Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond

. 2021 Jan 11 ; 22 (2) : . [epub] 20210111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33440733

Grantová podpora
BIOCEV-FAR Ministry of Education, Youth and Sports of the Czech Republic
LQ1604 Ministry of Education, Youth and Sports of the Czech Republic
LM2018133 Ministry of Education, Youth and Sports of the Czech Republic
SVV260521 Charles University in Prague
UNCE 204064 Charles University in Prague
Progress Q26/LF1 Charles University in Prague
Q27/LF1 Charles University in Prague
RVO-VFN-64165/2012 Ministry of Health of the Czech Republic
FV20572 Ministry of Industry and Trade of Czech Republic
TN01000013 Technology Agency of the Czech Republic
FW02020128 Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000785 Operational Programme Research, Development and Education

Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.

Zobrazit více v PubMed

Mathesius U. Flavonoid Functions in Plants and Their Interactions with Other Organisms. Plants. 2018;7:30. doi: 10.3390/plants7020030. PubMed DOI PMC

Liu K., Luo M., Wei S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. Oxid. Med. Cell. Longev. 2019;2019:1–16. doi: 10.1155/2019/6713194. PubMed DOI PMC

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Belwal T., Singh G., Jeandet P., Pandey A., Giri L., Ramola S., Bhatt I.D., Venskutonis P.R., Georgiev M.I., Clément C., et al. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol. Adv. 2020;43:107600. doi: 10.1016/j.biotechadv.2020.107600. PubMed DOI

Grosso G., Godos J., Lamuela-Raventos R., Ray S., Micek A., Pajak A., Sciacca S., D’Orazio N., Del Rio D., Galvano F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2016;61 doi: 10.1002/mnfr.201600930. PubMed DOI

Manish P., Wei Ling L., Seong Lin T., Mohamad Fairuz Y. Flavonoids and its Neuroprotective Effects on Brain Ischemia and Neurodegenerative Diseases. Curr. Drug Targets. 2018;19:1710–1720. doi: 10.2174/1389450119666180326125252. PubMed DOI

Kim Y., Je Y. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clin. Nutr. ESPEN. 2017;20:68–77. doi: 10.1016/j.clnesp.2017.03.004. PubMed DOI

Mirossay L., Varinská L., Mojzis J. Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int. J. Mol. Sci. 2017;19:27. doi: 10.3390/ijms19010027. PubMed DOI PMC

Luna-Vital D.A., De Mejia E.G. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS ONE. 2018;13:e0200449. doi: 10.1371/journal.pone.0200449. PubMed DOI PMC

Sivamaruthi B.S., Kesika P., Chaiyasut C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods. 2020;9:687. doi: 10.3390/foods9060687. PubMed DOI PMC

Ciumărnean L., Milaciu M.V., Runcan O., Vesa S.C., Răchișan A.L., Negrean V., Perné M.-G., Donca V.I., Alexescu T.-G., Para I., et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules. 2020;25:4320. doi: 10.3390/molecules25184320. PubMed DOI PMC

Singh A., Patel S.K., Kumar P., Das K.C., Verma D., Sharma R., Tripathi T., Giri R., Martins N., Garg N. Quercetin acts as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain. J. Biomol. Struct. Dyn. 2020;10:1–9. doi: 10.1080/07391102.2020.1858966. PubMed DOI

Shaji S.K., G D., Sunilkumar D., Pandurangan N., Kumar G.B., Nair B.G. Nuclear factor-κB plays an important role in Tamarixetin-mediated inhibition of matrix metalloproteinase-9 expression. Eur. J. Pharmacol. 2020;10 doi: 10.1016/j.ejphar.2020.173808. PubMed DOI

Pilátová M., Stupáková V., Varinská L., Sarisský M., Mirossay L., Mirossay A., Gál P., Kraus V., Dianisková K., Mojzis J. Effect of selected flavones on cancer and endothelial cells. Gen. Physiol. Biophys. 2010;29:134–143. doi: 10.4149/gpb_2010_02_134. PubMed DOI

Gates M.A., Tworoger S.S., Hecht J.L., De Vivo I., Rosner B., Hankinson S.E. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer. 2007;121:2225–2232. doi: 10.1002/ijc.22790. PubMed DOI

Mojžišová G., Šarišský M., Mirossay L., Martinka P., Mojžiš J. Effect of Flavonoids on Daunorubicin-induced Toxicity in H9c2 Cardiomyoblasts. Phytotherapy Res. 2008;23:136–139. doi: 10.1002/ptr.2566. PubMed DOI

Larson A.J., Symons J.D., Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv. Nutr. 2012;3:39–46. doi: 10.3945/an.111.001271. PubMed DOI PMC

