Investigating antibacterial and anti-inflammatory properties of synthetic curcuminoids

. 2024 ; 11 () : 1478122. [epub] 20241029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39534226

The concept of intratumoral microbiota is gaining attention in current research. Tumor-associated microbiota can activate oncogenic signaling pathways such as NF-κB, thereby promoting tumor development and progression. Numerous studies have demonstrated that curcumin and its analogs possess strong antitumor effects by targeting the NF-κB signaling pathway, along with potent antibacterial properties. In this study, we tested the antibacterial activity of two curcuminoids, Py-cPen and V-cPen, against the Gram-negative bacterial strains Pseudomonas aeruginosa and Escherichia coli and the Gram-positive bacterial strain Streptococcus aureus using in vitro assays and fluorescent microscopy. We observed that both Py-cPen and V-cPen reduced NF-κB activation upon lipopolysacharide (LPS) challenge in cell assays. In addition, our findings indicate that Py-cPen and V-cPen interact with LPS, as demonstrated by transmission electron microscopy and confirmed using in silico analyses, thereby modulating LPS activity. Overall, our data indicate that Py-cPen and V-cPen exhibit strong antibacterial and antiinflammatory properties, suggesting their potential as candidates for new multitarget therapeutic strategies.

Zobrazit více v PubMed

Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. (2017) 57:2889–95. doi: 10.1080/10408398.2015.1077195 PubMed DOI

Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol. (2008) 75:787–809. doi: 10.1016/j.bcp.2007.08.016 PubMed DOI

Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, et al. . Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics (Basel). (2022) 11:322. doi: 10.3390/antibiotics11030322 PubMed DOI PMC

Adamczak A, Ożarowski M, Karpiński TM. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel). (2020) 13:153. doi: 10.3390/ph13070153, PMID: PubMed DOI PMC

Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, et al. . Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther. (2024) 9:15. doi: 10.1038/s41392-023-01693-0, PMID: PubMed DOI PMC

Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, et al. . Microbiota in tumors: from understanding to application. Adv Sci. (2022) 9:e2200470. doi: 10.1002/advs.202200470, PMID: PubMed DOI PMC

Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. (2023) 8:35. doi: 10.1038/s41392-022-01304-4, PMID: PubMed DOI PMC

Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience. (2024) 27:109893. doi: 10.1016/j.isci.2024.109893, PMID: PubMed DOI PMC

Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, et al. . Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. (2022) 185:1356–72.e26. doi: 10.1016/j.cell.2022.02.027, PMID: PubMed DOI

Zhang L, Yu L. The role of the microscopic world: exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore). (2024) 103:e38078. doi: 10.1097/MD.0000000000038078, PMID: PubMed DOI PMC

Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, et al. . The natural product curcumin as an antibacterial agent: current achievements and problems. Antioxidants (Basel). (2022) 11:459. doi: 10.3390/antiox11030459 PubMed DOI PMC

Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, et al. . Antibacterial mechanism of curcumin: a review. Chem Biodivers. (2020) 17:e2000171. doi: 10.1002/cbdv.202000171 PubMed DOI

Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. . Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. (2021) 15:4503–25. doi: 10.2147/DDDT.S327378, PMID: PubMed DOI PMC

Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, et al. . Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. (2012) 12:368–77. doi: 10.1016/j.intimp.2011.12.009, PMID: PubMed DOI PMC

Kurago ZB, Lam-ubol A, Stetsenko A, De La Mater C, Chen Y, Dawson DV. Lipopolysaccharide-squamous cell carcinoma-monocyte interactions induce cancer-supporting factors leading to rapid STAT3 activation. Head Neck Pathol. (2008) 2:1–12. doi: 10.1007/s12105-007-0038-x, PMID: PubMed DOI PMC

Ju H, Hu Z, Lu Y, Wu Y, Zhang L, Wei D, et al. . TLR4 activation leads to anti-EGFR therapy resistance in head and neck squamous cell carcinoma. Am J Cancer Res. (2020) 10:454–72. PMID: PubMed PMC

Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, et al. . Selective protein aggregation confines and inhibits endotoxins in wounds: linking host defense to amyloid formation. iScience. (2023) 26:107951. doi: 10.1016/j.isci.2023.107951, PMID: PubMed DOI PMC

Meng Z, Yan C, Deng Q, Gao D-f, Niu X-l. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin. (2013) 34:901–11. doi: 10.1038/aps.2013.24, PMID: PubMed DOI PMC

