Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design

. 2021 Nov 05 ; 13 (11) : . [epub] 20211105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834295

Grantová podpora
SVV260521 Charles University
UNCE 204064 Charles University
Progress Q26/LF1 Charles University
Progress Q27/LF1 Charles University
LM2018133 (EATRIS-CZ) Ministry of Education Youth and Sports
RVO-VFN-64165/2012 Ministry of Health
TN01000013 Technology Agency of the Czech Republic
FW02020128 Technology Agency of the Czech Republic
NU21-08-00407 Ministry of Health
CZ.02.1.01/0.0/0.0/16_019/0000785 Operational Programme Research, Development and Education

Odkazy

PubMed 34834295
PubMed Central PMC8619417
DOI 10.3390/pharmaceutics13111879
PII: pharmaceutics13111879
Knihovny.cz E-zdroje

Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial-mesenchymal transition, and migration of cancer cells).

Zobrazit více v PubMed

Torre L.A., Siegel R.L., Jemal A. Lung Cancer Statistics. Adv. Exp. Med. Biol. 2016;893:1–19. doi: 10.1007/978-3-319-24223-1_1. PubMed DOI

Alberg A.J., Brock M.V., Ford J.G., Samet J.M., Spivack S.D. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e1S–e29S. doi: 10.1378/chest.12-2345. PubMed DOI PMC

Zappa C., Mousa S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016;5:288–300. doi: 10.21037/tlcr.2016.06.07. PubMed DOI PMC

Postmus P.E., Kerr K.M., Oudkerk M., Senan S., Waller D.A., Vansteenkiste J., Escriu C., Peters S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv1–iv21. doi: 10.1093/annonc/mdx222. PubMed DOI

Scheff R.J., Schneider B.J. Non-small-cell lung cancer: Treatment of late stage disease: Chemotherapeutics and new frontiers. Semin. Interv. Radiol. 2013;30:191–198. doi: 10.1055/s-0033-1342961. PubMed DOI PMC

Menyailo M.E., Bokova U.A., Ivanyuk E.E., Khozyainova A.A., Denisov E.V. Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Mol. Diagn. Ther. 2021;25:549–562. doi: 10.1007/s40291-021-00543-5. PubMed DOI

Ashworth T.R. A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. Med. J. Aust. 1869;14:2.

Fabisiewicz A., Grzybowska E. CTC clusters in cancer progression and metastasis. Med. Oncol. 2017;34:12. doi: 10.1007/s12032-016-0875-0. PubMed DOI

Sienel W., Seen-Hibler R., Mutschler W., Pantel K., Passlick B. Tumour cells in the tumour draining vein of patients with non-small cell lung cancer: Detection rate and clinical significance. Eur. J. Cardiothorac. Surg. 2003;23:451–456. doi: 10.1016/S1010-7940(02)00865-5. PubMed DOI

Yoon S.O., Kim Y.T., Jung K.C., Jeon Y.K., Kim B.H., Kim C.W. TTF-1 mRNA-positive circulating tumor cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients. Lung Cancer. 2011;71:209–216. doi: 10.1016/j.lungcan.2010.04.017. PubMed DOI

Kirschbaum A., Mirow N. Infiltration of Cardiac Vessels by Lung Cancer: Incidence, Classification, Operative Technique with Heart Lung Bypass, and Results. Zent. Fur Chir. 2017;142:96–103. doi: 10.1055/s-0041-107768. PubMed DOI

Gall T.M., Jacob J., Frampton A.E., Krell J., Kyriakides C., Castellano L., Stebbing J., Jiao L.R. Reduced dissemination of circulating tumor cells with no-touch isolation surgical technique in patients with pancreatic cancer. JAMA Surg. 2014;149:482–485. doi: 10.1001/jamasurg.2013.3643. PubMed DOI

Chen Z., Zhang P., Xu Y., Yan J., Liu Z., Lau W.B., Lau B., Li Y., Zhao X., Wei Y., et al. Surgical stress and cancer progression: The twisted tango. Mol. Cancer. 2019;18:132. doi: 10.1186/s12943-019-1058-3. PubMed DOI PMC

Wei S., Guo C., He J., Tan Q., Mei J., Yang Z., Liu C., Pu Q., Ma L., Yuan Y., et al. Effect of Vein-First vs Artery-First Surgical Technique on Circulating Tumor Cells and Survival in Patients With Non-Small Cell Lung Cancer: A Randomized Clinical Trial and Registry-Based Propensity Score Matching Analysis. JAMA Surg. 2019;154:e190972. doi: 10.1001/jamasurg.2019.0972. PubMed DOI PMC

Nieva J., Wendel M., Luttgen M.S., Marrinucci D., Bazhenova L., Kolatkar A., Santala R., Whittenberger B., Burke J., Torrey M., et al. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: A longitudinal analysis. Phys. Biol. 2012;9:016004. doi: 10.1088/1478-3975/9/1/016004. PubMed DOI PMC

Wang J., Wang K., Xu J., Huang J., Zhang T. Prognostic significance of circulating tumor cells in non-small-cell lung cancer patients: A meta-analysis. PLoS ONE. 2013;8:e78070. doi: 10.1371/annotation/6633ed7f-a10c-4f6d-9d1d-9c1245822eb7. PubMed DOI PMC

Krebs M.G., Sloane R., Priest L., Lancashire L., Hou J.M., Greystoke A., Ward T.H., Ferraldeschi R., Hughes A., Clack G., et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 2011;29:1556–1563. doi: 10.1200/JCO.2010.28.7045. PubMed DOI

Gallo M., De Luca A., Maiello M.R., D’Alessio A., Esposito C., Chicchinelli N., Forgione L., Piccirillo M.C., Rocco G., Morabito A., et al. Clinical utility of circulating tumor cells in patients with non-small-cell lung cancer. Transl. Lung Cancer Res. 2017;6:486–498. doi: 10.21037/tlcr.2017.05.07. PubMed DOI PMC

Gallo M., De Luca A., Frezzetti D., Passaro V., Maiello M.R., Normanno N. The potential of monitoring treatment response in non-small cell lung cancer using circulating tumour cells. Expert Rev. Mol. Diagn. 2019;19:683–694. doi: 10.1080/14737159.2019.1640606. PubMed DOI

Chen X., Zhou F., Li X., Yang G., Zhang L., Ren S., Zhao C., Deng Q., Li W., Gao G., et al. Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer. J. Thorac. Oncol. 2015;10:1163–1171. doi: 10.1097/JTO.0000000000000606. PubMed DOI

Pantel K., Denève E., Nocca D., Coffy A., Vendrell J.P., Maudelonde T., Riethdorf S., Alix-Panabières C. Circulating epithelial cells in patients with benign colon diseases. Clin. Chem. 2012;58:936–940. doi: 10.1373/clinchem.2011.175570. PubMed DOI

Hogan B.V., Peter M.B., Shenoy H., Horgan K., Hughes T.A. Circulating tumour cells in breast cancer: Prognostic indicators, metastatic intermediates, or irrelevant bystanders? (Review) Mol. Med. Rep. 2008;1:775–779. doi: 10.3892/mmr_00000027. PubMed DOI

Ilie M., Hofman V., Long-Mira E., Selva E., Vignaud J.-M., Padovani B., Mouroux J., Marquette C.-H., Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9:e111597. doi: 10.1371/journal.pone.0111597. PubMed DOI PMC

Schuster E., Taftaf R., Reduzzi C., Albert M.K., Romero-Calvo I., Liu H. Better together: Circulating tumor cell clustering in metastatic cancer. Trends Cancer. 2021;7:1020–1032. doi: 10.1016/j.trecan.2021.07.001. PubMed DOI PMC

Murlidhar V., Reddy R.M., Fouladdel S., Zhao L., Ishikawa M.K., Grabauskiene S., Zhang Z., Lin J., Chang A.C., Carrott P., et al. Poor Prognosis Indicated by Venous Circulating Tumor Cell Clusters in Early-Stage Lung Cancers. Cancer Res. 2017;77:5194–5206. doi: 10.1158/0008-5472.CAN-16-2072. PubMed DOI PMC

Frick M.A., Feigenberg S.J., Jean-Baptiste S.R., Aguarin L.A., Mendes A., Chinniah C., Swisher-McClure S., Berman A., Levin W., Cengel K.A., et al. Circulating Tumor Cells Are Associated with Recurrent Disease in Patients with Early-Stage Non–Small Cell Lung Cancer Treated with Stereotactic Body Radiotherapy. Clin. Cancer Res. 2020;26:2372–2380. doi: 10.1158/1078-0432.CCR-19-2158. PubMed DOI PMC

Nemunaitis J., Nemunaitis M., Senzer N., Snitz P., Bedell C., Kumar P., Pappen B., Maples P.B., Shawler D., Fakhrai H. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. 2009;16:620–624. doi: 10.1038/cgt.2009.15. PubMed DOI

Zhang Z., Xiao Y., Zhao J., Chen M., Xu Y., Zhong W., Xing J., Wang M. Relationship between circulating tumour cell count and prognosis following chemotherapy in patients with advanced non-small-cell lung cancer. Respirology. 2016;21:519–525. doi: 10.1111/resp.12696. PubMed DOI

Wendel M., Bazhenova L., Boshuizen R., Kolatkar A., Honnatti M., Cho E.H., Marrinucci D., Sandhu A., Perricone A., Thistlethwaite P., et al. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: A glimpse into lung cancer biology. Phys. Biol. 2012;9:016005. doi: 10.1088/1478-3967/9/1/016005. PubMed DOI PMC

Hirose T., Murata Y., Oki Y., Sugiyama T., Kusumoto S., Ishida H., Shirai T., Nakashima M., Yamaoka T., Okuda K., et al. Relationship of circulating tumor cells to the effectiveness of cytotoxic chemotherapy in patients with metastatic non-small-cell lung cancer. Oncol. Res. 2012;20:131–137. doi: 10.3727/096504012X13473664562583. PubMed DOI

Juan O., Vidal J., Gisbert R., Munoz J., Macia S., Gomez-Codina J. Prognostic significance of circulating tumor cells in advanced non-small cell lung cancer patients treated with docetaxel and gemcitabine. Clin. Transl. Oncol. 2014;16:637–643. doi: 10.1007/s12094-013-1128-8. PubMed DOI

Cabel L., Proudhon C., Gortais H., Loirat D., Coussy F., Pierga J.Y., Bidard F.C. Circulating tumor cells: Clinical validity and utility. Int. J. Clin. Oncol. 2017;22:421–430. doi: 10.1007/s10147-017-1105-2. PubMed DOI

Smerage J.B., Barlow W.E., Hortobagyi G.N., Winer E.P., Leyland-Jones B., Srkalovic G., Tejwani S., Schott A.F., O’Rourke M.A., Lew D.L., et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J. Clin. Oncol. 2014;32:3483–3489. doi: 10.1200/JCO.2014.56.2561. PubMed DOI PMC

Shah P.P., Dupre T.V., Siskind L.J., Beverly L.J. Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 2017;8:22625–22639. doi: 10.18632/oncotarget.15150. PubMed DOI PMC

Yin J., Zhao J., Hu W., Yang G., Yu H., Wang R., Wang L., Zhang G., Fu W., Dai L., et al. Disturbance of the let-7/LIN28 double-negative feedback loop is associated with radio- and chemo-resistance in non-small cell lung cancer. PLoS ONE. 2017;12:e0172787. doi: 10.1371/journal.pone.0172787. PubMed DOI PMC

Lobb R.J., van Amerongen R., Wiegmans A., Ham S., Larsen J.E., Möller A. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int. J. Cancer. 2017;141:614–620. doi: 10.1002/ijc.30752. PubMed DOI

Wang Z.L., Fan Z.Q., Jiang H.D., Qu J.M. Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal transition in human lung cancer cells via activating MEK-ERK signaling. Carcinogenesis. 2013;34:638–646. doi: 10.1093/carcin/bgs367. PubMed DOI

Gadgeel S.M., Ruckdeschel J.C., Heath E.I., Heilbrun L.K., Venkatramanamoorthy R., Wozniak A. Phase II study of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), and celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, in patients with platinum refractory non-small cell lung cancer (NSCLC) J. Thorac. Oncol. 2007;2:299–305. doi: 10.1097/01.JTO.0000263712.61697.69. PubMed DOI

Agarwala A., Fisher W., Bruetman D., McClean J., Taber D., Titzer M., Juliar B., Yu M., Breen T., Einhorn L.H., et al. Gefitinib plus celecoxib in chemotherapy-naïve patients with stage IIIB/IV non-small cell lung cancer: A phase II study from the Hoosier Oncology Group. J. Thorac. Oncol. 2008;3:374–379. doi: 10.1097/JTO.0b013e3181693869. PubMed DOI

Koch A., Bergman B., Holmberg E., Sederholm C., Ek L., Kosieradzki J., Lamberg K., Thaning L., Ydreborg S.O., Sörenson S. Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: A double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur. J. Cancer. 2011;47:1546–1555. doi: 10.1016/j.ejca.2011.03.035. PubMed DOI

Abdel-Rahman O. Targeting the MEK signaling pathway in non-small cell lung cancer (NSCLC) patients with RAS aberrations. Therap. Adv. Respir Dis. 2016;10:265–274. doi: 10.1177/1753465816632111. PubMed DOI PMC

Guo Y.J., Pan W.W., Liu S.B., Shen Z.F., Xu Y., Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Therap. Med. 2020;19:1997–2007. doi: 10.3892/etm.2020.8454. PubMed DOI PMC

Yu D., Zhao W., Vallega K.A., Sun S.Y. Managing Acquired Resistance to Third-Generation EGFR Tyrosine Kinase Inhibitors Through Co-Targeting MEK/ERK Signaling. Lung Cancer. 2021;12:1–10. doi: 10.2147/lctt.S293902. PubMed DOI PMC

Deng Z., Rong Y., Teng Y., Zhuang X., Samykutty A., Mu J., Zhang L., Cao P., Yan J., Miller D., et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36:639–651. doi: 10.1038/onc.2016.229. PubMed DOI PMC

Bhattacharya U., Gutter-Kapon L., Kan T., Boyango I., Barash U., Yang S.M., Liu J., Gross-Cohen M., Sanderson R.D., Shaked Y., et al. Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth. Cancer Res. 2020;80:57–68. doi: 10.1158/0008-5472.CAN-19-1676. PubMed DOI PMC

Atjanasuppat K., Lirdprapamongkol K., Jantaree P., Svasti J. Non-adherent culture induces paclitaxel resistance in H460 lung cancer cells via ERK-mediated up-regulation of βIVa-tubulin. Biochem. Biophys. Res. Commun. 2015;466:493–498. doi: 10.1016/j.bbrc.2015.09.057. PubMed DOI

Lee J.G., Shin J.H., Shim H.S., Lee C.Y., Kim D.J., Kim Y.S., Chung K.Y. Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions. Respir. Res. 2015;16:138. doi: 10.1186/s12931-015-0285-4. PubMed DOI PMC