Leeya Y., Mulvany M.J., Queiroz E.F., Marston A., Hostettmann K., Jansakul C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur. J. Pharmacol. 2010;649:301–313. doi: 10.1016/j.ejphar.2010.09.038. PubMed DOI

Hang Y., Qin X., Ren T., Cao J. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial. Lipids Heal. Dis. 2018;17:146. doi: 10.1186/s12944-018-0797-2. PubMed DOI PMC

Bakkar Z.A., Fulford J., Gates P.E., Jackman S.R., Jones A.M., Bond B., Bowtell J.L. Montmorency cherry supplementation attenuates vascular dysfunction induced by prolonged forearm occlusion in overweight, middle-aged men. J. Appl. Phsiol. 2019;126:246–254. doi: 10.1152/japplphysiol.00804.2018. PubMed DOI PMC

Dugo P., Mondello L., Morabito D., Dugo G. Characterization of the anthocyanin fraction of sicilian blood orange juice by micro-HPLC-ESI/MS. J. Agric. Food Chem. 2003;51:1173–1176. doi: 10.1021/jf026078b. PubMed DOI

Silveira J.Q., Dourado G.K.Z.S., Cesar T.B. Red-fleshed sweet orange juice improves the risk factors for metabolic syndrome. Int. J. Food Sci. Nutr. 2015;66:830–836. doi: 10.3109/09637486.2015.1093610. PubMed DOI

Qi H., Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr. Gerontol. Int. 2013;14:430–439. doi: 10.1111/ggi.12123. PubMed DOI

Tanaka K., Miyake Y., Fukushima W., Sasaki S., Kiyohara C., Tsuboi Y., Yamada T., Oeda T., Miki T., Kawamura N., et al. Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Park. Relat. Disord. 2011;17:446–450. doi: 10.1016/j.parkreldis.2011.02.016. PubMed DOI

Pervin M., Unno K., Ohishi T., Tanabe H., Miyoshi N., Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules. 2018;23:1297. doi: 10.3390/molecules23061297. PubMed DOI PMC

Fan D., Alamri Y., Liu K., MacAskill M., Harris P.W.R., Brimble M.A., Dalrymple-Alford J.C., Prickett T., Menzies O., Laurenson A., et al. Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function. Nutrients. 2018;10:714. doi: 10.3390/nu10060714. PubMed DOI PMC

Augustin R.C., Delgoffe G.M., Najjar Y.G. Characteristics of the Tumor Microenvironment That Influence Immune Cell Functions: Hypoxia, Oxidative Stress, Metabolic Alterations. Cancers. 2020;12:3802. doi: 10.3390/cancers12123802. PubMed DOI PMC

Wang W., Kang P.M. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants. 2020;9:1292. doi: 10.3390/antiox9121292. PubMed DOI PMC

Rehman K., Haider K., Jabeen K., Akash M.S.H. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev. Endocr. Metab. Disord. 2020;21:631–643. doi: 10.1007/s11154-020-09549-6. PubMed DOI

Antonyová V., Kejík Z., Brogyányi T., Kaplánek R., Pajková M., Talianová V., Hromádka R., Masařík M., Sýkora D., Mikšátková L., et al. Role of mtDNA disturbances in the pathogenesis of Alzheimer’s and Parkinson’s disease. DNA Repair. 2020;91–92:102871. doi: 10.1016/j.dnarep.2020.102871. PubMed DOI

Prochazkova D., Boušová I., Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI

Cherrak S.A., Mokhtari-Soulimane N., Berroukeche F., Bensenane B., Cherbonnel A., Merzouk H., Elhabiri M. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. PLoS ONE. 2016;11:e0165575. doi: 10.1371/journal.pone.0165575. PubMed DOI PMC

Siddiqi A., Saidullah B., Sultana S. Anti-carcinogenic effect of hesperidin against renal cell carcinoma by targeting COX-2/PGE2 pathway in Wistar rats. Environ. Toxicol. 2018;33:1069–1077. doi: 10.1002/tox.22626. PubMed DOI

Haba R., Watanabe S., Arai Y., Chiba H., Miura T. Suppression of Lipid-Hydroperoxide and DNA-Adduct Formation by Isoflavone-Containing Soy Hypocotyl Tea in Rats. Environ. Heal. Prev. Med. 2002;7:64–73. doi: 10.1007/BF02897332. PubMed DOI PMC

Manach C., Williamson G., Morand C., Scalbert A., Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S. doi: 10.1093/ajcn/81.1.230S. PubMed DOI

Koskenkorva-Frank T.S., Weiss G., Koppenol W.H., Burckhardt S. The complex interplay of iron metabolism, reactive oxygen and reactive nitrogen species: Insights into the potential of different iron therapies to induce oxidative and nitrosative stress. Free Rad. Biol. Med. 2013;65:1174–1194. doi: 10.1016/j.freeradbiomed.2013.09.001. PubMed DOI