Lopresti AL. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr. (2018) 9:41–50. doi: 10.1093/advances/nmx011, PMID: PubMed DOI PMC

Dei Cas M, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients. (2019) 11:2147. doi: 10.3390/nu11092147, PMID: PubMed DOI PMC

Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: what we learned from clinical trials thus far? ACS Omega. (2023) 8:10713–46. doi: 10.1021/acsomega.2c07326 PubMed DOI PMC

Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: structural characteristics and molecular targets. Expert Opin Drug Discov. (2019) 14:821–42. doi: 10.1080/17460441.2019.1614560, PMID: PubMed DOI

Katsori AM, Palagani A, Bougarne N, Hadjipavlou-Litina D, Haegeman G, Vanden BW. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules. (2015) 20:863–78. doi: 10.3390/molecules20010863, PMID: PubMed DOI PMC

Zusso M, Mercanti G, Belluti F, Di Martino RMC, Pagetta A, Marinelli C, et al. . Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism. Br J Pharmacol. (2017) 174:1090–103. doi: 10.1111/bph.13746, PMID: PubMed DOI PMC

Pae HO, Jeong SO, Kim HS, Kim SH, Song YS, Kim SK, et al. . Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-kappaB activation in RAW264.7 macrophages activated with LPS. Mol Nutr Food Res. (2008) 52:1082–91. doi: 10.1002/mnfr.200700333, PMID: PubMed DOI

Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin uptake and metabolism. Biofactors. (2013) 39:14–20. doi: 10.1002/biof.1042 PubMed DOI

Bhagat S, Sharma R, Chakraborti AK. Dual-activation protocol for tandem cross-aldol condensation: an easy and highly efficient synthesis of α,α′-bis(aryl/alkylmethylidene)ketones. J Mol Catal A Chem. (2006) 260:235–40. doi: 10.1016/j.molcata.2006.07.018 DOI

Tan K-L, Koh S-B, Ee RP-L, Khan M, Go M-L. Curcumin analogues with potent and selective anti-proliferative activity on acute Promyelocytic leukemia: involvement of accumulated misfolded nuclear receptor co-repressor (N-CoR) protein as a basis for selective activity. ChemMedChem. (2012) 7:1567–79. doi: 10.1002/cmdc.201200293, PMID: PubMed DOI

Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol. (2022) 13:944147. doi: 10.3389/fphar.2022.944147 PubMed DOI PMC

Neshani A, Zare H, Akbari Eidgahi MR, Kamali Kakhki R, Safdari H, Khaledi A, et al. . LL-37: review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. (2019) 17:100519. doi: 10.1016/j.genrep.2019.100519 DOI

Puthia M, Marzinek JK, Petruk G, Ertürk Bergdahl G, Bond PJ, Petrlova J. Antibacterial and anti-inflammatory effects of apolipoprotein E. Biomedicines. (2022) 10:1430. doi: 10.3390/biomedicines10061430 PubMed DOI PMC

Petruk G, Elvén M, Hartman E, Davoudi M, Schmidtchen A, Puthia M, et al. . The role of full-length apoE in clearance of gram-negative bacteria and their endotoxins. J Lipid Res. (2021) 62:100086. doi: 10.1016/j.jlr.2021.100086, PMID: PubMed DOI PMC

Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. (2015) 10:e0121313. doi: 10.1371/journal.pone.0121313, PMID: PubMed DOI PMC

Ji H, Jiang Z, Wei C, Ma Y, Zhao J, Wang F, et al. . Intratumoural microbiota: from theory to clinical application. Cell Commun Signal. (2023) 21:164. doi: 10.1186/s12964-023-01134-z, PMID: PubMed DOI PMC

Subramaniam N, Muthukrishnan A. Oral mucositis and microbial colonization in oral cancer patients undergoing radiotherapy and chemotherapy: a prospective analysis in a tertiary care dental hospital. J Investig Clin Dent. (2019) 10:e12454. doi: 10.1111/jicd.12454, PMID: PubMed DOI

Stringer AM, Logan RM. The role of oral flora in the development of chemotherapy-induced oral mucositis. J Oral Pathol Med. (2015) 44:81–7. doi: 10.1111/jop.12152, PMID: PubMed DOI

Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, et al. . Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother. (2023) 163:114758. doi: 10.1016/j.biopha.2023.114758, PMID: PubMed DOI