Donato C., Kunz L., Castro-Giner F., Paasinen-Sohns A., Strittmatter K., Szczerba B.M., Scherrer R., Di Maggio N., Heusermann W., Biehlmaier O., et al. Hypoxia Triggers the Intravasation of Clustered Circulating Tumor Cells. Cell Rep. 2020;32:108105. doi: 10.1016/j.celrep.2020.108105. PubMed DOI PMC

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer Towards Metastasis? Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI

Chung D.Y., Ha J.S., Cho K.S. Novel Treatment Strategy Using Second-Generation Androgen Receptor Inhibitors for Non-Metastatic Castration-Resistant Prostate Cancer. Biomedicines. 2021;9:661. doi: 10.3390/biomedicines9060661. PubMed DOI PMC

Sheng J., Yu X., Li H., Fan Y. Progress of Immunotherapy Mechanisms and Current Evidence of PD-1/PD-L1 Checkpoint Inhibitors for Non-small Cell Lung Cancer with Brain Metastasis. Zhongguo Fei Ai Za Zhi. 2020;23:976–982. doi: 10.3779/j.issn.1009-3419.2020.102.31. PubMed DOI PMC

He J., Zhou Z., Sun X., Yang Z., Zheng P., Xu S., Zhu W. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur. J. Med. Chem. 2021;210:112995. doi: 10.1016/j.ejmech.2020.112995. PubMed DOI

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Pan P., Huang Y.W., Oshima K., Yearsley M., Zhang J., Arnold M., Yu J., Wang L.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit. Rev. Food Sci. Nutr. 2019;59:992–1007. doi: 10.1080/10408398.2018.1537237. PubMed DOI PMC

Keller L., Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer. 2019;19:553–567. doi: 10.1038/s41568-019-0180-2. PubMed DOI

Yu M., Stott S., Toner M., Maheswaran S., Haber D.A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011;192:373–382. doi: 10.1083/jcb.201010021. PubMed DOI PMC

Agnoletto C., Corrà F., Minotti L., Baldassari F., Crudele F., Cook W.J.J., Di Leva G., d’Adamo A.P., Gasparini P., Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers. 2019;11:483. doi: 10.3390/cancers11040483. PubMed DOI PMC

Brungs D., Minaei E., Piper A.-K., Perry J., Splitt A., Carolan M., Ryan S., Wu X.J., Corde S., Tehei M., et al. Establishment of novel long-term cultures from EpCAM positive and negative circulating tumour cells from patients with metastatic gastroesophageal cancer. Sci. Rep. 2020;10:539. doi: 10.1038/s41598-019-57164-6. PubMed DOI PMC

Cortés-Hernández L.E., Eslami S.Z., Alix-Panabières C. Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Mol. Asp. Med. 2020;72:100816. doi: 10.1016/j.mam.2019.07.008. PubMed DOI

Heitzer E., Auer M., Gasch C., Pichler M., Ulz P., Hoffmann E.M., Lax S., Waldispuehl-Geigl J., Mauermann O., Lackner C., et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–2975. doi: 10.1158/0008-5472.CAN-12-4140. PubMed DOI

Sharma S., Zhuang R., Long M., Pavlovic M., Kang Y., Ilyas A., Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 2018;36:1063–1078. doi: 10.1016/j.biotechadv.2018.03.007. PubMed DOI PMC

Brody R., Zhang Y., Ballas M., Siddiqui M.K., Gupta P., Barker C., Midha A., Walker J. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer. 2017;112:200–215. doi: 10.1016/j.lungcan.2017.08.005. PubMed DOI

Satelli A., Batth I.S., Brownlee Z., Rojas C., Meng Q.H., Kopetz S., Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci. Rep. 2016;6:28910. doi: 10.1038/srep28910. PubMed DOI PMC

Liu M., Wang R., Sun X., Liu Y., Wang Z., Yan J., Kong X., Liang S., Liu Q., Zhao T., et al. Prognostic significance of PD-L1 expression on cell-surface vimentin-positive circulating tumor cells in gastric cancer patients. Mol. Oncol. 2020;14:865–881. doi: 10.1002/1878-0261.12643. PubMed DOI PMC

He Y., Shi J., Schmidt B., Liu Q., Shi G., Xu X., Liu C., Gao Z., Guo T., Shan B. Circulating Tumor Cells as a Biomarker to Assist Molecular Diagnosis for Early Stage Non-Small Cell Lung Cancer. Cancer Manag. Res. 2020;12:841–854. doi: 10.2147/CMAR.S240773. PubMed DOI PMC

Dong J., Zhu D., Tang X., Lu D., Qiu X., Li B., Lin D., Li L., Liu J., Zhou Q. Circulating tumor cells in pulmonary vein and peripheral arterial provide a metric for PD-L1 diagnosis and prognosis of patients with non-small cell lung cancer. PLoS ONE. 2019;14:e0220306. doi: 10.1371/journal.pone.0220306. PubMed DOI PMC

Janning M., Kobus F., Babayan A., Wikman H., Velthaus J.-L., Bergmann S., Schatz S., Falk M., Berger L.-A., Böttcher L.-M., et al. Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers. 2019;11:835. doi: 10.3390/cancers11060835. PubMed DOI PMC

Hanssen A., Wagner J., Gorges T.M., Taenzer A., Uzunoglu F.G., Driemel C., Stoecklein N.H., Knoefel W.T., Angenendt S., Hauch S., et al. Characterization of different CTC subpopulations in non-small cell lung cancer. Sci. Rep. 2016;6:28010. doi: 10.1038/srep28010. PubMed DOI PMC

Lindsay C.R., Faugeroux V., Michiels S., Pailler E., Facchinetti F., Ou D., Bluthgen M.V., Pannet C., Ngo-Camus M., Bescher G., et al. A prospective examination of circulating tumor cell profiles in non-small-cell lung cancer molecular subgroups. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017;28:1523–1531. doi: 10.1093/annonc/mdx156. PubMed DOI

Jiang R., Lu Y.T., Ho H., Li B., Chen J.F., Lin M., Li F., Wu K., Wu H., Lichterman J., et al. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget. 2015;6:44781–44793. doi: 10.18632/oncotarget.6330. PubMed DOI PMC

Lohr J.G., Kim S., Gould J., Knoechel B., Drier Y., Cotton M.J., Gray D., Birrer N., Wong B., Ha G., et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med. 2016;8:363ra147. doi: 10.1126/scitranslmed.aac7037. PubMed DOI PMC

Yanagita M., Redig A.J., Paweletz C.P., Dahlberg S.E., O’Connell A., Feeney N., Taibi M., Boucher D., Oxnard G.R., Johnson B.E., et al. A Prospective Evaluation of Circulating Tumor Cells and Cell-Free DNA in EGFR-Mutant Non-Small Cell Lung Cancer Patients Treated with Erlotinib on a Phase II Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:6010–6020. doi: 10.1158/1078-0432.CCR-16-0909. PubMed DOI

Davis A.A., Zhang Q., Gerratana L., Shah A.N., Zhan Y., Qiang W., Finkelman B.S., Flaum L., Behdad A., Gradishar W.J., et al. Association of a novel circulating tumor DNA next-generating sequencing platform with circulating tumor cells (CTCs) and CTC clusters in metastatic breast cancer. Breast Cancer Res. 2019;21:137. doi: 10.1186/s13058-019-1229-6. PubMed DOI PMC

Chimonidou M., Kallergi G., Georgoulias V., Welch D.R., Lianidou E.S. Breast Cancer Metastasis Suppressor-1 Promoter Methylation in Primary Breast Tumors and Corresponding Circulating Tumor Cells. Mol. Cancer Res. 2013;11:1248. doi: 10.1158/1541-7786.MCR-13-0096. PubMed DOI PMC

Yang J., Shen Y., Liu B., Tong Y. Promoter methylation of BRMS1 correlates with smoking history and poor survival in non-small cell lung cancer patients. Lung Cancer. 2011;74:305–309. doi: 10.1016/j.lungcan.2011.03.002. PubMed DOI

Schneck H., Blassl C., Meier-Stiegen F., Neves R.P., Janni W., Fehm T., Neubauer H. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol. Oncol. 2013;7:976–986. doi: 10.1016/j.molonc.2013.07.007. PubMed DOI PMC

Aceto N., Bardia A., Miyamoto D.T., Donaldson M.C., Wittner B.S., Spencer J.A., Yu M., Pely A., Engstrom A., Zhu H., et al. Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis. Cell. 2014;158:1110–1122. doi: 10.1016/j.cell.2014.07.013. PubMed DOI PMC

Sher Y.P., Shih J.Y., Yang P.C., Roffler S.R., Chu Y.W., Wu C.W., Yu C.L., Peck K. Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005;11:173–179. PubMed

Baccelli I., Schneeweiss A., Riethdorf S., Stenzinger A., Schillert A., Vogel V., Klein C., Saini M., Bäuerle T., Wallwiener M., et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 2013;31:539–544. doi: 10.1038/nbt.2576. PubMed DOI

Jiang P., Xu C., Zhang P., Ren J., Mageed F., Wu X., Chen L., Zeb F., Feng Q., Li S. Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK. Int. J. Mol. Med. 2020;46:2216–2224. doi: 10.3892/ijmm.2020.4758. PubMed DOI PMC

Kallergi G., Vetsika E.K., Aggouraki D., Lagoudaki E., Koutsopoulos A., Koinis F., Katsarlinos P., Trypaki M., Messaritakis I., Stournaras C., et al. Evaluation of PD-L1/PD-1 on circulating tumor cells in patients with advanced non-small cell lung cancer. Ther. Adv. Med. Oncol. 2018;10:1758834017750121. doi: 10.1177/1758834017750121. PubMed DOI PMC

Lee S.O., Yang X., Duan S., Tsai Y., Strojny L.R., Keng P., Chen Y. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget. 2016;7:6626–6638. doi: 10.18632/oncotarget.6570. PubMed DOI PMC

Nicolazzo C., Raimondi C., Mancini M., Caponnetto S., Gradilone A., Gandini O., Mastromartino M., Del Bene G., Prete A., Longo F., et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci. Rep. 2016;6:31726. doi: 10.1038/srep31726. PubMed DOI PMC

Park J.Y., Han S., Ka H.I., Joo H.J., Soh S.J., Yoo K.H., Yang Y. Silent mating-type information regulation 2 homolog 1 overexpression is an important strategy for the survival of adapted suspension tumor cells. Cancer Sci. 2019;110:2773–2782. doi: 10.1111/cas.14147. PubMed DOI PMC

Kloten V., Lampignano R., Krahn T., Schlange T. Circulating Tumor Cell PD-L1 Expression as Biomarker for Therapeutic Efficacy of Immune Checkpoint Inhibition in NSCLC. Cells. 2019;8:809. doi: 10.3390/cells8080809. PubMed DOI PMC

Tsoukalas N., Kiakou M., Tsapakidis K., Tolia M., Aravantinou-Fatorou E., Baxevanos P., Kyrgias G., Theocharis S. PD-1 and PD-L1 as immunotherapy targets and biomarkers in non-small cell lung cancer. J. BUON. 2019;24:883–888. PubMed

Wang X., Sun Q., Liu Q., Wang C., Yao R., Wang Y. CTC immune escape mediated by PD-L1. Med. Hypotheses. 2016;93:138–139. doi: 10.1016/j.mehy.2016.05.022. PubMed DOI

Tamminga M., de Wit S., Hiltermann T.J.N., Timens W., Schuuring E., Terstappen L., Groen H.J.M. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J. Immunother. Cancer. 2019;7:173. doi: 10.1186/s40425-019-0649-2. PubMed DOI PMC

Ilié M., Szafer-Glusman E., Hofman V., Chamorey E., Lalvée S., Selva E., Leroy S., Marquette C.H., Kowanetz M., Hedge P., et al. Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small-cell lung cancer. Ann. Oncol. 2018;29:193–199. doi: 10.1093/annonc/mdx636. PubMed DOI

Boffa D.J., Graf R.P., Salazar M.C., Hoag J., Lu D., Krupa R., Louw J., Dugan L., Wang Y., Landers M., et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2017;26:1139–1145. doi: 10.1158/1055-9965.EPI-17-0120. PubMed DOI PMC

Dhar M., Wong J., Che J., Matsumoto M., Grogan T., Elashoff D., Garon E.B., Goldman J.W., Sollier Christen E., Di Carlo D., et al. Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer. Sci. Rep. 2018;8:2592. doi: 10.1038/s41598-018-19245-w. PubMed DOI PMC

Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Mourlanette J., Gouin S., Dormoy I., Favre G., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001. PubMed DOI

Wang Y., Kim T.H., Fouladdel S., Zhang Z., Soni P., Qin A., Zhao L., Azizi E., Lawrence T.S., Ramnath N., et al. PD-L1 Expression in Circulating Tumor Cells Increases during Radio(chemo)therapy and Indicates Poor Prognosis in Non-small Cell Lung Cancer. Sci. Rep. 2019;9:566. doi: 10.1038/s41598-018-36096-7. PubMed DOI PMC

Kulasinghe A., Kapeleris J., Kimberley R., Mattarollo S.R., Thompson E.W., Thiery J.-P., Kenny L., O’Byrne K., Punyadeera C. The prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancer. Cancer Med. 2018;7:5910–5919. doi: 10.1002/cam4.1832. PubMed DOI PMC

Manjunath Y., Upparahalli S.V., Avella D.M., Deroche C.B., Kimchi E.T., Staveley-O’Carroll K.F., Smith C.J., Li G., Kaifi J.T. PD-L1 Expression with Epithelial Mesenchymal Transition of Circulating Tumor Cells Is Associated with Poor Survival in Curatively Resected Non-Small Cell Lung Cancer. Cancers. 2019;11:806. doi: 10.3390/cancers11060806. PubMed DOI PMC

Schehr J.L., Schultz Z.D., Warrick J.W., Guckenberger D.J., Pezzi H.M., Sperger J.M., Heninger E., Saeed A., Leal T., Mattox K., et al. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1. PLoS ONE. 2016;11:e0159397. doi: 10.1371/journal.pone.0159397. PubMed DOI PMC

Zhang L., Zhang X., Liu Y., Zhang T., Wang Z., Gu M., Li Y., Wang D.D., Li W., Lin P.P. PD-L1(+) aneuploid circulating tumor endothelial cells (CTECs) exhibit resistance to the checkpoint blockade immunotherapy in advanced NSCLC patients. Cancer Lett. 2020;469:355–366. doi: 10.1016/j.canlet.2019.10.041. PubMed DOI

da Cunha Santos G., Shepherd F.A., Tsao M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol. 2011;6:49–69. doi: 10.1146/annurev-pathol-011110-130206. PubMed DOI