Guo M.L., Perez C., Wei Y.B., Rapoza E., Su G., Bou-Abdallah F., Chasteen N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007;10:4951–4961. doi: 10.1039/b705136k. PubMed DOI PMC

Horniblow R.D., Henesy D., Iqbal T.H., Tselepis C. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. Mol. Nutr. Food Res. 2016;61 doi: 10.1002/mnfr.201600692. PubMed DOI

Miličević A., Raos N. Modelling of Protective Mechanism of Iron(II)-polyphenol Binding with OH-related Molecular Descriptors. Croat. Chem. Acta. 2016;89:89. doi: 10.5562/cca2996. DOI

Perez C.A., Wei Y., Guo M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J. Inorg. Biochem. 2009;103:326–332. doi: 10.1016/j.jinorgbio.2008.11.003. PubMed DOI PMC

Kostyuk V., Potapovich A., Strigunova E., Kostyuk T., Afanas’ev I. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch. Biochem. Biophys. 2004;428:204–208. doi: 10.1016/j.abb.2004.06.008. PubMed DOI

Porfírio D.A., Ferreira R.D.Q., Malagutti A.R., Valle E.M.A. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions. Electrochim. Acta. 2014;141:33–38. doi: 10.1016/j.electacta.2014.07.046. DOI

Baccan M.M., Chiarelli-Neto O., Pereira R.M.S., Espósito B.P. Quercetin as a shuttle for labile iron. J. Inorg. Biochem. 2012;107:34–39. doi: 10.1016/j.jinorgbio.2011.11.014. PubMed DOI

Cho H., Lee H.-Y., Ahn D.-R., Kim S.-Y., Kim S., Lee K.B., Lee Y.M., Park H., Yang E.G. Baicalein induces functional hypoxia-inducible factor-1 alpha and angiogenesis. Mol. Pharmacol. 2008;74:70–81. doi: 10.1124/mol.107.040162. PubMed DOI

Jeon H., Kim H., Choi D., Kim D., Park S.-Y., Kim Y.-J., Kim Y.M., Jung Y. Quercetin activates an angiogenic pathway, hypoxia inducible factor (HIF)-1-vascular endothelial growth factor, by inhibiting HIF-prolyl hydroxylase: A structural analysis of quercetin for inhibiting HIF-prolyl hydroxylase. Mol. Pharmacol. 2007;71:1676–1684. doi: 10.1124/mol.107.034041. PubMed DOI

Mahesh T., Menon V.P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother. Res. 2004;18:123–127. doi: 10.1002/ptr.1374. PubMed DOI

Mascayano C., Núñez G., Acevedo W., Rezende M.C. Binding of arachidonic acid and two flavonoid inhibitors to human 12-and 15-lipoxygenases: A steered molecular dynamics study. J. Mol. Model. 2010;16:1039–1045. doi: 10.1007/s00894-009-0616-9. PubMed DOI

Ohnishi H., Iwanaga S., Kawazoe K., Ishizawa K., Orino S., Tomita S., Tsuchiya K., Kanematsu Y., Harada N., Mori K., et al. Effect of Iron-Quercetin Complex on Reduction of Nitrite in in Vitro and in Vivo Systems. J. Agric. Food Chem. 2008;56:10092–10098. doi: 10.1021/jf801010j. PubMed DOI

Raza A., Xu X., Xia L., Xia C., Tang J., Ouyang Z. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. J. Fluoresc. 2016;26:2023–2031. doi: 10.1007/s10895-016-1896-y. PubMed DOI

Sakurai M., Rose N.R., Schultz L., Quinn A.M., Jadhav A., Ng S.S., Oppermann U., Schofield C.J., Simeonov A. A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol. Biosyst. 2010;6:357–364. doi: 10.1039/B912993F. PubMed DOI PMC

Sengupta B. Biophysical Characterization of Genistein in Its Natural Carrier Human Hemoglobin Using Spectroscopic and Computational Approaches. Food Nutr. 2013;4:83–92.

Yang F., Guo Z., Xiao Y., Zhu J. Fe2+ and Co2+ Improved the Affinities of 7-Hydroxyflavone, Chrysin and Quercetin for Human Serum Albumin In Vitro. J. Solut. Chem. 2013;42:1717–1728. doi: 10.1007/s10953-013-0072-0. DOI

Kim Y.A., Tarahovsky Y.S., Yagolnik E.A., Kuznetsova S.M., Muzafarov E.N. Lipophilicity of flavonoid complexes with iron(II) and their interaction with liposomes. Biochem. Biophys. Res. Commun. 2013;431:680–685. doi: 10.1016/j.bbrc.2013.01.060. PubMed DOI