Kejík Z, Kaplánek R, Dytrych P, Masařík M, Veselá K, Abramenko N, et al. . Circulating tumour cells (CTCs) in NSCLC: from prognosis to therapy design. Pharmaceutics. (2021) 13:1879. doi: 10.3390/pharmaceutics13111879, PMID: PubMed DOI PMC

Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D, et al. . Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother. (2019) 118:109278. doi: 10.1016/j.biopha.2019.109278, PMID: PubMed DOI

Ganji A, Farahani I, Saeedifar AM, Mosayebi G, Ghazavi A, Majeed M, et al. . Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr Med Chem. (2021) 28:6915–30. doi: 10.2174/0929867328666210525124707, PMID: PubMed DOI

Wessler S, Muenzner P, Meyer TF, Naumann M. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biol Chem. (2005) 386:481–90. doi: 10.1515/BC.2005.057, PMID: PubMed DOI

Jang J, Kim W, Kim K, Chung SI, Shim YJ, Kim SM, et al. . Lipoteichoic acid upregulates NF-κB and proinflammatory cytokines by modulating β-catenin in bronchial epithelial cells. Mol Med Rep. (2015) 12:4720–6. doi: 10.3892/mmr.2015.3965, PMID: PubMed DOI

Kiku Y, Nagasawa Y, Tanabe F, Sugawara K, Watanabe A, Hata E, et al. . The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells. J Vet Med Sci. (2016) 78:1505–10. doi: 10.1292/jvms.15-0706, PMID: PubMed DOI PMC

Xu J, Jia Z, Chen A, Wang C. Curcumin ameliorates Staphylococcus aureus-induced mastitis injury through attenuating TLR2-mediated NF−κB activation. Microb Pathog. (2020) 142:104054. doi: 10.1016/j.micpath.2020.104054, PMID: PubMed DOI

Schaefers MM, Breshears LM, Anderson MJ, Lin YC, Grill AE, Panyam J, et al. . Epithelial proinflammatory response and curcumin-mediated protection from staphylococcal toxic shock syndrome toxin-1. PLoS One. (2012) 7:e32813. doi: 10.1371/journal.pone.0032813, PMID: PubMed DOI PMC

Zhang L, Hou X, Sun L, He T, Wei R, Pang M, et al. . Staphylococcus aureus bacteriophage suppresses LPS-induced inflammation in MAC-T bovine mammary epithelial cells. Front Microbiol. (2018) 9:1614. doi: 10.3389/fmicb.2018.01614, PMID: PubMed DOI PMC

Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, et al. . Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. (2017) 11:2233–43. doi: 10.1038/ismej.2017.83, PMID: PubMed DOI PMC

Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary supplementation with curcumin reduce circulating levels of glycogen synthase kinase-3β and islet amyloid polypeptide in adults with high risk of type 2 diabetes and Alzheimer's disease. Nutrients. (2020) 12:1032. doi: 10.3390/nu12041032, PMID: PubMed DOI PMC

Buss H, Dörrie A, Schmitz ML, Frank R, Livingstone M, Resch K, et al. . Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem. (2004) 279:49571–4. doi: 10.1074/jbc.C400442200, PMID: PubMed DOI

Thacker PC, Karunagaran D. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One. (2015) 10:e0120045. doi: 10.1371/journal.pone.0120045, PMID: PubMed DOI PMC

Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, et al. . Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell. (2003) 12:1413–26. doi: 10.1016/S1097-2765(03)00490-8, PMID: PubMed DOI

Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J Biol Chem. (2014) 289:24691–9. doi: 10.1074/jbc.M114.568162, PMID: PubMed DOI PMC

Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. J Recept Signal Transduct Res. (2020) 40:324–38. doi: 10.1080/10799893.2020.1742741, PMID: PubMed DOI

Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, et al. . Tumor-induced oxidative stress perturbs nuclear factor-κB activity-augmenting tumor necrosis factor-α–mediated T-cell death: protection by curcumin. Cancer Res. (2007) 67:362–70. doi: 10.1158/0008-5472.CAN-06-2583, PMID: PubMed DOI

Basak SK, Bera A, Yoon AJ, Morselli M, Jeong C, Tosevska A, et al. . A randomized, phase 1, placebo-controlled trial of APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor-associated microbes. Cancer. (2020) 126:1668–82. doi: 10.1002/cncr.32644, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...