Marchetti A., Del Grammastro M., Felicioni L., Malatesta S., Filice G., Centi I., De Pas T., Santoro A., Chella A., Brandes A.A., et al. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: Toward a real-time liquid biopsy for treatment. PLoS ONE. 2014;9:e103883. doi: 10.1371/journal.pone.0103883. PubMed DOI PMC

Tan C.S., Kumarakulasinghe N.B., Huang Y.Q., Ang Y.L.E., Choo J.R., Goh B.C., Soo R.A. Third generation EGFR TKIs: Current data and future directions. Mol. Cancer. 2018;17:29. doi: 10.1186/s12943-018-0778-0. PubMed DOI PMC

Wang S., Song Y., Liu D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett. 2017;385:51–54. doi: 10.1016/j.canlet.2016.11.008. PubMed DOI

Sundaresan T.K., Sequist L.V., Heymach J.V., Riely G.J., Janne P.A., Koch W.H., Sullivan J.P., Fox D.B., Maher R., Muzikansky A., et al. Detection of T790M, the Acquired Resistance EGFR Mutation, by Tumor Biopsy versus Noninvasive Blood-Based Analyses. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:1103–1110. doi: 10.1158/1078-0432.CCR-15-1031. PubMed DOI PMC

Yang B., Zheng D., Zeng U., Qin A., Gao J., Yu G. Circulating tumor cells predict prognosis following secondline AZD 9291 treatment in EGFR-T790M mutant non-small cell lung cancer patients. J. BUON. 2018;23:1077–1081. PubMed

Punnoose E.A., Atwal S., Liu W., Raja R., Fine B.M., Hughes B.G., Hicks R.J., Hampton G.M., Amler L.C., Pirzkall A., et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: Association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012;18:2391–2401. doi: 10.1158/1078-0432.CCR-11-3148. PubMed DOI

Lindsay C.R., Garassino M.C., Nadal E., Öhrling K., Scheffler M., Mazières J. On target: Rational approaches to KRAS inhibition for treatment of non-small cell lung carcinoma. Lung Cancer. 2021;160:152–165. doi: 10.1016/j.lungcan.2021.07.005. PubMed DOI

Aggarwal S., Whipple S., Hsu H., Tu H., Carrigan G., Wang X., Ngarmchamnanrith G., Chia V. 1339P Clinicopathological characteristics and treatment patterns observed in real-world care in patients with advanced non-small cell lung cancer (NSCLC) and KRAS G12C mutations in the Flatiron Health (FH)-Foundation Medicine (FMI) Clinico-Genomic Database (CGDB) Ann. Oncol. 2020;31:S860. doi: 10.1016/j.annonc.2020.08.1653. DOI

Renaud S., Seitlinger J., Falcoz P.-E., Schaeffer M., Voegeli A.-C., Legrain M., Beau-Faller M., Massard G. Specific KRAS amino acid substitutions and EGFR mutations predict site-specific recurrence and metastasis following non-small-cell lung cancer surgery. Br. J. Cancer. 2016;115:346–353. doi: 10.1038/bjc.2016.182. PubMed DOI PMC

Ferrer I., Zugazagoitia J., Herbertz S., John W., Paz-Ares L., Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 2018;124:53–64. doi: 10.1016/j.lungcan.2018.07.013. PubMed DOI

Friedlaender A., Drilon A., Weiss G.J., Banna G.L., Addeo A. KRAS as a druggable target in NSCLC: Rising like a phoenix after decades of development failures. Cancer Treat. Rev. 2020;85:101978. doi: 10.1016/j.ctrv.2020.101978. PubMed DOI PMC

Breitenbuecher F., Hoffarth S., Worm K., Cortes-Incio D., Gauler T.C., Kohler J., Herold T., Schmid K.W., Freitag L., Kasper S., et al. Development of a highly sensitive and specific method for detection of circulating tumor cells harboring somatic mutations in non-small-cell lung cancer patients. PLoS ONE. 2014;9:e85350. doi: 10.1371/journal.pone.0085350. PubMed DOI PMC

Cargnin S., Canonico P.L., Genazzani A.A., Terrazzino S. Quantitative Analysis of Circulating Cell-Free DNA for Correlation with Lung Cancer Survival: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2017;12:43–53. doi: 10.1016/j.jtho.2016.08.002. PubMed DOI

Meddeb R., Dache Z.A.A., Thezenas S., Otandault A., Tanos R., Pastor B., Sanchez C., Azzi J., Tousch G., Azan S., et al. Quantifying circulating cell-free DNA in humans. Sci. Rep. 2019;9:5220. doi: 10.1038/s41598-019-41593-4. PubMed DOI PMC

Indini A., Rijavec E., Grossi F. Circulating Biomarkers of Response and Toxicity of Immunotherapy in Advanced Non-Small Cell Lung Cancer (NSCLC): A Comprehensive Review. Cancers. 2021;13:1794. doi: 10.3390/cancers13081794. PubMed DOI PMC

Chang Y., Tolani B., Nie X., Zhi X., Hu M., He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Clin. Risk Manag. 2017;13:1363–1374. doi: 10.2147/TCRM.S141991. PubMed DOI PMC

Isobe K., Yoshizawa T., Sekiya M., Miyoshi S., Nakamura Y., Urabe N., Isshiki T., Sakamoto S., Takai Y., Tomida T., et al. Quantification of BIM mRNA in circulating tumor cells of osimertinib-treated patients with EGFR mutation-positive lung cancer. Respir. Investig. 2021;59:535–544. doi: 10.1016/j.resinv.2021.03.010. PubMed DOI

Isobe K., Kakimoto A., Mikami T., Kaburaki K., Kobayashi H., Yoshizawa T., Makino T., Otsuka H., Sano G., Sugino K., et al. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation. Cancer Genom. Proteom. 2016;13:475–482. doi: 10.21873/cgp.20010. PubMed DOI PMC

Yang B., Qin A., Zhang K., Ren H., Liu S., Liu X., Pan X., Yu G. Circulating Tumor Cells Predict Prognosis Following Tyrosine Kinase Inhibitor Treatment in EGFR-Mutant Non-Small Cell Lung Cancer Patients. Oncol. Res. 2017;25:1601–1606. doi: 10.3727/096504017X14928634401178. PubMed DOI PMC

Panahi Y., Saadat A., Beiraghdar F., Sahebkar A. Adjuvant Therapy with Bioavailability-Boosted Curcuminoids Suppresses Systemic Inflammation and Improves Quality of Life in Patients with Solid Tumors: A Randomized Double-Blind Placebo-Controlled Trial. Phytother. Res. 2014;28:1461–1467. doi: 10.1002/ptr.5149. PubMed DOI

Shafiee M., Mohamadzade E., ShahidSales S., Khakpouri S., Maftouh M., Parizadeh S.A., Hasanian S.M., Avan A. Current Status and Perspectives Regarding the Therapeutic Potential of Targeting EGFR Pathway by Curcumin in Lung Cancer. Curr. Pharm. Des. 2017;23:2002–2008. doi: 10.2174/1381612823666170123143648. PubMed DOI

Ryskalin L., Biagioni F., Busceti C.L., Lazzeri G., Frati A., Fornai F. The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects. Molecules. 2020;25:4839. doi: 10.3390/molecules25204839. PubMed DOI PMC

Grammatikopoulou M.G., Gkiouras K., Papageorgiou S., Myrogiannis I., Mykoniatis I., Papamitsou T., Bogdanos D.P., Goulis D.G. Dietary Factors and Supplements Influencing Prostate Specific-Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients. 2020;12:2985. doi: 10.3390/nu12102985. PubMed DOI PMC

Yan Y.B., Tian Q., Zhang J.F., Xiang Y. Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer. Oncol. Lett. 2020;20:141. doi: 10.3892/ol.2020.12001. PubMed DOI PMC

Ávila-Gálvez M., Giménez-Bastida J.A., Espín J.C., González-Sarrías A. Dietary Phenolics against Breast Cancer. A Critical Evidence-Based Review and Future Perspectives. Int. J. Mol. Sci. 2020;21:5718. doi: 10.3390/ijms21165718. PubMed DOI PMC

Jakubek M., Kejík Z., Kaplánek R., Hromádka R., Šandriková V., Sýkora D., Antonyová V., Urban M., Dytrych P., Mikula I., et al. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed. Pharmacother. 2019;118:109278. doi: 10.1016/j.biopha.2019.109278. PubMed DOI

Lai C.S., Ho C.T., Pan M.H. The Cancer Chemopreventive and Therapeutic Potential of Tetrahydrocurcumin. Biomolecules. 2020;10:831. doi: 10.3390/biom10060831. PubMed DOI PMC

Piwowarczyk L., Stawny M., Mlynarczyk D.T., Muszalska-Kolos I., Goslinski T., Jelińska A. Role of Curcumin and (-)-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers. 2020;12:1801. doi: 10.3390/cancers12071801. PubMed DOI PMC

Wan Mohd Tajuddin W.N.B., Lajis N.H., Abas F., Othman I., Naidu R. Mechanistic Understanding of Curcumin’s Therapeutic Effects in Lung Cancer. Nutrients. 2019;11:2989. doi: 10.3390/nu11122989. PubMed DOI PMC

Sun A.S., Yeh H.C., Wang L.H., Huang Y.P., Maeda H., Pivazyan A., Hsu C., Lewis E.R., Bruckner H.W., Fasy T.M. Pilot study of a specific dietary supplement in tumor-bearing mice and in stage IIIB and IV non-small cell lung cancer patients. Nutr. Cancer. 2001;39:85–95. doi: 10.1207/S15327914nc391_12. PubMed DOI

Zhao H., Zhu W., Xie P., Li H., Zhang X., Sun X., Yu J., Xing L. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2014;110:132–136. doi: 10.1016/j.radonc.2013.10.014. PubMed DOI

Zhao H., Jia L., Chen G., Li X., Meng X., Zhao X., Xing L., Zhu W. A prospective, three-arm, randomized trial of EGCG for preventing radiation-induced esophagitis in lung cancer patients receiving radiotherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019;137:186–191. doi: 10.1016/j.radonc.2019.02.022. PubMed DOI

Kuo W.-T., Tsai Y.-C., Wu H.-C., Ho Y.-J., Chen Y.-S., Yao C.-H., Yao C.-H. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol. Rep. 2015;34:2351–2356. doi: 10.3892/or.2015.4204. PubMed DOI

Farhood B., Mortezaee K., Goradel N.H., Khanlarkhani N., Salehi E., Nashtaei M.S., Najafi M., Sahebkar A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol. 2019;234:5728–5740. doi: 10.1002/jcp.27442. PubMed DOI

Momtazi-Borojeni A.A., Mosafer J., Nikfar B., Ekhlasi-Hundrieser M., Chaichian S., Mehdizadehkashi A., Vaezi A. Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance. Rev. Physiol. Biochem. Pharmacol. 2019;176:107–129. doi: 10.1007/112_2018_11. PubMed DOI

Ortiz-Otero N., Clinch A.B., Hope J., Wang W., Reinhart-King C.A., King M.R. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget. 2020;11:1037–1050. doi: 10.18632/oncotarget.27510. PubMed DOI PMC

You J., Cheng J., Yu B., Duan C., Peng J. Baicalin, a Chinese Herbal Medicine, Inhibits the Proliferation and Migration of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells, A549 and H1299, by Activating the SIRT1/AMPK Signaling Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018;24:2126–2133. doi: 10.12659/MSM.909627. PubMed DOI PMC

Wang H.W., Lin C.P., Chiu J.H., Chow K.C., Kuo K.T., Lin C.S., Wang L.S. Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int. J. Cancer. 2007;120:2019–2027. doi: 10.1002/ijc.22402. PubMed DOI

Wood S.L., Pernemalm M., Crosbie P.A., Whetton A.D. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat. Rev. 2014;40:558–566. doi: 10.1016/j.ctrv.2013.10.001. PubMed DOI

Park C.R., Lee J.S., Son C.G., Lee N.H. A survey of herbal medicines as tumor microenvironment-modulating agents. Phytother. Res. PTR. 2020 doi: 10.1002/ptr.6784. PubMed DOI

Wrenn E., Huang Y., Cheung K. Collective metastasis: Coordinating the multicellular voyage. Clin. Exp. Metastasis. 2021;38:373–399. doi: 10.1007/s10585-021-10111-0. PubMed DOI PMC

Yao X., Huang J., Zhong H., Shen N., Faggioni R., Fung M., Yao Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 2014;141:125–139. doi: 10.1016/j.pharmthera.2013.09.004. PubMed DOI

Tamura T., Kato Y., Ohashi K., Ninomiya K., Makimoto G., Gotoda H., Kubo T., Ichihara E., Tanaka T., Ichimura K., et al. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations. Biochem. Biophys. Res. Commun. 2018;495:360–367. doi: 10.1016/j.bbrc.2017.10.175. PubMed DOI

Kim S.M., Kwon O.J., Hong Y.K., Kim J.H., Solca F., Ha S.J., Soo R.A., Christensen J.G., Lee J.H., Cho B.C. Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol. Cancer Ther. 2012;11:2254–2264. doi: 10.1158/1535-7163.MCT-12-0311. PubMed DOI

Hamilton G., Rath B. Smoking, inflammation and small cell lung cancer: Recent developments. Wiener Medizinische Wochenschrift (1946) 2015;165:379–386. doi: 10.1007/s10354-015-0381-6. PubMed DOI

Sedighzadeh S.S., Khoshbin A.P., Razi S., Keshavarz-Fathi M., Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl. Lung Cancer Res. 2021;10:1889–1916. doi: 10.21037/tlcr-20-1241. PubMed DOI PMC

Becker M., Müller C.B., De Bastiani M.A., Klamt F. The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in non-small cell lung cancer. Histol. Histopathol. 2014;29:21–31. doi: 10.14670/hh-29.21. PubMed DOI

Almatroodi S.A., McDonald C.F., Darby I.A., Pouniotis D.S. Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. Cancer Microenviron. Off. J. Int. Cancer Microenviron. Soc. 2016;9:1–11. doi: 10.1007/s12307-015-0174-x. PubMed DOI PMC

Mukherjee S., Baidoo J.N.E., Sampat S., Mancuso A., David L., Cohen L.S., Zhou S., Banerjee P. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells. Molecules. 2018;23:201. doi: 10.3390/molecules23010201. PubMed DOI PMC

Mukherjee S., Fried A., Hussaini R., White R., Baidoo J., Yalamanchi S., Banerjee P. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J. Exp. Clin. Cancer Res. 2018;37:168. doi: 10.1186/s13046-018-0792-5. PubMed DOI PMC

Mukherjee S., Hussaini R., White R., Atwi D., Fried A., Sampat S., Piao L., Pan Q., Banerjee P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol. Immunother. 2018;67:761–774. doi: 10.1007/s00262-018-2130-3. PubMed DOI PMC