Kim Y.A., Tarahovsky Y.S., Yagolnik E.A., Kuznetsova S.M., Muzafarov E.N. Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl. Biochem. Biotech. 2015;176:1904–1913. doi: 10.1007/s12010-015-1686-z. PubMed DOI

Shatalin Iu V., Shubina V.S. Partitioning of taxifolin-iron ions complexes in octanol-water system. Biofizika. 2014;59:432–438. doi: 10.1134/S000635091403021X. PubMed DOI

Kostyuk V.A., Potapovich A., Vladykovskaya E., Korkina L., Afanas’ev I. Influence of Metal Ions on Flavonoid Protection against Asbestos-Induced Cell Injury. Arch. Biochem. Biophys. 2001;385:129–137. doi: 10.1006/abbi.2000.2118. PubMed DOI

Leopoldini M., Russo N., Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125:288–306. doi: 10.1016/j.foodchem.2010.08.012. DOI

Xu D., Hu M.-J., Wang Y.-Q., Cui Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC

Bhuiyan M.N.I., Mitsuhashi S., Sigetomi K., Ubukata M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem. 2017;81:882–890. doi: 10.1080/09168451.2017.1282805. PubMed DOI

Primikyri A., Mazzone G., Lekka C., Tzakos A.G., Russo N., Gerothanassis I.P. Understanding Zinc(II) Chelation with Quercetin and Luteolin: A Combined NMR and Theoretical Study. J. Phys. Chem. B. 2014;119:83–95. doi: 10.1021/jp509752s. PubMed DOI

Sun S., Chen W., Cao W., Zhang F., Song J., Tian C. Research on the chelation between quercetin and Cr(III) ion by Density Functional Theory (DFT) method. J. Mol. Struct. Theochem. 2008;860:40–44. doi: 10.1016/j.theochem.2008.03.020. DOI

Potapovich A.I. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry (Moscow) 2003;68:514–519. doi: 10.1023/A:1023947424341. PubMed DOI

Mahesha H., Singh S.A., Rao A.A. Inhibition of lipoxygenase by soy isoflavones: Evidence of isoflavones as redox inhibitors. Arch. Biochem. Biophys. 2007;461:176–185. doi: 10.1016/j.abb.2007.02.013. PubMed DOI

Ribeiro D., Freitas M., Tomé S.M., Silva A.M.S., Laufer S., Lima J.L.F.C., Fernandes E. Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation. 2014;38:858–870. doi: 10.1007/s10753-014-9995-x. PubMed DOI

Nagao A., Seki M., Kobayashi H. Inhibition of Xanthine Oxidase by Flavonoids. Biosci. Biotechnol. Biochem. 1999;63:1787–1790. doi: 10.1271/bbb.63.1787. PubMed DOI

Bohmont C., Aaronson L.M., Mann K., Pardini R.S. Inhibition of Mitochondrial NADH Oxidase, Succinoxidase, and ATPase by Naturally Occurring Flavonoids. J. Nat. Prod. 1987;50:427–433. doi: 10.1021/np50051a014. PubMed DOI

Krych J., Gebicka L. Catalase is inhibited by flavonoids. Int. J. Biol. Macromol. 2013;58:148–153. doi: 10.1016/j.ijbiomac.2013.03.070. PubMed DOI

Loke W.M., Proudfoot J.M., McKinley A.J., Needs P.W., Kroon P.A., Hodgson J.M., Croft K.D. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J. Agric. Food Chem. 2008;56:3609–3615. doi: 10.1021/jf8003042. PubMed DOI

Yasuda M., Sonda T., Nagayama K., Tabata M. Effects of pH and metal ions on antioxidative activities of catechins. Biosci. Biotechnol. Biochem. 2001;65:126–132. doi: 10.1271/bbb.65.126. PubMed DOI

Dowling S., Regan F., Hughes H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem. 2010;104:1091–1098. doi: 10.1016/j.jinorgbio.2010.06.007. PubMed DOI

Mira L., Fernandez M.T., Santos M., Rocha R., Florêncio M.H., Jennings K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002;36:1199–1208. doi: 10.1080/1071576021000016463. PubMed DOI

Loizzo M.R., Tundis R., Bonesi M., Menichini F., Mastellone V., Avallone L., Menichini F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Compos. Anal. 2012;25:179–184. doi: 10.1016/j.jfca.2011.09.002. DOI

Macáková K., Mladěnka P., Filipský T., Říha M., Jahodář L., Trejtnar F., Bovicelli P., Silvestri I.P., Hrdina R., Saso L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 2012;135:2584–2592. doi: 10.1016/j.foodchem.2012.06.107. PubMed DOI

Laughton M.J., Halliwell B., Evans P.J., Robin J., Hoult J.R. Antioxidant and Pro-Oxidant Actions of the Plant Phenolics Quercetin, Gossypol and Myricetin—Effects on Lipid-Peroxidation, Hydroxyl Radical Generation and Bleomycin-Dependent Damage to DNA. Biochem. Pharmacol. 1989;38:2859–2865. doi: 10.1016/0006-2952(89)90442-5. PubMed DOI

