMID: PubMed DOI PMC
Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D, et al. . Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother. (2019) 118:109278. doi: 10.1016/j.biopha.2019.109278, PMID: PubMed DOI
Ganji A, Farahani I, Saeedifar AM, Mosayebi G, Ghazavi A, Majeed M, et al. . Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr Med Chem. (2021) 28:6915–30. doi: 10.2174/0929867328666210525124707, PMID: PubMed DOI
Wessler S, Muenzner P, Meyer TF, Naumann M. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biol Chem. (2005) 386:481–90. doi: 10.1515/BC.2005.057, PMID: PubMed DOI
Jang J, Kim W, Kim K, Chung SI, Shim YJ, Kim SM, et al. . Lipoteichoic acid upregulates NF-κB and proinflammatory cytokines by modulating β-catenin in bronchial epithelial cells. Mol Med Rep. (2015) 12:4720–6. doi: 10.3892/mmr.2015.3965, PMID: PubMed DOI
Kiku Y, Nagasawa Y, Tanabe F, Sugawara K, Watanabe A, Hata E, et al. . The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells. J Vet Med Sci. (2016) 78:1505–10. doi: 10.1292/jvms.15-0706, PMID: PubMed DOI PMC
Xu J, Jia Z, Chen A, Wang C. Curcumin ameliorates Staphylococcus aureus-induced mastitis injury through attenuating TLR2-mediated NF−κB activation. Microb Pathog. (2020) 142:104054. doi: 10.1016/j.micpath.2020.104054, PMID: PubMed DOI
Schaefers MM, Breshears LM, Anderson MJ, Lin YC, Grill AE, Panyam J, et al. . Epithelial proinflammatory response and curcumin-mediated protection from staphylococcal toxic shock syndrome toxin-1. PLoS One. (2012) 7:e32813. doi: 10.1371/journal.pone.0032813, PMID: PubMed DOI PMC
Zhang L, Hou X, Sun L, He T, Wei R, Pang M, et al. . Staphylococcus aureus bacteriophage suppresses LPS-induced inflammation in MAC-T bovine mammary epithelial cells. Front Microbiol. (2018) 9:1614. doi: 10.3389/fmicb.2018.01614, PMID: PubMed DOI PMC
Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, et al. . Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. (2017) 11:2233–43. doi: 10.1038/ismej.2017.83, PMID: PubMed DOI PMC
Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary supplementation with curcumin reduce circulating levels of glycogen synthase kinase-3β and islet amyloid polypeptide in adults with high risk of type 2 diabetes and Alzheimer's disease. Nutrients. (2020) 12:1032. doi: 10.3390/nu12041032, PMID: PubMed DOI PMC
Buss H, Dörrie A, Schmitz ML, Frank R, Livingstone M, Resch K, et al. . Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem. (2004) 279:49571–4. doi: 10.1074/jbc.C400442200, PMID: PubMed DOI
Thacker PC, Karunagaran D. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One. (2015) 10:e0120045. doi: 10.1371/journal.pone.0120045, PMID: PubMed DOI PMC
Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, et al. . Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell. (2003) 12:1413–26. doi: 10.1016/S1097-2765(03)00490-8, PMID: PubMed DOI
Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J Biol Chem. (2014) 289:24691–9. doi: 10.1074/jbc.M114.568162, PMID: PubMed DOI PMC
Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. J Recept Signal Transduct Res. (2020) 40:324–38. doi: 10.1080/10799893.2020.1742741, PMID: PubMed DOI
Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, et al. . Tumor-induced oxidative stress perturbs nuclear factor-κB activity-augmenting tumor necrosis factor-α–mediated T-cell death: protection by curcumin. Cancer Res. (2007) 67:362–70. doi: 10.1158/0008-5472.CAN-06-2583, PMID: PubMed DOI
Basak SK, Bera A, Yoon AJ, Morselli M, Jeong C, Tosevska A, et al. . A randomized, phase 1, placebo-controlled trial of APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor-associated microbes. Cancer. (2020) 126:1668–82. doi: 10.1002/cncr.32644, PMID: PubMed DOI