Cuomo J., Appendino G., Dern A.S., Schneider E., McKinnon T.P., Brown M.J., Togni S., Dixon B.M. Comparative Absorption of a Standardized Curcuminoid Mixture and Its Lecithin Formulation. J. Nat. Prod. 2011;74:664–669. doi: 10.1021/np1007262. PubMed DOI

Liang J., Liu X., Xie Q., Chen G., Li X., Jia Y., Yin B., Qu X., Li Y. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma. Chin. J. Cancer Res. 2016;28:452–460. doi: 10.21147/j.issn.1000-9604.2016.04.09. PubMed DOI PMC

Chen R., Lu X., Li Z., Sun Y., He Z., Li X. Dihydroartemisinin Prevents Progression and Metastasis of Head and Neck Squamous Cell Carcinoma by Inhibiting Polarization of Macrophages in Tumor Microenvironment. Onco Targets Ther. 2020;13:3375–3387. doi: 10.2147/OTT.S249046. PubMed DOI PMC

Zou J.Y., Su C.H., Luo H.H., Lei Y.Y., Zeng B., Zhu H.S., Chen Z.G. Curcumin converts Foxp3+ regulatory T cells to T helper 1 cells in patients with lung cancer. J. Cell Biochem. 2018;119:1420–1428. doi: 10.1002/jcb.26302. PubMed DOI

Shirabe K., Mano Y., Muto J., Matono R., Motomura T., Toshima T., Takeishi K., Uchiyama H., Yoshizumi T., Taketomi A., et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg. Today. 2012;42:1–7. doi: 10.1007/s00595-011-0058-8. PubMed DOI

Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC

Augustyn A., Adams D., He J., Qiao Y., Liao Z., Tang C.-M., Heymach J., Tsao A., Lin S. Giant Circulating Cancer-Associated Macrophage-Like Cells Are Associated with Disease Recurrence and Survival in Non-Small-Cell Lung Cancer Treated With Chemoradiation and Atezolizumab. Clin. Lung Cancer. 2020;22:e451–e465. doi: 10.1016/j.cllc.2020.06.016. PubMed DOI

Liu D., You M., Xu Y., Li F., Zhang D., Li X., Hou Y. Inhibition of curcumin on myeloid-derived suppressor cells is requisite for controlling lung cancer. Int. Immunopharmacol. 2016;39:265–272. doi: 10.1016/j.intimp.2016.07.035. PubMed DOI

Liao F., Liu L., Luo E., Hu J. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch. Oral Biol. 2018;92:32–37. doi: 10.1016/j.archoralbio.2018.04.015. PubMed DOI

Donkor M., Sarkar A., Li M. Tgf-β1 produced by activated CD4 T Cells Antagonizes T Cell Surveillance of Tumor Development. Oncoimmunology. 2012;1:162–171. doi: 10.4161/onci.1.2.18481. PubMed DOI PMC

Kennedy R., Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol. Rev. 2008;222:129–144. doi: 10.1111/j.1600-065X.2008.00616.x. PubMed DOI

Shao Y., Zhu W., Da J., Xu M., Wang Y., Zhou J., Wang Z. Bisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancer. Onco Targets Ther. 2017;10:2675–2683. doi: 10.2147/OTT.S130653. PubMed DOI PMC

Bremnes R.M., Dønnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI

Kim S.H., Choe C., Shin Y.S., Jeon M.J., Choi S.J., Lee J., Bae G.Y., Cha H.J., Kim J. Human lung cancer-associated fibroblasts enhance motility of non-small cell lung cancer cells in co-culture. Anticancer Res. 2013;33:2001–2009. PubMed

Shien K., Papadimitrakopoulou V.A., Ruder D., Behrens C., Shen L., Kalhor N., Song J., Lee J.J., Wang J., Tang X., et al. JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non-Small Cell Lung Cancer. Mol. Cancer Ther. 2017;16:2234–2245. doi: 10.1158/1535-7163.MCT-17-0148. PubMed DOI PMC

Zhang Q., Yang J., Bai J., Ren J. Reverse of non-small cell lung cancer drug resistance induced by cancer-associated fibroblasts via a paracrine pathway. Cancer Sci. 2018;109:944–955. doi: 10.1111/cas.13520. PubMed DOI PMC

Kanzaki R., Naito H., Kise K., Takara K., Eino D., Minami M., Shintani Y., Funaki S., Kawamura T., Kimura T., et al. Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy. Sci. Rep. 2017;7:10613. doi: 10.1038/s41598-017-10873-2. PubMed DOI PMC

Sung P.J., Rama N., Imbach J., Fiore S., Ducarouge B., Neves D., Chen H.W., Bernard D., Yang P.C., Bernet A., et al. Cancer-Associated Fibroblasts Produce Netrin-1 to Control Cancer Cell Plasticity. Cancer Res. 2019;79:3651–3661. doi: 10.1158/0008-5472.CAN-18-2952. PubMed DOI

Wang Z., Tang Y., Tan Y., Wei Q., Yu W. Cancer-associated fibroblasts in radiotherapy: Challenges and new opportunities. Cell Commun. Signal. 2019;17:47. doi: 10.1186/s12964-019-0362-2. PubMed DOI PMC

Cho J., Lee H.J., Hwang S.J., Min H.Y., Kang H.N., Park A.Y., Hyun S.Y., Sim J.Y., Lee H.J., Jang H.J., et al. The Interplay between Slow-Cycling, Chemoresistant Cancer Cells and Fibroblasts Creates a Proinflammatory Niche for Tumor Progression. Cancer Res. 2020;80:2257–2272. doi: 10.1158/0008-5472.CAN-19-0631. PubMed DOI

Ortiz-Otero N., Marshall J.R., Lash B., King M.R. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer. 2020;20:873. doi: 10.1186/s12885-020-07376-1. PubMed DOI PMC

Ao Z., Shah S.H., Machlin L.M., Parajuli R., Miller P.C., Rawal S., Williams A.J., Cote R.J., Lippman M.E., Datar R.H., et al. Identification of Cancer-Associated Fibroblasts in Circulating Blood from Patients with Metastatic Breast Cancer. Cancer Res. 2015;75:4681–4687. doi: 10.1158/0008-5472.CAN-15-1633. PubMed DOI

Ba P., Xu M., Yu M., Li L., Duan X., Lv S., Fu G., Yang J., Yang P., Yang C., et al. Curcumin suppresses the proliferation and tumorigenicity of Cal27 by modulating cancer associated fibroblasts of TSCC. Oral Dis. 2020;26:1375–1383. doi: 10.1111/odi.13306. PubMed DOI

Wang Q., Qu C., Xie F., Chen L., Liu L., Liang X., Wu X., Wang P., Meng Z. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. Am. J. Cancer Res. 2017;7:125–133. PubMed PMC

Kreutz D., Sinthuvanich C., Bileck A., Janker L., Muqaku B., Slany A., Gerner C. Curcumin exerts its antitumor effects in a context dependent fashion. J. Proteom. 2018;182:65–72. doi: 10.1016/j.jprot.2018.05.007. PubMed DOI

Luo M., Luo Y., Mao N., Huang G., Teng C., Wang H., Wu J., Liao X., Yang J. Cancer-Associated Fibroblasts Accelerate Malignant Progression of Non-Small Cell Lung Cancer via Connexin 43-Formed Unidirectional Gap Junctional Intercellular Communication. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018;51:315–336. doi: 10.1159/000495232. PubMed DOI

Chouaib S., Kieda C., Benlalam H., Noman M.Z., Mami-Chouaib F., Rüegg C. Endothelial cells as key determinants of the tumor microenvironment: Interaction with tumor cells, extracellular matrix and immune killer cells. Crit. Rev. Immunol. 2010;30:529–545. doi: 10.1615/CritRevImmunol.v30.i6.30. PubMed DOI

Ito K., Semba T., Uenaka T., Wakabayashi T., Asada M., Funahashi Y. Enhanced anti-angiogenic effect of E7820 in combination with erlotinib in epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small-cell lung cancer xenograft models. Cancer Sci. 2014;105:1023–1031. doi: 10.1111/cas.12450. PubMed DOI PMC

Wu W., Onn A., Isobe T., Itasaka S., Langley R.R., Shitani T., Shibuya K., Komaki R., Ryan A.J., Fidler I.J., et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol. Cancer Ther. 2007;6:471–483. doi: 10.1158/1535-7163.MCT-06-0416. PubMed DOI

Lee H.J., Hanibuchi M., Kim S.J., Yu H., Kim M.S., He J., Langley R.R., Lehembre F., Regenass U., Fidler I.J. Treatment of experimental human breast cancer and lung cancer brain metastases in mice by macitentan, a dual antagonist of endothelin receptors, combined with paclitaxel. Neuro-Oncology. 2016;18:486–496. doi: 10.1093/neuonc/now037. PubMed DOI PMC

Kumar P., Ning Y., Polverini P.J. Endothelial cells expressing Bcl-2 promotes tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion. Lab. Investig. J. Technol. Methods Pathol. 2008;88:740–749. doi: 10.1038/labinvest.2008.46. PubMed DOI

Kaneko T., Zhang Z., Mantellini M.G., Karl E., Zeitlin B., Verhaegen M., Soengas M.S., Lingen M., Strieter R.M., Nunez G., et al. Bcl-2 orchestrates a cross-talk between endothelial and tumor cells that promotes tumor growth. Cancer Res. 2007;67:9685–9693. doi: 10.1158/0008-5472.CAN-07-1497. PubMed DOI

Nör J.E., Christensen J., Liu J., Peters M., Mooney D.J., Strieter R.M., Polverini P.J. Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res. 2001;61:2183–2188. PubMed

Yadav A., Kumar B., Yu J.G., Old M., Teknos T.N., Kumar P. Tumor-Associated Endothelial Cells Promote Tumor Metastasis by Chaperoning Circulating Tumor Cells and Protecting Them from Anoikis. PLoS ONE. 2015;10:e0141602. doi: 10.1371/journal.pone.0141602. PubMed DOI PMC

Jin G., Yang Y., Liu K., Zhao J., Chen X., Liu H., Bai R., Li X., Jiang Y., Zhang X., et al. Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis. 2017;6:e384. doi: 10.1038/oncsis.2017.84. PubMed DOI PMC

Zhang Z., Li C., Tan Q., Xie C., Yang Y., Zhan W., Han F., Sharma H.S., Sharma A. Curcumin Suppresses Tumor Growth and Angiogenesis in Human Glioma Cells Through Modulation of Vascular Endothelial Growth Factor/ Angiopoietin-2/Thrombospondin-1 Signaling. CNS Neurol. Disord. Drug Targets. 2017;16:346–350. doi: 10.2174/1871527315666160902144513. PubMed DOI

Mondal G., Barui S., Saha S., Chaudhuri A. Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature. J. Control. Release Off. J. Control. Release Soc. 2013;172:832–840. doi: 10.1016/j.jconrel.2013.08.302. PubMed DOI

Barui S., Saha S., Yakati V., Chaudhuri A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol. Pharm. 2016;13:404–419. doi: 10.1021/acs.molpharmaceut.5b00644. PubMed DOI

Kumar A., Dhawan S., Hardegen N.J., Aggarwal B.B. Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation. Biochem. Pharmacol. 1998;55:775–783. doi: 10.1016/S0006-2952(97)00557-1. PubMed DOI

Cho H., Seo Y., Loke K.M., Kim S.W., Oh S.M., Kim J.H., Soh J., Kim H.S., Lee H., Kim J., et al. Cancer-Stimulated CAFs Enhance Monocyte Differentiation and Protumoral TAM Activation via IL6 and GM-CSF Secretion. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:5407–5421. doi: 10.1158/1078-0432.CCR-18-0125. PubMed DOI

Yuan R., Li S., Geng H., Wang X., Guan Q., Li X., Ren C., Yuan X. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int. Immunopharmacol. 2017;49:30–37. doi: 10.1016/j.intimp.2017.05.014. PubMed DOI

Liu L., Ge D., Ma L., Mei J., Liu S., Zhang Q., Ren F., Liao H., Pu Q., Wang T., et al. Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2012;7:1091–1100. doi: 10.1097/JTO.0b013e3182542752. PubMed DOI PMC

Jeong S.K., Kim J.S., Lee C.G., Park Y.S., Kim S.D., Yoon S.O., Han D.H., Lee K.Y., Jeong M.H., Jo W.S. Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals. Immunobiology. 2017;222:55–65. doi: 10.1016/j.imbio.2015.11.010. PubMed DOI

Alfaro C., Sanmamed M.F., Rodríguez-Ruiz M.E., Teijeira Á., Oñate C., González Á., Ponz M., Schalper K.A., Pérez-Gracia J.L., Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017;60:24–31. doi: 10.1016/j.ctrv.2017.08.004. PubMed DOI

Khan M.N., Wang B., Wei J., Zhang Y., Li Q., Luan X., Cheng J.W., Gordon J.R., Li F., Liu H. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget. 2015;6:21315–21327. doi: 10.18632/oncotarget.4066. PubMed DOI PMC

Saidi A., Kasabova M., Vanderlynden L., Wartenberg M., Kara-Ali G.H., Marc D., Lecaille F., Lalmanach G. Curcumin inhibits the TGF-β1-dependent differentiation of lung fibroblasts via PPARγ-driven upregulation of cathepsins B and L. Sci. Rep. 2019;9:491. doi: 10.1038/s41598-018-36858-3. PubMed DOI PMC

Liu J., Xu Y., Yu M., Liu Z., Xu Y., Ma G., Zhou W., Kong P., Ling L., Wang S., et al. Increased Stromal Infiltrating Lymphocytes are Associated with Circulating Tumor Cells and Metastatic Relapse in Breast Cancer Patients After Neoadjuvant Chemotherapy. Cancer Manag. Res. 2019;11:10791–10800. doi: 10.2147/CMAR.S220327. PubMed DOI PMC

Smolkova B., Cierna Z., Kalavska K., Miklikova S., Plava J., Minarik G., Sedlackova T., Cholujova D., Gronesova P., Cihova M., et al. Increased Stromal Infiltrating Lymphocytes Are Associated with the Risk of Disease Progression in Mesenchymal Circulating Tumor Cell-Positive Primary Breast Cancer Patients. Int. J. Mol. Sci. 2020;21:9460. doi: 10.3390/ijms21249460. PubMed DOI PMC

Xue D., Xia T., Wang J., Chong M., Wang S., Zhang C. Role of regulatory T cells and CD8(+) T lymphocytes in the dissemination of circulating tumor cells in primary invasive breast cancer. Oncol. Lett. 2018;16:3045–3053. doi: 10.3892/ol.2018.8993. PubMed DOI PMC

Osmulski P.A., Cunsolo A., Chen M., Qian Y., Lin C.L., Hung C.N., Mahalingam D., Kirma N.B., Chen C.L., Taverna J.A., et al. Contacts with Macrophages Promote an Aggressive Nanomechanical Phenotype of Circulating Tumor Cells in Prostate Cancer. Cancer Res. 2021;81:4110–4123. doi: 10.1158/0008-5472.CAN-20-3595. PubMed DOI PMC