Cheng I.F., Breen K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the fenton reaction of the iron-ATP complex. Biometals. 2000;13:77–83. doi: 10.1023/A:1009229429250. PubMed DOI

Mladěnka P., Macáková K., Filipský T., Zatloukalová L., Jahodář L., Bovicelli P., Silvestri I.P., Hrdina R., Saso L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011;105:693–701. doi: 10.1016/j.jinorgbio.2011.02.003. PubMed DOI

Fernandez M., Mira M., Florêncio M., Jennings K.R. Iron and copper chelation by flavonoids: An electrospray mass spectrometry study. J. Inorg. Biochem. 2002;92:105–111. doi: 10.1016/S0162-0134(02)00511-1. PubMed DOI

Leopoldini M., Russo N., Chiodo A.S., Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006;54:6343–6351. doi: 10.1021/jf060986h. PubMed DOI

Satterfield M., Brodbelt J.S. Enhanced detection of flavonoids by metal complexation and electrospray ionization mass spectrometry. Anal. Chem. 2000;72:5898–5906. doi: 10.1021/ac0007985. PubMed DOI

Bodini M.E., Copia G., Tapia R., Leighton F., Herrera L. Iron complexes of quercetin in aprotic medium. Redox chemistry and interaction with superoxide anion radical. Polyhedron. 1999;18:2233–2239. doi: 10.1016/S0277-5387(99)00124-2. DOI

Shubina V., Shatalina Y.V. Absorption Spectroscopy Study of Acid-Base and Metal-Binding Properties of Flavanones. J. Appl. Spectrosc. 2013;80:761–766. doi: 10.1007/s10812-013-9838-9. DOI

Goyal R., Jialal I. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Hyperphosphatemia.

Rizzo S.C., Eckel R. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. Am. J. Physiol. Content. 1966;211:429–436. doi: 10.1152/ajplegacy.1966.211.2.429. PubMed DOI

Gibbs C.R. Characterization and application of FerroZine iron reagent as a ferrous iron indicator. Anal. Chem. 1976;48:1197–1201. doi: 10.1021/ac50002a034. DOI

Kumara T., Kaumal M. The Photo-and Electro-Chemical Properties of Anthocyanin Extracts of Red Cabbage. Chem. Res. J. 2018;3:84–91.

Sigurdson G.T., Robbins R., Collins T., Giusti M. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives. Food Chem. 2017;221:1088–1095. doi: 10.1016/j.foodchem.2016.11.052. PubMed DOI

Sigurdson G.T., Robbins R., Collins T., Giusti M. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH. Food Chem. 2016;208:26–34. doi: 10.1016/j.foodchem.2016.03.109. PubMed DOI

Kunsági-Máté S., Ortmann E., Kollár L., Szabó K., Pour Nikfardjam M. Effect of ferrous and ferric ions on copigmentation in model solutions. J. Mol. Struct. 2008;891:471–474. doi: 10.1016/j.molstruc.2008.04.036. DOI

Yoshida K., Mori M., Kondo T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep. 2009;26:884–915. doi: 10.1039/b800165k. PubMed DOI

Areias F.M., Rego A., Oliveira C.R., Seabra R.M. Antioxidant effect of flavonoids after ascorbate/Fe2+-induced oxidative stress in cultured retinal cells. Biochem. Pharmacol. 2001;62:111–118. doi: 10.1016/S0006-2952(01)00621-9. PubMed DOI

Vlachodimitropoulou E., Sharp P.A., Naftalin R.J. Quercetin-iron chelates are transported via glucose transporters. Free Rad. Biol. Med. 2011;50:934–944. doi: 10.1016/j.freeradbiomed.2011.01.005. PubMed DOI

Melidou M., Riganakos K., Galaris D. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Rad. Biol. Med. 2005;39:1591–1600. doi: 10.1016/j.freeradbiomed.2005.08.009. PubMed DOI

Tarahovsky Y.S., Yagolnik E.A., Muzafarov E.N., Abdrasilov B.S., Kim Y.A. Calcium-dependent aggregation and fusion of phosphatidylcholine liposomes induced by complexes of flavonoids with divalent iron. Biochim. Biophys. Acta Biomembr. 2012;1818:695–702. doi: 10.1016/j.bbamem.2011.12.001. PubMed DOI

Tan J., Wang B., Zhu L. DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorg. Med. Chem. 2009;17:614–620. doi: 10.1016/j.bmc.2008.11.063. PubMed DOI

Hamilton K.E., Rekman J.F., Gunnink L.K., Busscher B.M., Scott J.L., Tidball A.M., Stehouwer N.R., Johnecheck G.N., Looyenga B.D., Louters L.L. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie. 2018;151:107–114. doi: 10.1016/j.biochi.2018.05.012. PubMed DOI PMC

Takahama U., Oniki T., Hirota S. Oxidation of quercetin by salivary components. Quercetin-dependent reduction of salivary nitrite under acidic conditions producing nitric oxide. J. Agric. Food Chem. 2002;50:4317–4322. doi: 10.1021/jf011697q. PubMed DOI

Takahama U., Yamamoto A., Hirota S., Oniki T. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction. J. Agric. Food Chem. 2003;51:6014–6020. doi: 10.1021/jf021253+. PubMed DOI

Magar R.T., Sohng J.K. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. J. Microbiol. Biotechnol. 2019;30:11–20. doi: 10.4014/jmb.1907.07003. PubMed DOI PMC

Wen L., Jiang Y., Yang J., Zhao Y., Tian M., Yang B. Structure, bioactivity, and synthesis of methylated flavonoids: Methylated flavonoids. Ann. N. Y. Acad. Sci. 2017;1398:120–129. doi: 10.1111/nyas.13350. PubMed DOI

Ahmed Q.U., Sarian M.N., So’Ad S.Z.M., Latip J., Ichwan S.J.A., Hussein N.N., Taher M., Alhassan A.M., Hamidon H., Fakurazi S. Methylation and Acetylation Enhanced the Antidiabetic Activity of Some Selected Flavonoids: In Vitro, Molecular Modelling and Structure Activity Relationship-Based Study. Biomolecules. 2018;8:149. doi: 10.3390/biom8040149. PubMed DOI PMC

Teles Y.C.F., Souza M.D.F.V.D. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules. 2018;23:480. doi: 10.3390/molecules23020480. PubMed DOI PMC

Huynh N.T., Van Camp J., Smagghe G., Raes K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014;15:19369–19388. doi: 10.3390/ijms151119369. PubMed DOI PMC

Paik W.K., Kim S. Enzymatic demethylation of calf thymus histones. Biochem. Biophys. Res. Commun. 1973;51:781–788. doi: 10.1016/0006-291X(73)91383-1. PubMed DOI

Saraç H., Morova T., Pires E., McCullagh J., Kaplan A., Cingöz A., Bagci-Onder T., Önder T., Kawamura A., Lack N.A. Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene. 2020;39:2187–2201. doi: 10.1038/s41388-019-1116-8. PubMed DOI PMC

Mashima R., Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015;6:297–310. doi: 10.1016/j.redox.2015.08.006. PubMed DOI PMC

Vasquez-Martinez Y., Ohri R.V., Kenyon V., Holman T.R., Sepúlveda-Boza S. Structure-activity relationship studies of flavonoids as potent inhibitors of human platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2. Bioorg. Med. Chem. 2007;15:7408–7425. doi: 10.1016/j.bmc.2007.07.036. PubMed DOI PMC

Triantafyllou A., Mylonis I., Simos G., Bonanou S., Tsakalof A. Flavonoids induce HIF-1 alpha but impair its nuclear accumulation and activity. Free Radic. Biol. Med. 2008;44:657–670. doi: 10.1016/j.freeradbiomed.2007.10.050. PubMed DOI

Triantafyllou A., Liakos P., Tsakalof A., Chachami G., Paraskeva E., Molyvdas P.-A., Georgatsou E., Simos G., Bonanou S. The flavonoid quercetin induces hypoxia-inducible factor-1 alpha (HIF-1 alpha) and inhibits cell proliferation by depleting intracellular iron. Free Radic. Res. 2007;41:342–356. doi: 10.1080/10715760601055324. PubMed DOI

Gebicka L. Redox reactions of heme proteins with flavonoids. J. Inorg. Biochem. 2020;208:111095. doi: 10.1016/j.jinorgbio.2020.111095. PubMed DOI

Poulos T.L. Heme Enzyme Structure and Function. Chem. Rev. 2014;114:3919–3962. doi: 10.1021/cr400415k. PubMed DOI PMC

Blakemore J., Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology. 2016;31:258–269. doi: 10.1152/physiol.00054.2015. PubMed DOI

Santen R.J. Aromatase inhibitors for treatment of breast cancer: Current concepts and new perspectives. Breast Cancer Res. Treat. 1986;7:S23–S35. PubMed

Kellis J., Vickery L. Inhibition of human estrogen synthetase (aromatase) by flavones. Science. 1984;225:1032–1034. doi: 10.1126/science.6474163. PubMed DOI

Kao Y.C., Zhou C., Sherman M., Laughton C.A., Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Heal. Perspect. 1998;106:85–92. doi: 10.1289/ehp.9810685. PubMed DOI PMC