Mego M., Gao H., Cohen E.N., Anfossi S., Giordano A., Sanda T., Fouad T.M., De Giorgi U., Giuliano M., Woodward W.A., et al. Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer. J. Cancer. 2016;7:1095–1104. doi: 10.7150/jca.13098. PubMed DOI PMC

Dianat-Moghadam H., Mahari A., Heidarifard M., Parnianfard N., Pourmousavi-Kh L., Rahbarghazi R., Amoozgar Z. NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Lett. 2021;497:41–53. doi: 10.1016/j.canlet.2020.09.021. PubMed DOI

Ried K., Eng P., Sali A. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study. Asian Pac. J. Cancer Prev. 2017;18:2275–2285. doi: 10.4172/2472-0429.1000123. PubMed DOI PMC

Pang S., Jia M., Gao J., Liu X., Guo W., Zhang H. Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sci. 2021;264:118720. doi: 10.1016/j.lfs.2020.118720. PubMed DOI

Mukherjee S., Baidoo J., Fried A., Atwi D., Dolai S., Boockvar J., Symons M., Ruggieri R., Raja K., Banerjee P. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer. 2016;139:2838–2849. doi: 10.1002/ijc.30398. PubMed DOI

Wang J., Man G.C.W., Chan T.H., Kwong J., Wang C.C. A prodrug of green tea polyphenol (–)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett. 2018;412:10–20. doi: 10.1016/j.canlet.2017.09.054. PubMed DOI

Jang J.Y., Lee J.K., Jeon Y.K., Kim C.W. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. 2013;13:421. doi: 10.1186/1471-2407-13-421. PubMed DOI PMC

Tian S., Liao L., Zhou Q., Huang X., Zheng P., Guo Y., Deng T., Tian X. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol. Lett. 2021;21:286. doi: 10.3892/ol.2021.12547. PubMed DOI PMC

Zhou J., Donatelli S.S., Gilvary D.L., Tejera M.M., Eksioglu E.A., Chen X., Coppola D., Wei S., Djeu J.Y. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin. Sci. Rep. 2016;6:29521. doi: 10.1038/srep29521. PubMed DOI PMC

Lu Y., Miao L., Wang Y., Xu Z., Zhao Y., Shen Y., Xiang G., Huang L. Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Mol. Ther. 2016;24:364–374. doi: 10.1038/mt.2015.165. PubMed DOI PMC

Ma Z., Xia Y., Hu C., Yu M., Yi H. Quercetin promotes the survival of granulocytic myeloid-derived suppressor cells via the ESR2/STAT3 signaling pathway. Biomed. Pharmacother. 2020;125:109922. doi: 10.1016/j.biopha.2020.109922. PubMed DOI

Xu P., Yan F., Zhao Y., Chen X., Sun S., Wang Y., Ying L. Green Tea Polyphenol EGCG Attenuates MDSCs-mediated Immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model. Nutrients. 2020;12:1042. doi: 10.3390/nu12041042. PubMed DOI PMC

Santilli G., Piotrowska I., Cantilena S., Chayka O., D’Alicarnasso M., Morgenstern D.A., Himoudi N., Pearson K., Anderson J., Thrasher A.J., et al. Polyphenon [corrected] E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:1116–1125. doi: 10.1158/1078-0432.CCR-12-2528. PubMed DOI

Hossain D.M.S., Panda A.K., Chakrabarty S., Bhattacharjee P., Kajal K., Mohanty S., Sarkar I., Sarkar D.K., Kar S.K., Sa G. MEK inhibition prevents tumour-shed transforming growth factor-β-induced T-regulatory cell augmentation in tumour milieu. Immunology. 2015;144:561–573. doi: 10.1111/imm.12397. PubMed DOI PMC

Kötting C., Hofmann L., Lotfi R., Engelhardt D., Laban S., Schuler P.J., Hoffmann T.K., Brunner C., Theodoraki M.N. Immune-Stimulatory Effects of Curcumin on the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Cancers. 2021;13:1335. doi: 10.3390/cancers13061335. PubMed DOI PMC

Xu B., Yu L., Zhao L.Z. Curcumin up regulates T helper 1 cells in patients with colon cancer. Am. J. Transl. Res. 2017;9:1866–1875. PubMed PMC

Du Y., Long Q., Zhang L., Shi Y., Liu X., Li X., Guan B., Tian Y., Wang X., Li L., et al. Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int J. Oncol. 2015;47:2064–2072. doi: 10.3892/ijo.2015.3202. PubMed DOI PMC

Hendrayani S.F., Al-Khalaf H.H., Aboussekhra A. Curcumin triggers p16-dependent senescence in active breast cancer-associated fibroblasts and suppresses their paracrine procarcinogenic effects. Neoplasia. 2013;15:631–640. doi: 10.1593/neo.13478. PubMed DOI PMC

Zhao H., Xie P., Li X., Zhu W., Sun X., Sun X., Chen X., Xing L., Yu J. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2015;114:351–356. doi: 10.1016/j.radonc.2015.02.014. PubMed DOI

Hamilton G., Rath B. Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer. Adv. Exp. Med. Biol. 2017;994:229–245. doi: 10.1007/978-3-319-55947-6_12. PubMed DOI

Wells A., Yates C., Shepard C.R. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin. Exp. Metastasis. 2008;25:621–628. doi: 10.1007/s10585-008-9167-1. PubMed DOI PMC

Raimondi C., Carpino G., Nicolazzo C., Gradilone A., Gianni W., Gelibter A., Gaudio E., Cortesi E., Gazzaniga P. PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: A molecular shield to evade immune system? Oncoimmunology. 2017;6:e1315488. doi: 10.1080/2162402X.2017.1315488. PubMed DOI PMC

Liang Z., Wu R., Xie W., Zhu M., Xie C., Li X., Zhu J., Zhu W., Wu J., Geng S., et al. Curcumin reverses tobacco smoke-induced epithelial-mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol. Med. Rep. 2018;17:2019–2025. doi: 10.3892/mmr.2017.8028. PubMed DOI

Chang J.H., Lai S.L., Chen W.S., Hung W.Y., Chow J.M., Hsiao M., Lee W.J., Chien M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:1746–1758. doi: 10.1016/j.bbamcr.2017.06.017. PubMed DOI

Furukawa M., Wheeler S., Clark A.M., Wells A. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells. PLoS ONE. 2015;10:e0118060. doi: 10.1371/journal.pone.0118060. PubMed DOI PMC

Chao Y., Wu Q., Shepard C., Wells A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin. Exp. Metastasis. 2012;29:39–50. doi: 10.1007/s10585-011-9427-3. PubMed DOI PMC

Taylor D.P., Clark A., Wheeler S., Wells A. Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Breast Cancer Res. Treat. 2014;144:551–560. doi: 10.1007/s10549-014-2875-0. PubMed DOI PMC

Yang M., Ma B., Shao H., Clark A.M., Wells A. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells. BMC Cancer. 2016;16:419. doi: 10.1186/s12885-016-2411-1. PubMed DOI PMC

Giancotti F.G. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155:750–764. doi: 10.1016/j.cell.2013.10.029. PubMed DOI PMC

Butturini E., Carcereri de Prati A., Boriero D., Mariotto S. Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment. Int. J. Mol. Sci. 2019;20:4305. doi: 10.3390/ijms20174305. PubMed DOI PMC

Hyoudou K., Nishikawa M., Kobayashi Y., Ikemura M., Yamashita F., Hashida M. SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin. Exp. Metastasis. 2008;25:531–536. doi: 10.1007/s10585-008-9165-3. PubMed DOI

Farzaei M.H., Zobeiri M., Parvizi F., El-Senduny F.F., Marmouzi I., Coy-Barrera E., Naseri R., Nabavi S.M., Rahimi R., Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients. 2018;10:855. doi: 10.3390/nu10070855. PubMed DOI PMC

Wojcik M., Krawczyk M., Wojcik P., Cypryk K., Wozniak L.A. Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer. Oxidative Med. Cell. Longev. 2018;2018:9698258. doi: 10.1155/2018/9698258. PubMed DOI PMC

Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC

Bernatoniene J., Kopustinskiene D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules. 2018;23:965. doi: 10.3390/molecules23040965. PubMed DOI PMC

Tabasum S., Singh R.P. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem. Biol. Interact. 2019;303:14–21. doi: 10.1016/j.cbi.2019.02.020. PubMed DOI

Wang J.Y., Wang X., Wang X.J., Zheng B.Z., Wang Y., Wang X., Liang B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2018;22:7492–7499. doi: 10.26355/eurrev_201811_16290. PubMed DOI

Lee H.-T., Xue J., Chou P.-C., Zhou A., Yang P., Conrad C.A., Aldape K.D., Priebe W., Patterson C., Sawaya R., et al. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget. 2015;6:10016–10029. doi: 10.18632/oncotarget.3540. PubMed DOI PMC

Ansó E., Zuazo A., Irigoyen M., Urdaci M.C., Rouzaut A., Martínez-Irujo J.J. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem. Pharmacol. 2010;79:1600–1609. doi: 10.1016/j.bcp.2010.02.004. PubMed DOI

Khan M.N., Haggag Y.A., Lane M.E., McCarron P.A., Tambuwala M.M. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A) Curr. Drug Deliv. 2018;15:286–295. doi: 10.2174/1567201814666171019104002. PubMed DOI

Fryknäs M., Zhang X., Bremberg U., Senkowski W., Olofsson M.H., Brandt P., Persson I., D’Arcy P., Gullbo J., Nygren P., et al. Iron chelators target both proliferating and quiescent cancer cells. Sci. Rep. 2016;6:38343. doi: 10.1038/srep38343. PubMed DOI PMC

Bahrami A., Majeed M., Sahebkar A. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell. Oncol. 2019;42:405–421. doi: 10.1007/s13402-019-00442-2. PubMed DOI

Tyagi N., Singh D.K., Dash D., Singh R. Curcumin Modulates Paraquat-Induced Epithelial to Mesenchymal Transition by Regulating Transforming Growth Factor-β (TGF-β) in A549 Cells. Inflammation. 2019;42:1441–1455. doi: 10.1007/s10753-019-01006-0. PubMed DOI

Chen Q.Y., Jiao D.M., Yao Q.H., Yan J., Song J., Chen F.Y., Lu G.H., Zhou J.Y. Expression analysis of Cdc42 in lung cancer and modulation of its expression by curcumin in lung cancer cell lines. Int. J. Oncol. 2012;40:1561–1568. doi: 10.3892/ijo.2012.1336. PubMed DOI

Zhan J.W., Jiao D.M., Wang Y., Song J., Wu J.H., Wu L.J., Chen Q.Y., Ma S.L. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac. Cancer. 2017;8:461–470. doi: 10.1111/1759-7714.12467. PubMed DOI PMC

Fox D.B., Garcia N.M.G., McKinney B.J., Lupo R., Noteware L.C., Newcomb R., Liu J., Locasale J.W., Hirschey M.D., Alvarez J.V. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2020;2:318–334. doi: 10.1038/s42255-020-0191-z. PubMed DOI PMC

Chao Y.L., Shepard C.R., Wells A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol. Cancer. 2010;9:179. doi: 10.1186/1476-4598-9-179. PubMed DOI PMC

Ichiki K., Mitani N., Doki Y., Hara H., Misaki T., Saiki I. Regulation of activator protein-1 activity in the mediastinal lymph node metastasis of lung cancer. Clin. Exp. Metastasis. 2000;18:539–545. doi: 10.1023/A:1011980313237. PubMed DOI

Mirza S., Vasaiya A., Vora H., Jain N., Rawal R. Curcumin Targets Circulating Cancer Stem Cells by Inhibiting Self-Renewal Efficacy in Non-Small Cell Lung Carcinoma. Anti-Cancer Agents Med. Chem. 2017;17:859–864. doi: 10.2174/1871520616666160923102549. PubMed DOI

Alonso-Nocelo M., Raimondo T.M., Vining K.H., López-López R., de la Fuente M., Mooney D.J. Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication. 2018;10:035004. doi: 10.1088/1758-5090/aaafbc. PubMed DOI PMC

Zhang X., Tian W., Cai X., Wang X., Dang W., Tang H., Cao H., Wang L., Chen T. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS ONE. 2013;8:e65896. doi: 10.1371/journal.pone.0065896. PubMed DOI PMC

Murakami A., Furukawa I., Miyamoto S., Tanaka T., Ohigashi H. Curcumin combined with turmerones, essential oil components of turmeric, abolishes inflammation-associated mouse colon carcinogenesis. BioFactors. 2013;39:221–232. doi: 10.1002/biof.1054. PubMed DOI

Zeng Y., Du Q., Zhang Z., Ma J., Han L., Wang Y., Yang L., Tao N., Qin Z. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch. Biochem. Biophys. 2020;694:108613. doi: 10.1016/j.abb.2020.108613. PubMed DOI

Perry M.-C., Demeule M., Régina A., Moumdjian R., Béliveau R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res. 2010;54:1192–1201. doi: 10.1002/mnfr.200900277. PubMed DOI

Zhang W., Xu J., Fang H., Tang L., Chen W., Sun Q., Zhang Q., Yang F., Sun Z., Cao L., et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018;32:276–288. doi: 10.1096/fj.201700237RR. PubMed DOI

Plantureux L., Mège D., Crescence L., Carminita E., Robert S., Cointe S., Brouilly N., Ezzedine W., Dignat-George F., Dubois C., et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020;80:291–303. doi: 10.1158/0008-5472.CAN-19-1181. PubMed DOI

Sigurdsson V., Hilmarsdottir B., Sigmundsdottir H., Fridriksdottir A.J., Ringnér M., Villadsen R., Borg A., Agnarsson B.A., Petersen O.W., Magnusson M.K., et al. Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS ONE. 2011;6:e23833. doi: 10.1371/journal.pone.0023833. PubMed DOI PMC

Scagliotti G., Gatti E., Ferrari G., Mutti L., Pozzi E. Tnp-alpha determination in serum and pleural effusion in patients with lung-cancer. Int. J. Oncol. 1995;6:147–151. doi: 10.3892/ijo.6.1.147. PubMed DOI

Taftaf R., Liu X., Singh S., Jia Y., Dashzeveg N.K., Hoffmann A.D., El-Shennawy L., Ramos E.K., Adorno-Cruz V., Schuster E.J., et al. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat. Commun. 2021;12:4867. doi: 10.1038/s41467-021-25189-z. PubMed DOI PMC

Yang C.L., Liu Y.Y., Ma Y.G., Xue Y.X., Liu D.G., Ren Y., Liu X.B., Li Y., Li Z. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS ONE. 2012;7:e37960. doi: 10.1371/journal.pone.0037960. PubMed DOI PMC

Lin F.S., Lin C.C., Chien C.S., Luo S.F., Yang C.M. Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells. J. Cell. Physiol. 2005;202:464–473. doi: 10.1002/jcp.20142. PubMed DOI

Lin C.-C., Lee C.-W., Chu T.-H., Cheng C.-Y., Luo S.-F., Hsiao L.-D., Yang C.-M. Transactivation of Src, PDGF receptor, and Akt is involved in IL-1β-induced ICAM-1 expression in A549 cells. J. Cell. Physiol. 2007;211:771–780. doi: 10.1002/jcp.20987. PubMed DOI

Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827. doi: 10.1038/nature04186. PubMed DOI PMC

Dong Q., Liu X., Cheng K., Sheng J., Kong J., Liu T. Pre-metastatic Niche Formation in Different Organs Induced by Tumor Extracellular Vesicles. Front. Cell Dev. Biol. 2021;9:733627. doi: 10.3389/fcell.2021.733627. PubMed DOI PMC

Colombo M., Raposo G., Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. PubMed DOI

Ma Z., Wei K., Yang F., Guo Z., Pan C., He Y., Wang J., Li Z., Chen L., Chen Y., et al. Tumor-derived exosomal miR-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer. Cell Death Dis. 2021;12:840. doi: 10.1038/s41419-021-04037-4. PubMed DOI PMC

Cao H.H., Tse A.K., Kwan H.Y., Yu H., Cheng C.Y., Su T., Fong W.F., Yu Z.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol. 2014;87:424–434. doi: 10.1016/j.bcp.2013.11.008. PubMed DOI

Mu Y.T., Feng H.H., Yu J.Q., Liu Z.K., Wang Y., Shao J., Li R.H., Li D.K. Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway. Int. Ophthalmol. 2020;40:2435–2440. doi: 10.1007/s10792-020-01406-4. PubMed DOI

Mirzaei H., Masoudifar A., Sahebkar A., Zare N., Sadri Nahand J., Rashidi B., Mehrabian E., Mohammadi M., Mirzaei H.R., Jaafari M.R. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol. 2018;233:3004–3015. doi: 10.1002/jcp.26055. PubMed DOI

Wu H., Zhou J., Zeng C., Wu D., Mu Z., Chen B., Xie Y., Ye Y., Liu J. Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget. 2016;7:87081–87090. doi: 10.18632/oncotarget.13499. PubMed DOI PMC

Xiao J., Liu A., Lu X., Chen X., Li W., He S., He B., Chen Q. Prognostic significance of TCF21 mRNA expression in patients with lung adenocarcinoma. Sci. Rep. 2017;7:2027. doi: 10.1038/s41598-017-02290-2. PubMed DOI PMC

Taverna S., Fontana S., Monteleone F., Pucci M., Saieva L., Caro V.D., Cardinale V.G., Giallombardo M., Vicario E., Rolfo C., et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 2016;7:30420. doi: 10.18632/oncotarget.8483. PubMed DOI PMC

Taverna S., Giallombardo M., Pucci M., Flugy A., Manno M., Raccosta S., Rolfo C., De Leo G., Alessandro R. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget. 2015;6:21918–21933. doi: 10.18632/oncotarget.4204. PubMed DOI PMC

Sabatel C., Malvaux L., Bovy N., Deroanne C., Lambert V., Gonzalez M.L., Colige A., Rakic J.M., Noël A., Martial J.A., et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE. 2011;6:e16979. doi: 10.1371/journal.pone.0016979. PubMed DOI PMC

Zhang H.-G., Kim H., Liu C., Yu S., Wang J., Grizzle W.E., Kimberly R.P., Barnes S. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2007;1773:1116–1123. doi: 10.1016/j.bbamcr.2007.04.015. PubMed DOI PMC

Chen Q.Y., Zheng Y., Jiao D.M., Chen F.Y., Hu H.Z., Wu Y.Q., Song J., Yan J., Wu L.J., Lv G.Y. Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J. Nutr. Biochem. 2014;25:177–185. doi: 10.1016/j.jnutbio.2013.10.004. PubMed DOI

Klimaszewska-Wiśniewska A., Hałas-Wiśniewska M., Izdebska M., Gagat M., Grzanka A., Grzanka D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem. 2017;119:99–112. doi: 10.1016/j.acthis.2016.11.003. PubMed DOI

Zhang B.-Y., Wang Y.-M., Gong H., Zhao H., Lv X.-Y., Yuan G.-H., Han S.-R. Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC) Int. J. Clin. Exp. Pathol. 2015;8:25–37. PubMed PMC

Yuquan B., Hexiao T., Laiyi W., Gaofeng P., Xuefeng Z., Ming X., Yanhong W., Li Z., Jinping Z. Interaction between epidermal growth factor receptor and interleukin-6 receptor in NSCLC progression. J. Cell. Biochem. 2019;120:872–881. doi: 10.1002/jcb.27448. PubMed DOI

Xu X., Zhou X., Gao C., Cao L., Zhang Y., Hu X., Cui Y. Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals. Biol. Chem. 2019;400:777–785. doi: 10.1515/hsz-2018-0392. PubMed DOI

Zulkifli A.A., Tan F.H., Putoczki T.L., Stylli S.S., Luwor R.B. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol. Cell. Endocrinol. 2017;451:15–23. doi: 10.1016/j.mce.2017.01.010. PubMed DOI

Lee J.-Y., Lee Y.-M., Chang G.-C., Yu S.-L., Hsieh W.-Y., Chen J.J.W., Chen H.-W., Yang P.-C. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: The versatile adjuvant for gefitinib therapy. PLoS ONE. 2011;6:e23756. doi: 10.1371/journal.pone.0023756. PubMed DOI PMC

Liu R.-Y., Zeng Y., Lei Z., Wang L., Yang H., Liu Z., Zhao J., Zhang H.-T. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int. J. Oncol. 2014;44:1643–1651. doi: 10.3892/ijo.2014.2310. PubMed DOI

Jin H., Qiao F., Wang Y., Xu Y., Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep. 2015;34:2782–2789. doi: 10.3892/or.2015.4258. PubMed DOI

Xu X., Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am. J. Transl. Res. 2017;9:3633–3641. PubMed PMC

Mukohara T., Kudoh S., Yamauchi S., Kimura T., Yoshimura N., Kanazawa H., Hirata K., Wanibuchi H., Fukushima S., Inoue K., et al. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC) Lung Cancer. 2003;41:123–130. doi: 10.1016/S0169-5002(03)00225-3. PubMed DOI

Haura E.B., Zheng Z., Song L., Cantor A., Bepler G. Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005;11:8288–8294. doi: 10.1158/1078-0432.CCR-05-0827. PubMed DOI

Gao S.P., Mark K.G., Leslie K., Pao W., Motoi N., Gerald W.L., Travis W.D., Bornmann W., Veach D., Clarkson B., et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Investig. 2007;117:3846–3856. doi: 10.1172/JCI31871. PubMed DOI PMC

Jiang A.P., Zhou D.H., Meng X.L., Zhang A.P., Zhang C., Li X.T., Feng Q. Down-regulation of epidermal growth factor receptor by curcumin-induced UBE1L in human bronchial epithelial cells. J. Nutr. Biochem. 2014;25:241–249. doi: 10.1016/j.jnutbio.2013.11.001. PubMed DOI

Zhang Y., Ma Q., Liu T., Guan G., Zhang K., Chen J., Jia N., Yan S., Chen G., Liu S., et al. Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model. Oncotarget. 2016;7:446–458. doi: 10.18632/oncotarget.6371. PubMed DOI PMC

Matsusaka S., Hanna D.L., Ning Y., Yang D., Cao S., Berger M.D., Miyamoto Y., Suenaga M., Dan S., Mashima T., et al. Epidermal growth factor receptor mRNA expression: A potential molecular escape mechanism from regorafenib. Cancer Sci. 2020;111:441–450. doi: 10.1111/cas.14273. PubMed DOI PMC

Dimitrakopoulos F.-I., Kottorou A., Kalofonou M., Kalofonos H. The Fire Within: NF-κB involvement in Non-Small Cell Lung Cancer. Cancer Res. 2020;80:canres.3578.2019. doi: 10.1158/0008-5472.CAN-19-3578. PubMed DOI

Chen W., Li Z., Bai L., Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front. Biosci. (Landmark Ed.) 2011;16:1172–1185. doi: 10.2741/3782. PubMed DOI PMC

Min C., Eddy S.F., Sherr D.H., Sonenshein G.E. NF-kappaB and epithelial to mesenchymal transition of cancer. J. Cell Biochem. 2008;104:733–744. doi: 10.1002/jcb.21695. PubMed DOI

Sun B., Hu C., Yang Z., Zhang X., Zhao L., Xiong J., Ma J., Chen L., Qian H., Luo X., et al. Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget. 2017;8:32523–32535. doi: 10.18632/oncotarget.15808. PubMed DOI PMC

Naidu S., Shi L., Magee P., Middleton J.D., Laganá A., Sahoo S., Leong H.S., Galvin M., Frese K., Dive C., et al. PDGFR-modulated miR-23b cluster and miR-125a-5p suppress lung tumorigenesis by targeting multiple components of KRAS and NF-kB pathways. Sci. Rep. 2017;7:15441. doi: 10.1038/s41598-017-14843-6. PubMed DOI PMC

Lin C.C., Tseng H.W., Hsieh H.L., Lee C.W., Wu C.Y., Cheng C.Y., Yang C.M. Tumor necrosis factor-alpha induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-kappaB in A549 cells. Toxicol. Appl. Pharmacol. 2008;229:386–398. doi: 10.1016/j.taap.2008.01.032. PubMed DOI

Puliyappadamba V.T., Thulasidasan A.K.T., Vijayakurup V., Antony J., Bava S.V., Anwar S., Sundaram S., Anto R.J. Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis. BioFactors. 2015;41:431–442. doi: 10.1002/biof.1244. PubMed DOI

Lee J., Im Y.H., Jung H.H., Kim J.H., Park J.O., Kim K., Kim W.S., Ahn J.S., Jung C.W., Park Y.S., et al. Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 2005;334:313–318. doi: 10.1016/j.bbrc.2005.06.093. PubMed DOI

Tsai J.R., Liu P.L., Chen Y.H., Chou S.H., Cheng Y.J., Hwang J.-J., Chong I.-W. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway. PLoS ONE. 2015;10:e0144462. doi: 10.1371/journal.pone.0144462. PubMed DOI PMC

Li X., Ma S., Yang P., Sun B., Zhang Y., Sun Y., Hao M., Mou R., Jia Y. Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol. Lett. 2018;16:6756–6762. doi: 10.3892/ol.2018.9488. PubMed DOI PMC

Hu A., Huang J.J., Li R.L., Lu Z.Y., Duan J.L., Xu W.H., Chen X.P., Fan J.P. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1. Sci. Rep. 2015;5:13429. doi: 10.1038/srep13429. PubMed DOI PMC

Lee Y.H., Song N.Y., Kim D.H., Na H.K., Surh Y.J. Abstract 1250: Curcumin inhibits migration and growth of human colon cancer cells through covalent modification of oncogenic SIRT1: Cysteine 67 as a potential binding site. Cancer Res. 2017;77:1250. doi: 10.1158/1538-7445.AM2017-1250. PubMed DOI

Bernauer C., Man Y.K.S., Chisholm J.C., Lepicard E.Y., Robinson S.P., Shipley J.M. Hypoxia and its therapeutic possibilities in paediatric cancers. Br. J. Cancer. 2021;124:539–551. doi: 10.1038/s41416-020-01107-w. PubMed DOI PMC

Noman M.Z., Messai Y., Muret J., Hasmim M., Chouaib S. Crosstalk between CTC, Immune System and Hypoxic Tumor Microenvironment. Cancer Microenviron. Off. J. Int. Cancer Microenviron. Soc. 2014;7:153–160. doi: 10.1007/s12307-014-0157-3. PubMed DOI PMC

Salem A., Asselin M.C., Reymen B., Jackson A., Lambin P., West C.M.L., O’Connor J.P.B., Faivre-Finn C. Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome. J. Natl. Cancer Inst. 2018;110:14–30. doi: 10.1093/jnci/djx160. PubMed DOI

Ebright R.Y., Zachariah M.A., Micalizzi D.S., Wittner B.S., Niederhoffer K.L., Nieman L.T., Chirn B., Wiley D.F., Wesley B., Shaw B., et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat. Commun. 2020;11:6311. doi: 10.1038/s41467-020-20144-w. PubMed DOI PMC

Bartkowiak K., Koch C., Gärtner S., Andreas A., Gorges T.M., Pantel K. In Vitro Modeling of Reoxygenation Effects on mRNA and Protein Levels in Hypoxic Tumor Cells upon Entry into the Bloodstream. Cells. 2020;9:1316. doi: 10.3390/cells9051316. PubMed DOI PMC

Ye M.X., Zhao Y.L., Li Y., Miao Q., Li Z.K., Ren X.L., Song L.Q., Yin H., Zhang J. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine. 2012;19:779–787. doi: 10.1016/j.phymed.2012.03.005. PubMed DOI

Fan S., Xu Y., Li X., Tie L., Pan Y., Li X. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2014;1842:1742–1754. doi: 10.1016/j.bbadis.2014.06.019. PubMed DOI

Datta R., Halder S.K., Zhang B. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells. J. Cancer Res. Clin. Oncol. 2013;139:563–572. doi: 10.1007/s00432-012-1352-6. PubMed DOI PMC

Santibáñez J.F., Quintanilla M., Martínez J. Genistein and curcumin block TGF-beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr. Cancer. 2000;37:49–54. doi: 10.1207/S15327914NC3701_6. PubMed DOI

Park J.I., Lee M.G., Cho K., Park B.J., Chae K.S., Byun D.S., Ryu B.K., Park Y.K., Chi S.G. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene. 2003;22:4314–4332. doi: 10.1038/sj.onc.1206478. PubMed DOI

Tanaka Y., Kobayashi H., Suzuki M., Kanayama N., Terao T. Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J. Biol. Chem. 2004;279:8567–8576. doi: 10.1074/jbc.M309131200. PubMed DOI

Mo N., Li Z.Q., Li J., Cao Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. Asian Pac. J. Cancer Prev. 2012;13:5709–5714. doi: 10.7314/APJCP.2012.13.11.5709. PubMed DOI

Wright L.E., Frye J.B., Lukefahr A.L., Timmermann B.N., Mohammad K.S., Guise T.A., Funk J.L. Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a murine model of breast cancer bone metastasis. J. Nat. Prod. 2013;76:316–321. doi: 10.1021/np300663v. PubMed DOI PMC

Lu Y., Wei C., Xi Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. Vitr. Cell. Dev. Biol. Anim. 2014;50:840–850. doi: 10.1007/s11626-014-9779-5. PubMed DOI