Karkola S., Wähälä K. The binding of lignans, flavonoids and coumestrol to CYP450 aromatase: A molecular modelling study. Mol. Cell. Endocrinol. 2009;301:235–244. doi: 10.1016/j.mce.2008.10.003. PubMed DOI

Dawson J., Andersson L., Sono M. Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes. Identification of the ligand trans to cysteinate in the native enzyme. J. Biol. Chem. 1982;257:3606–3617. doi: 10.1016/S0021-9258(18)34823-3. PubMed DOI

Ibrahim A.-R.S., Abul-Hajj Y.J. Aromatase inhibition by flavonoids. J. Steroid Biochem. Mol. Biol. 1990;37:257–260. doi: 10.1016/0960-0760(90)90335-I. PubMed DOI

Sanderson J.T., Hordijk J., Denison M.S., Springsteel M.F., Nantz M.H., Berg M.V.D. Induction and Inhibition of Aromatase (CYP19) Activity by Natural and Synthetic Flavonoid Compounds in H295R Human Adrenocortical Carcinoma Cells. Toxicol. Sci. 2004;82:70–79. doi: 10.1093/toxsci/kfh257. PubMed DOI

Irahara N., Miyoshi Y., Taguchi T., Tamaki Y., Noguchi S. Quantitative analysis of aromatase mRNA expression derived from various promoters (I.4, I.3, PII and I.7) and its association with expression of TNF-alpha, IL-6 and COX-2 mRNAs in human breast cancer. Int. J. Cancer. 2005;118:1915–1921. doi: 10.1002/ijc.21562. PubMed DOI

Fita I., Rossmann M.G. The active center of catalase. J. Mol. Biol. 1985;185:21–37. doi: 10.1016/0022-2836(85)90180-9. PubMed DOI

Lin Y.-L., Cheng C.-Y., Lin Y.-P., Lau Y.-W., Juan I.-M., Lin J.-K. Hypolipidemic Effect of Green Tea Leaves through Induction of Antioxidant and Phase II Enzymes Including Superoxide Dismutase, Catalase, and Glutathione S-Transferase in Rats. J. Agric. Food Chem. 1998;46:1893–1899. doi: 10.1021/jf970963q. DOI

Kampkötter A., Chovolou Y., Kulawik A., Röhrdanz E., Weber N., Proksch P., Wätjen W. Isoflavone daidzein possesses no antioxidant activities in cell-free assays but induces the antioxidant enzyme catalase. Nutr. Res. 2008;28:620–628. doi: 10.1016/j.nutres.2008.06.002. PubMed DOI

Majumder D., Das A., Saha C. Catalase inhibition an anti cancer property of flavonoids: A kinetic and structural evaluation. Int. J. Biol. Macromol. 2017;104:929–935. doi: 10.1016/j.ijbiomac.2017.06.100. PubMed DOI

Pal S., Dey S.K., Saha C. Inhibition of Catalase by Tea Catechins in Free and Cellular State: A Biophysical Approach. PLoS ONE. 2014;9:e102460. doi: 10.1371/journal.pone.0102460. PubMed DOI PMC

Heinecke J.W., Li W., Daehnke H.L., 3rd, Goldstein J.A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 1993;268:4069–4077. doi: 10.1016/S0021-9258(18)53581-X. PubMed DOI

Nakagawara A., Nathan C.F., Cohn Z.A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J. Clin. Investig. 1981;68:1243–1252. doi: 10.1172/JCI110370. PubMed DOI PMC

Shiba Y., Kinoshita T., Chuman H., Taketani Y., Takeda E., Kato Y., Naito M., Kawabata K., Ishisaka A., Terao J., et al. Flavonoids as substrates and inhibitors of myeloperoxidase: Molecular actions of aglycone and metabolites. Chem. Res. Toxicol. 2008;21:1600–1609. doi: 10.1021/tx8000835. PubMed DOI

D’Alessandro T., Prasain J., Benton M.R., Botting N., Moore R., Darley-Usmar V., Patel R., Barnes S. Polyphenols, Inflammatory Response, and Cancer Prevention: Chlorination of Isoflavones by Human Neutrophils. J. Nutr. 2003;133:3773S–3777S. doi: 10.1093/jn/133.11.3773S. PubMed DOI

Binsack R., Boersma B.J., Patel R.P., Kirk M., White C.R., Darley-Usmar V., Barnes S., Zhou F., Parks D.A. Enhanced antioxidant activity after chlorination of quercetin by hypochlorous acid. Alcohol. Clinic. Experim. Res. 2001;25:434–443. doi: 10.1111/j.1530-0277.2001.tb02232.x. PubMed DOI

Kawai Y., Nishikawa T., Shiba Y., Saito S., Murota K., Shibata N., Kobayashi M., Kanayama M., Uchida K., Terao J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: Implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem. 2008;283:9424–9434. doi: 10.1074/jbc.M706571200. PubMed DOI

Ibero-Baraibar I., Abete I., Navas-Carretero S., Massis-Zaid A., Martinez J.A., Zulet M.A. Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr. Metabol. Cardiovasc. Dis. 2014;24:416–422. doi: 10.1016/j.numecd.2013.09.017. PubMed DOI

Basu A., Sanchez K., Leyva M.J., Wu M., Betts N.M., Aston C.E., Lyons T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010;29:31–40. doi: 10.1080/07315724.2010.10719814. PubMed DOI

Lowe G.M., Gana K., Rahman K. Dietary supplementation with green tea extract promotes enhanced human leukocyte activity. J. Complement. Integr. Med. 2015;12:277–282. doi: 10.1515/jcim-2014-0042. PubMed DOI

Yen G.C., Duh P.D., Tsai H.L., Huang S.L. Pro-oxidative properties of flavonoids in human lymphocytes. Biosci. Biotechnol. Biochem. 2003;67:1215–1222. doi: 10.1271/bbb.67.1215. PubMed DOI

Zubair H., Ullah M., Ahmad A., Khan H., Hadi S.M. Soy: Nutrition, Consumption and Health. Nova Science Publisher; Hauppauge, NY, USA: 2012. Soy isoflavone genistein in cancer chemoprevention: Role of endogenous copper and involvement of reactive oxygen species; pp. 333–344.

Saul D., Gleitz S., Nguyen H.H., Kosinsky R.L., Sehmisch S., Hoffmann D.B., Wassmann M., Menger B., Komrakova M. Effect of the lipoxygenase-inhibitors baicalein and zileuton on the vertebra in ovariectomized rats. Bone. 2017;101:134–144. doi: 10.1016/j.bone.2017.04.011. PubMed DOI

Che J., Yang J., Zhao B., Zhang G., Wang L., Peng S., Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol. Trace Elem. Res. 2019;195:353–365. doi: 10.1007/s12011-019-01867-4. PubMed DOI

Toxqui L., Vaquero M.P. Chronic iron deficiency as an emerging risk factor for osteoporosis: A hypothesis. Nutrients. 2015;7:2324–2344. doi: 10.3390/nu7042324. PubMed DOI PMC

Fung E.B., Harmatz P.R., Milet M., Coates T.D., Thompson A.A., Ranalli M., Mignaca R., Scher C., Giardina P., Robertson S., et al. Fracture prevalence and relationship to endocrinopathy in iron overloaded patients with sickle cell disease and thalassemia. Bone. 2008;43:162–168. doi: 10.1016/j.bone.2008.03.003. PubMed DOI PMC

Vasta J.D., Raines R.T. Collagen Prolyl 4-Hydroxylase as a Therapeutic Target. J. Med. Chem. 2018;61:10403–10411. doi: 10.1021/acs.jmedchem.8b00822. PubMed DOI PMC

Krol B.J., Murad S., Walker L.C., Marshall M.K., Clark W.L., Pinnell S.R., Yeowell H.N. The expression of a functional, secreted human lysyl hydroxylase in a baculovirus system. J. Investig. Dermatol. 1996;106:11–16. doi: 10.1111/1523-1747.ep12326956. PubMed DOI

Bonifácio B., Silva P., Ramos M., Ramos S., Negri K., Bauab T., Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2013;9:1–15. doi: 10.2147/IJN.S52634. PubMed DOI PMC

Suvarna V., Gujar P., Murahari M. Complexation of phytochemicals with cyclodextrin derivatives – An insight. Biomed. Pharmacother. 2017;88:1122–1144. doi: 10.1016/j.biopha.2017.01.157. PubMed DOI

Jakab G., Bogdán D., Mazák K., Deme R., Mucsi Z., Mándity I.M., Noszál B., Kállai-Szabó N., Antal I. Physicochemical Profiling of Baicalin Along with the Development and Characterization of Cyclodextrin Inclusion Complexes. AAPS PharmSciTech. 2019;20:1–12. doi: 10.1208/s12249-019-1525-6. PubMed DOI PMC

Rahmanian N., Hamishehkar H., Dolatabadi J.E.N., Arsalani N. Nano graphene oxide: A novel carrier for oral delivery of flavonoids. Coll. Surf. B Biointerfaces. 2014;123:331–338. doi: 10.1016/j.colsurfb.2014.09.036. PubMed DOI

Maiti K., Murugan V., Saha B., Mukherjee P. Exploring the Effect of Hesperetin–HSPC Complex—A Novel Drug Delivery System on the In Vitro Release, Therapeutic Efficacy and Pharmacokinetics. AAPS PharmSciTech. 2009;10:943–950. doi: 10.1208/s12249-009-9282-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...