Wen Z., Li Z., Yong P., Liang D., Xie D., Chen H., Yang Y., Wu S., Li C., Cheng Z. Detection and clinical significance of circulating tumor cells in patients with nasopharyngeal carcinoma. Oncol. Lett. 2019;18:2537–2547. doi: 10.3892/ol.2019.10560. PubMed DOI PMC

Bommu U.D., Konidala K.K., Pabbaraju N., Yeguvapalli S. QSAR modeling, pharmacophore-based virtual screening, and ensemble docking insights into predicting potential epigallocatechin gallate (EGCG) analogs against epidermal growth factor receptor. J. Recept. Signal. Transduct. Res. 2019;39:18–27. doi: 10.1080/10799893.2018.1564151. PubMed DOI

Minnelli C., Laudadio E., Mobbili G., Galeazzi R. Conformational Insight on WT- and Mutated-EGFR Receptor Activation and Inhibition by Epigallocatechin-3-Gallate: Over a Rational Basis for the Design of Selective Non-Small-Cell Lung Anticancer Agents. Int. J. Mol. Sci. 2020;21:1721. doi: 10.3390/ijms21051721. PubMed DOI PMC

Liu J., Zhong T., Yi P., Fan C., Zhang Z., Liang G., Xu Y., Fan Y. A new epigallocatechin gallate derivative isolated from Anhua dark tea sensitizes the chemosensitivity of gefitinib via the suppression of PI3K/mTOR and epithelial-mesenchymal transition. Fitoterapia. 2020;143:104590. doi: 10.1016/j.fitote.2020.104590. PubMed DOI

Zhang L., Chen W., Tu G., Chen X., Lu Y., Wu L., Zheng D. Enhanced Chemotherapeutic Efficacy of PLGA-Encapsulated Epigallocatechin Gallate (EGCG) Against Human Lung Cancer. Int. J. Nanomed. 2020;15:4417–4429. doi: 10.2147/IJN.S243657. PubMed DOI PMC

Rawangkan A., Wongsirisin P., Namiki K., Iida K., Kobayashi Y., Shimizu Y., Fujiki H., Suganuma M. Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth. Molecules. 2018;23:2071. doi: 10.3390/molecules23082071. PubMed DOI PMC

Suzuki Y., Isemura M. Binding interaction between (-)-epigallocatechin gallate causes impaired spreading of cancer cells on fibrinogen. Biomed. Res. 2013;34:301–308. doi: 10.2220/biomedres.34.301. PubMed DOI

Yuan T., Ling F., Wang Y., Teng Y. A natural product atalantraflavone inhibits non-small cell lung cancer progression via destabilizing Twist1. Fitoterapia. 2019;137:104275. doi: 10.1016/j.fitote.2019.104275. PubMed DOI

Li Y., Feng X., Zhang Y., Wang Y., Yu X., Jia R., Yu T., Zheng X., Chu Q. Dietary flavone from the Tetrastigma hemsleyanum vine triggers human lung adenocarcinoma apoptosis via autophagy. Food Funct. 2020;11:9776–9788. doi: 10.1039/D0FO01997F. PubMed DOI

Fu T., Wang L., Jin X.N., Sui H.J., Liu Z., Jin Y. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin. 2016;37:505–518. doi: 10.1038/aps.2015.148. PubMed DOI PMC

Chen D., Wu Y.X., Qiu Y.B., Wan B.B., Liu G., Chen J.L., Lu M.D., Pang Q.F. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 2020;67:153138. doi: 10.1016/j.phymed.2019.153138. PubMed DOI

Chen W., Wang X., Zhuang J., Zhang L., Lin Y. Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells. Carcinogenesis. 2007;28:2114–2121. doi: 10.1093/carcin/bgm133. PubMed DOI

Mukherjee A., Khuda-Bukhsh A.R. Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Nonsmall-cell Lung-cancer Cell Line, A549. J. Pharmacopunct. 2015;18:19–26. doi: 10.3831/KPI.2015.18.002. PubMed DOI PMC

Dong Y., Yang J., Yang L., Li P. Quercetin Inhibits the Proliferation and Metastasis of Human Non-Small Cell Lung Cancer Cell Line: The Key Role of Src-Mediated Fibroblast Growth Factor-Inducible 14 (Fn14)/ Nuclear Factor kappa B (NF-κB) pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020;26:e920537. doi: 10.12659/MSM.920537. PubMed DOI PMC

Youn H., Jeong J.C., Jeong Y.S., Kim E.J., Um S.J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol. Pharm. Bull. 2013;36:944–951. doi: 10.1248/bpb.b12-01004. PubMed DOI

Kang J., Kim E., Kim W., Seong K.M., Youn H., Kim J.W., Kim J., Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J. Biol. Chem. 2013;288:27343–27357. doi: 10.1074/jbc.M113.490482. PubMed DOI PMC

Ruan Y., Hu K., Chen H. Autophagy inhibition enhances isorhamnetin-induced mitochondria-dependent apoptosis in non-small cell lung cancer cells. Mol. Med. Rep. 2015;12:5796–5806. doi: 10.3892/mmr.2015.4148. PubMed DOI PMC

Wang J., Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp. Ther. Med. 2018;15:2667–2673. doi: 10.3892/etm.2017.5666. PubMed DOI PMC

Khan N., Afaq F., Khusro F.H., Mustafa Adhami V., Suh Y., Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int. J. Cancer. 2012;130:1695–1705. doi: 10.1002/ijc.26178. PubMed DOI PMC

Zhang L., Huang Y., Zhuo W., Zhu Y., Zhu B., Chen Z. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways. Am. J. Transl. Res. 2016;8:4857–4868. PubMed PMC

Liao Y.C., Shih Y.W., Chao C.H., Lee X.Y., Chiang T.A. Involvement of the ERK Signaling Pathway in Fisetin Reduces Invasion and Migration in the Human Lung Cancer Cell Line A549. J. Agric. Food Chem. 2009;57:8933–8941. doi: 10.1021/jf902630w. PubMed DOI

Chen B.H., Hsieh C.H., Tsai S.Y., Wang C.Y., Wang C.-C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep. 2020;10:5163. doi: 10.1038/s41598-020-62136-2. PubMed DOI PMC

Namiki K., Wongsirisin P., Yokoyama S., Sato M., Rawangkan A., Sakai R., Iida K., Suganuma M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci. Rep. 2020;10:2444. doi: 10.1038/s41598-020-59281-z. PubMed DOI PMC

Chen A., Jiang P., Zeb F., Wu X., Xu C., Chen L., Feng Q. EGCG regulates CTR1 expression through its pro-oxidative property in non-small-cell lung cancer cells. J. Cell. Physiol. 2020;235:7970–7981. doi: 10.1002/jcp.29451. PubMed DOI

Deng P., Hu C., Xiong Z., Li Y., Jiang J., Yang H., Tang Y., Cao L., Lu R. Epigallocatechin-3-gallate-induced vascular normalization in A549-cell xenograft-bearing nude mice: Therapeutic efficacy in combination with chemotherapy. Cancer Manag. Res. 2019;11:2425–2439. doi: 10.2147/CMAR.S187750. PubMed DOI PMC

Velavan B., Divya T., Sureshkumar A., Sudhandiran G. Nano-chemotherapeutic efficacy of (−)-epigallocatechin 3-gallate mediating apoptosis in A549 cells: Involvement of reactive oxygen species mediated Nrf2/Keap1signaling. Biochem. Biophys. Res. Commun. 2018;503:1723–1731. doi: 10.1016/j.bbrc.2018.07.105. PubMed DOI

Jiang P., Chen A., Wu X., Zhou M., ul Haq I., Mariyam Z., Feng Q. NEAT1 acts as an inducer of cancer stem cell-like phenotypes in NSCLC by inhibiting EGCG-upregulated CTR1. J. Cell. Physiol. 2018;233:4852–4863. doi: 10.1002/jcp.26288. PubMed DOI

Shi J., Liu F., Zhang W., Liu X., Lin B., Tang X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep. 2015;33:2972–2980. doi: 10.3892/or.2015.3889. PubMed DOI

Ko H., So Y., Jeon H., Jeong M.H., Choi H.K., Ryu S.H., Lee S.W., Yoon H.G., Choi K.C. TGF-β1-induced epithelial–mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in Human A549 lung cancer cells. Cancer Lett. 2013;335:205–213. doi: 10.1016/j.canlet.2013.02.018. PubMed DOI

He L., Zhang E., Shi J., Li X., Zhou K., Zhang Q., Le A.D., Tang X. (−)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol. 2013;71:713–725. doi: 10.1007/s00280-012-2063-z. PubMed DOI

Li X., Feng Y., Liu J., Feng X., Zhou K., Tang X. Epigallocatechin-3-Gallate Inhibits IGF-I-Stimulated Lung Cancer Angiogenesis through Downregulation of HIF-1α and VEGF Expression. Lifestyle Genom. 2013;6:169–178. doi: 10.1159/000354402. PubMed DOI

Gupta N., Verma K., Nalla S., Kulshreshtha A., Lall R., Prasad S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules. 2020;25:5390. doi: 10.3390/molecules25225390. PubMed DOI PMC

Seifermann M., Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic. Biol. Med. 2017;107:258–265. doi: 10.1016/j.freeradbiomed.2016.11.018. PubMed DOI

Moldogazieva N.T., Lutsenko S.V., Terentiev A.A. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Res. 2018;78:6040–6047. doi: 10.1158/0008-5472.CAN-18-0980. PubMed DOI

Sinha B.K. Free radicals in anticancer drug pharmacology. Chem. Biol. Interact. 1989;69:293–317. doi: 10.1016/0009-2797(89)90117-8. PubMed DOI

Neuhouser M.L., Barnett M.J., Kristal A.R., Ambrosone C.B., King I.B., Thornquist M., Goodman G.G. Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2009;18:2202–2206. doi: 10.1158/1055-9965.EPI-09-0013. PubMed DOI PMC

Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Meyskens F.L., Jr., Omenn G.S., Valanis B., Williams J.H., Jr. The Beta-Carotene and Retinol Efficacy Trial: Incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J. Natl. Cancer Inst. 2004;96:1743–1750. doi: 10.1093/jnci/djh320. PubMed DOI

Morin D., Barthélémy S., Zini R., Labidalle S., Tillement J.P. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett. 2001;495:131–136. doi: 10.1016/S0014-5793(01)02376-6. PubMed DOI

Wang C., Song X., Shang M., Zou W., Zhang M., Wei H., Shao H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol. 2019;15:1243–1253. doi: 10.2217/fon-2018-0708. PubMed DOI

Li Y., Zhang S., Geng J.X., Hu X.Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac. J. Cancer Prev. 2013;14:4599–4602. doi: 10.7314/APJCP.2013.14.8.4599. PubMed DOI

Szebeni G.J., Balázs Á., Madarász I., Pócz G., Ayaydin F., Kanizsai I., Fajka-Boja R., Alföldi R., Hackler L., Jr., Puskás L.G. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells. Int. J. Mol. Sci. 2017;18:2105. doi: 10.3390/ijms18102105. PubMed DOI PMC

Mielczarek-Puta M., Chrzanowska A., Otto-Ślusarczyk D., Graboń W., Barańczyk-Kuźma A. Effect of antioxidants on human primary and metastatic colon cancer cells at hypoxia and normoxia. Wiad. Lek. 2017;70:946–952. PubMed

Du G., Lin H., Wang M., Zhang S., Wu X., Lu L., Ji L., Yu L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother. Pharm. 2010;65:277–287. doi: 10.1007/s00280-009-1032-7. PubMed DOI

Chiş I.C., Baltaru D., Dumitrovici A., Coseriu A., Radu B.C., Moldovan R., Mureşan A. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart. Physiol. Int. 2018;105:233–246. doi: 10.1556/2060.105.2018.3.23. PubMed DOI

Kuang Y., Wang Q. Iron and lung cancer. Cancer Lett. 2019;464:56–61. doi: 10.1016/j.canlet.2019.08.007. PubMed DOI

Yin M., Liu Y., Chen Y. Iron metabolism: An emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic. Res. 2021;55:296–303. doi: 10.1080/10715762.2021.1898604. PubMed DOI

Prasad S., DuBourdieu D., Srivastava A., Kumar P., Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int. J. Mol. Sci. 2021;22:7094. doi: 10.3390/ijms22137094. PubMed DOI PMC

Yang C., Ma X., Wang Z., Zeng X., Hu Z., Ye Z., Shen G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Dev. Ther. 2017;11:431–439. doi: 10.2147/DDDT.S126964. PubMed DOI PMC

Kejík Z., Kaplánek R., Masařík M., Babula P., Matkowski A., Filipenský P., Veselá K., Gburek J., Sýkora D., Martásek P., et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021;22:646. doi: 10.3390/ijms22020646. PubMed DOI PMC

Tan J., Wang B., Zhu L. DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorg. Med. Chem. 2009;17:614–620. doi: 10.1016/j.bmc.2008.11.063. PubMed DOI

Mohammed F., Rashid-Doubell F., Taha S., Cassidy S., Fredericks S. Effects of curcumin complexes on MDA-MB-231 breast cancer cell proliferation. Int. J. Oncol. 2020;57:445–455. doi: 10.3892/ijo.2020.5065. PubMed DOI PMC

Chiaem K., Lirdprapamongkol K., Keeratichammroen S., Surarit R., Svasti J. Curcumin Suppresses Vasculogenic Mimicry Capacity of Hepatocellular Carcinoma Cells through STAT3 and PI3K/AKT Inhibition. Anticancer Res. 2014;34:1857–1864. PubMed

Salehi M., Movahedpour A., Tayarani A., Shabaninejad Z., Pourhanifeh M.H., Mortezapour E., Nickdasti A., Mottaghi R., Davoodabadi A., Khan H., et al. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother. Res. PTR. 2020;34:2557–2576. doi: 10.1002/ptr.6704. PubMed DOI

Suresh R., Ali S., Ahmad A., Philip P.A., Sarkar F.H. The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer. Adv. Exp. Med. Biol. 2016;890:57–74. doi: 10.1007/978-3-319-24932-2_4. PubMed DOI

Kashyap D., Garg V.K., Tuli H.S., Yerer M.B., Sak K., Sharma A.K., Kumar M., Aggarwal V., Sandhu S.S. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules. 2019;9:174. doi: 10.3390/biom9050174. PubMed DOI PMC

Dhatwalia S.K., Kumar M., Dhawan D.K. Role of EGCG in Containing the Progression of Lung Tumorigenesis—A Multistage Targeting Approach. Nutr. Cancer. 2018;70:334–349. doi: 10.1080/01635581.2018.1445762. PubMed DOI

Suganuma M., Saha A., Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 2011;102:317–323. doi: 10.1111/j.1349-7006.2010.01805.x. PubMed DOI

Hosokawa M., Kenmotsu H., Koh Y., Yoshino T., Yoshikawa T., Naito T., Takahashi T., Murakami H., Nakamura Y., Tsuya A., et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466. doi: 10.1371/journal.pone.0067466. PubMed DOI PMC

Watanabe M., Kenmotsu H., Ko R., Wakuda K., Ono A., Imai H., Taira T., Naito T., Murakami H., Abe M., et al. Isolation and molecular analysis of circulating tumor cells from lung cancer patients using a microfluidic chip type cell sorter. Cancer Sci. 2018;109:2539–2548. doi: 10.1111/cas.13692. PubMed DOI PMC

Hassan S., Blick T., Thompson E.W., Williams E.D. Diversity of Epithelial-Mesenchymal Phenotypes in Circulating Tumour Cells from Prostate Cancer Patient-Derived Xenograft Models. Cancers. 2021;13:2750. doi: 10.3390/cancers13112750. PubMed DOI PMC

Chemi F., Mohan S., Brady G. Circulating Tumour Cells in Lung Cancer. Recent Results Cancer Res. 2020;215:105–125. doi: 10.1007/978-3-030-26439-0_6. PubMed DOI

Krebs M.G., Hou J.M., Sloane R., Lancashire L., Priest L., Nonaka D., Ward T.H., Backen A., Clack G., Hughes A., et al. Analysis of Circulating Tumor Cells in Patients with Non-small Cell Lung Cancer Using Epithelial Marker-Dependent and -Independent Approaches. J. Thorac. Oncol. 2012;7:306–315. doi: 10.1097/JTO.0b013e31823c5c16. PubMed DOI

Hassanzadeh K., Buccarello L., Dragotto J., Mohammadi A., Corbo M., Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int. J. Mol. Sci. 2020;21:6619. doi: 10.3390/ijms21186619. PubMed DOI PMC

de Lázaro I., Mooney D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021;20:1469–1479. doi: 10.1038/s41563-021-01047-7. PubMed DOI

Kral V., Sotola J., Neuwirth P., Kejík Z., Zaruba K., Martasek P. Nanomedicine—Current status and perspectives: A big potential or just a catchword? Chem. Listy. 1997;100:4–9.

Chiang C.L., Cheng M.H., Lin C.H. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. Nanomaterials. 2021;11:1727. doi: 10.3390/nano11071727. PubMed DOI PMC

Dobrzynska M., Napierala M., Florek E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules. 2020;10:1268. doi: 10.3390/biom10091268. PubMed DOI PMC

Ciurana J., Rodríguez C.A. Trends in Nanomaterials and Processing for Drug Delivery of Polyphenols in the Treatment of Cancer and Other Therapies. Curr. Drug Targets. 2017;18:135–146. doi: 10.2174/1389450116666151102094738. PubMed DOI

Su W., Wei T., Lu M., Meng Z., Chen X., Jing J., Li J., Yao W., Zhu H., Fu T. Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica. Eur. J. Pharm. Sci. 2019;134:246–255. doi: 10.1016/j.ejps.2019.04.025. PubMed DOI

Smit D.J., Pantel K., Jücker M. Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy. Biochem. Pharmacol. 2021;188:114589. doi: 10.1016/j.bcp.2021.114589. PubMed DOI

Mitra T., Bhattacharya R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J. Cell. Physiol. 2020;235:7696–7708. doi: 10.1002/jcp.29703. PubMed DOI

Zhang P., Zhang X. Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis. Hum. Exp. Toxicol. 2018;37:618–625. doi: 10.1177/0960327117714037. PubMed DOI

Niedzwiecki A., Roomi M.W., Kalinovsky T., Rath M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients. 2016;8:552. doi: 10.3390/nu8090552. PubMed DOI PMC

Liu Y., Wu Y.M., Zhang P.Y. Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. Eur. Rev. Med. Pharmacol. Sci. 2015;19:1736–1743. PubMed

Nair P., Malhotra A., Dhawan D.K. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem. 2015;400:51–56. doi: 10.1007/s11010-014-2261-6. PubMed DOI

Zhou D.H., Wang X., Yang M., Shi X., Huang W., Feng Q. Combination of low concentration of (-)-epigallocatechin gallate (EGCG) and curcumin strongly suppresses the growth of non-small cell lung cancer in vitro and in vivo through causing cell cycle arrest. Int. J. Mol. Sci. 2013;14:12023–12036. doi: 10.3390/ijms140612023. PubMed DOI PMC

Choudhury D., Ganguli A., Dastidar D.G., Acharya B.R., Das A., Chakrabarti G. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie. 2013;95:1297–1309. doi: 10.1016/j.biochi.2013.02.010. PubMed DOI

Saha A., Kuzuhara T., Echigo N., Suganuma M., Fujiki H. New role of (-)-epicatechin in enhancing the induction of growth inhibition and apoptosis in human lung cancer cells by curcumin. Cancer Prev. Res. 2010;3:953–962. doi: 10.1158/1940-6207.CAPR-09-0247. PubMed DOI

Choi Y.H., Han D.H., Kim S.W., Kim M.J., Sung H.H., Jeon H.G., Jeong B.C., Seo S.I., Jeon S.S., Lee H.M., et al. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate. 2019;79:614–621. doi: 10.1002/pros.23766. PubMed DOI

Belcaro G., Hosoi M., Pellegrini L., Appendino G., Ippolito E., Ricci A., Ledda A., Dugall M., Cesarone M.R., Maione C., et al. A Controlled Study of a Lecithinized Delivery System of Curcumin (Meriva®) to Alleviate the Adverse Effects of Cancer Treatment. Phytother. Res. 2014;28:444–450. doi: 10.1002/ptr.5014. PubMed DOI

Carroll R.E., Benya R.V., Turgeon D.K., Vareed S., Neuman M., Rodriguez L., Kakarala M., Carpenter P.M., McLaren C., Meyskens F.L., Jr., et al. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. 2011;4:354–364. doi: 10.1158/1940-6207.CAPR-10-0098. PubMed DOI PMC

He Z.Y., Shi C.B., Wen H., Li F.L., Wang B.L., Wang J. Upregulation of p53 Expression in Patients with Colorectal Cancer by Administration of Curcumin. Cancer Investig. 2011;29:208–213. doi: 10.3109/07357907.2010.550592. PubMed DOI

Ide H., Tokiwa S., Sakamaki K., Nishio K., Isotani S., Muto S., Hama T., Masuda H., Horie S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate. 2010;70:1127–1133. doi: 10.1002/pros.21147. PubMed DOI

Dominiak K., McKinney J., Heilbrun L.K., Sarkar F.H. Critical need for clinical trials: An example of a pilot human intervention trial of a mixture of natural agents protecting lymphocytes against TNF-alpha induced activation of NF-kappaB. Pharm. Res. 2010;27:1061–1065. doi: 10.1007/s11095-010-0113-y. PubMed DOI PMC

Biswas J., Sinha D., Mukherjee S., Roy S., Siddiqi M., Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Hum. Exp. Toxicol. 2010;29:513–524. doi: 10.1177/0960327109359020. PubMed DOI

Cruz-Correa M., Shoskes D.A., Sanchez P., Zhao R., Hylind L.M., Wexner S.D., Giardiello F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2006;4:1035–1038. doi: 10.1016/j.cgh.2006.03.020. PubMed DOI

Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., Ko J.Y., Lin J.T., Lin B.R., Ming-Shiang W., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–2900. PubMed

Passildas-Jahanmohan J., Eymard J.C., Pouget M., Kwiatkowski F., Van Praagh I., Savareux L., Atger M., Durando X., Abrial C., Richard D., et al. Multicenter randomized phase II study comparing docetaxel plus curcumin versus docetaxel plus placebo in first-line treatment of metastatic castration-resistant prostate cancer. Cancer Med. 2021;10:2332–2340. doi: 10.1002/cam4.3806. PubMed DOI PMC

Kishimoto A., Imaizumi A., Wada H., Yamakage H., Satoh-Asahara N., Hashimoto T., Hasegawa K. Newly Developed Highly Bioavailable Curcumin Formulation, curcuRougeTM, Reduces Neutrophil/Lymphocyte Ratio in the Elderly: A Double-Blind, Placebo-Controlled Clinical Trial. J. Nutr. Sci. Vitaminol. 2021;67:249–252. doi: 10.3177/jnsv.67.249. PubMed DOI

Shah S., Rath H., Sharma G., Senapati S., Mishra E. Effectiveness of curcumin mouthwash on radiation-induced oral mucositis among head and neck cancer patients: A triple-blind, pilot randomised controlled trial. Indian J. Dent. Res. 2020;31:718–727. doi: 10.4103/ijdr.IJDR_822_18. PubMed DOI

Hariri M., Gholami A., Mirhafez S.R., Bidkhori M., Sahebkar A. A pilot study of the effect of curcumin on epigenetic changes and DNA damage among patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled, clinical trial. Complement. Ther. Med. 2020;51:102447. doi: 10.1016/j.ctim.2020.102447. PubMed DOI

Neetha M.C., Panchaksharappa M.G., Pattabhiramasastry S., Shivaprasad N.V., Venkatesh U.G. Chemopreventive Synergism between Green Tea Extract and Curcumin in Patients with Potentially Malignant Oral Disorders: A Double-blind, Randomized Preliminary Study. J. Contemp. Dent. Pr. 2020;21:521–531. doi: 10.5005/jp-journals-10024-2823. PubMed DOI

Basak S.K., Bera A., Yoon A.J., Morselli M., Jeong C., Tosevska A., Dong T.S., Eklund M., Russ E., Nasser H., et al. A randomized, phase 1, placebo-controlled trial of APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor-associated microbes. Cancer. 2020;126:1668–1682. doi: 10.1002/cncr.32644. PubMed DOI

Saberi-Karimian M., Keshvari M., Ghayour-Mobarhan M., Salehizadeh L., Rahmani S., Behnam B., Jamialahmadi T., Asgary S., Sahebkar A. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement. Ther. Med. 2020;49:102322. doi: 10.1016/j.ctim.2020.102322. PubMed DOI

Delavarian Z., Pakfetrat A., Ghazi A., Jaafari M.R., Homaei Shandiz F., Dalirsani Z., Mohammadpour A.H., Rahimi H.R. Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Spec. Care Dent. 2019;39:166–172. doi: 10.1111/scd.12358. PubMed DOI

Pastorelli D., Fabricio A.S.C., Giovanis P., D’Ippolito S., Fiduccia P., Soldà C., Buda A., Sperti C., Bardini R., Da Dalt G., et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res. 2018;132:72–79. doi: 10.1016/j.phrs.2018.03.013. PubMed DOI

Kuriakose M.A., Ramdas K., Dey B., Iyer S., Rajan G., Elango K.K., Suresh A., Ravindran D., Kumar R.R., Prathiba R., et al. A Randomized Double-Blind Placebo-Controlled Phase IIB Trial of Curcumin in Oral Leukoplakia. Cancer Prev. Res. 2016;9:683–691. doi: 10.1158/1940-6207.CAPR-15-0390. PubMed DOI

Li X., Xing L., Zhang Y., Xie P., Zhu W., Meng X., Wang Y., Kong L., Zhao H., Yu J. Phase II Trial of Epigallocatechin-3-Gallate in Acute Radiation-Induced Esophagitis for Esophagus Cancer. J. Med. Food. 2020;23:43–49. doi: 10.1089/jmf.2019.4445. PubMed DOI

Hu Y., McIntosh G.H., Le Leu R.K., Somashekar R., Meng X.Q., Gopalsamy G., Bambaca L., McKinnon R.A., Young G.P. Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br. J. Nutr. 2016;116:1901–1911. doi: 10.1017/S0007114516003937. PubMed DOI

Kumar N.B., Pow-Sang J., Egan K.M., Spiess P.E., Dickinson S., Salup R., Helal M., McLarty J., Williams C.R., Schreiber F., et al. Randomized, Placebo-Controlled Trial of Green Tea Catechins for Prostate Cancer Prevention. Cancer Prev. Res. 2015;8:879–887. doi: 10.1158/1940-6207.CAPR-14-0324. PubMed DOI PMC

Shanafelt T.D., Call T.G., Zent C.S., Leis J.F., LaPlant B., Bowen D.A., Roos M., Laumann K., Ghosh A.K., Lesnick C., et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119:363–370. doi: 10.1002/cncr.27719. PubMed DOI PMC

D’Arena G., Simeon V., De Martino L., Statuto T., D’Auria F., Volpe S., Deaglio S., Maidecchi A., Mattoli L., Mercati V., et al. Regulatory T-cell modulation by green tea in chronic lymphocytic leukemia. Int. J. Immunopathol. Pharm. 2013;26:117–125. doi: 10.1177/039463201302600111. PubMed DOI

Domingo D.S., Camouse M.M., Hsia A.H., Matsui M., Maes D., Ward N.L., Cooper K.D., Baron E.D. Anti-angiogenic effects of epigallocatechin-3-gallate in human skin. Int. J. Clin. Exp. Pathol. 2010;3:705–709. PubMed PMC

McLarty J., Bigelow R.L.H., Smith M., Elmajian D., Ankem M., Cardelli J.A. Tea Polyphenols Decrease Serum Levels of Prostate-Specific Antigen, Hepatocyte Growth Factor, and Vascular Endothelial Growth Factor in Prostate Cancer Patients and Inhibit Production of Hepatocyte Growth Factor and Vascular Endothelial Growth Factor In vitro. Cancer Prev. Res. 2009;2:673–682. doi: 10.1158/1940-6207.Capr-08-0167. PubMed DOI

Zwicker J.I., Schlechter B.L., Stopa J.D., Liebman H.A., Aggarwal A., Puligandla M., Caughey T., Bauer K.A., Kuemmerle N., Wong E., et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 2019;4:e125851. doi: 10.1172/jci.insight.125851. PubMed DOI PMC

Boots A.W., Drent M., de Boer V.C., Bast A., Haenen G.R. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin. Nutr. 2011;30:506–512. doi: 10.1016/j.clnu.2011.01.010. PubMed DOI

Farsad-Naeimi A., Alizadeh M., Esfahani A., Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–2031. doi: 10.1039/C7FO01898C. PubMed DOI

Kirwan C.C., Descamps T., Castle J. Circulating tumour cells and hypercoagulability: A lethal relationship in metastatic breast cancer. Clin. Transl. Oncol. 2020;22:870–877. doi: 10.1007/s12094-019-02197-6. PubMed DOI PMC

Vianello F., Sambado L., Goss A., Fabris F., Prandoni P. Dabigatran antagonizes growth, cell-cycle progression, migration, and endothelial tube formation induced by thrombin in breast and glioblastoma cell lines. Cancer Med. 2016;5:2886–2898. doi: 10.1002/cam4.857. PubMed DOI PMC

Levitan N., Dowlati A., Remick S.C., Tahsildar H.I., Sivinski L.D., Beyth R., Rimm A.A. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine. 1999;78:285–291. doi: 10.1097/00005792-199909000-00001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace