Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
610028
European Research Council - International
PubMed
28493911
PubMed Central
PMC5426662
DOI
10.1371/journal.pone.0177030
PII: PONE-D-16-35762
Knihovny.cz E-zdroje
- MeSH
- deštný prales * MeSH
- druhová specificita MeSH
- listy rostlin růst a vývoj metabolismus MeSH
- Magnoliopsida růst a vývoj metabolismus MeSH
- metabolom * MeSH
- průmyslová hnojiva * analýza MeSH
- půda chemie MeSH
- stromy růst a vývoj metabolismus MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- průmyslová hnojiva * MeSH
- půda MeSH
BACKGROUND: Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. METHODOLOGY/PRINCIPAL FINDINGS: We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. CONCLUSIONS/SIGNIFICANCE: The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.
CREAF Cerdanyola del Vallès Catalonia Spain
CSIC Global Ecology Unit CREAF CEAB CSIC UAB Cerdanyola del Vallès Catalonia Spain
Global Change Research Institute The Czech Academy of Sciences Brno Czech Republic
Smithsonian Tropical Research Institute Apartado Balboa Republic of Panama
Zobrazit více v PubMed
Fernández-Martínez M, Vicca S, Janssens I a., Sardans J, Luyssaert S, Campioli M, et al. Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Chang. 2014;4: 471–476.
Walker TW, Syers JK. The fate of phosphorus during pedogenesis. Geoderma. 1976;15: 1–19.
Vitousek PM, Porder S, Houlton BZ, Chadwick O a. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl. 2010;20: 5–15. PubMed
Hedin LO, Vitousek PM, Matson P a. Nutrient Losses Over Four Million Years of Tropical Forest Development. Ecology. 2003;84: 2231–2255.
Lambers H, Raven J a, Shaver GR, Smith SE. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol. 2008;23: 95–103. 10.1016/j.tree.2007.10.008 PubMed DOI
Vitousek PM. Nutrient cycling and limitation: Hawai ‘i as a model system. Princeton. Princeton, New Jersey, USA.; 2004.
Tripler CE, Kaushal SS, Likens GE, Walter MT. Patterns in potassium dynamics in forest ecosystems. Ecol Lett. 2006;9: 451–466. 10.1111/j.1461-0248.2006.00891.x PubMed DOI
LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 2008;89: 371–9. PubMed
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 2007;10: 1135–1142. 10.1111/j.1461-0248.2007.01113.x PubMed DOI
Sardans J, Peñuelas J. Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr. 2015; 261–275.
Paoli GD, Curran LM. Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems. 2007;10: 503–518.
Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology. 2011;92: 1616–25. Available: http://www.ncbi.nlm.nih.gov/pubmed/21905428 PubMed
Santiago LS. Nutrient limitation of eco-physiological processes in tropical trees. Trees. Springer Berlin Heidelberg; 2015;29: 1291–1300.
Santiago LS, Wright SJ, Harms KE, Yavitt JB, Korine C, Garcia MN, et al. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J Ecol. 2012;100: 309–316.
Pasquini SC, Santiago LS. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia. 2012;168: 311–319. 10.1007/s00442-011-2099-5 PubMed DOI
Pasquini SC, Wright SJ, Santiago LS. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment. Ecology. 2014;96: 141217123415005. PubMed
Wurzburger N, Wright SJ. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology. 2015;96: 2137–2146. PubMed
Turner BL, Haygarth PM. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ. 2005;344: 27–36. 10.1016/j.scitotenv.2005.02.003 PubMed DOI
Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecol. 2011;36: 433–445.
Pasquini SC, Santiago LS. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia. 2012;168: 311–319. 10.1007/s00442-011-2099-5 PubMed DOI
Mayor JR, Wright SJ, Turner BL. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J Ecol. 2014;102: 36–44.
Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, et al. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob Chang Biol. 2009;16: 2171–2185.
Peñuelas J, Sardans J, Ogaya R, Estiarte M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J Ecol. 2008;56: 613–622.
Sardans J, Janssens IA, Alonso R, Veresoglou SD, Rillig MC, Sanders TG, et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob Ecol Biogeogr. 2015;24: 240–255.
Sardans J, Peñuelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Glob Ecol Biogeogr. 2013;22: 494–507.
Sardans J, Peñuelas J. Hydraulic redistribution by plants and nutrient stoichiometry: Shifts under global change. Ecohydrology. 2014;7: 1–20.
Urbina I, Sardans J, Beierkuhnlein C, Jentsch A, Backhaus S, Grant K, et al. Shifts in the elemental composition of plants during a very severe drought. Environ Exp Bot. 2015;111: 63–73. PubMed PMC
Yu Q, Chen Q, Elser JJ, He N, Wu H, Zhang G, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol Lett. 2010;13: 1390–1399. 10.1111/j.1461-0248.2010.01532.x PubMed DOI
Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18: 1157–61. 10.1038/81137 PubMed DOI
Peñuelas J, Sardans J. Ecological metabolomics. Chem Ecol. 2009;25: 305–309.
Leiss KA, Choi YH, Verpoorte R, Klinkhamer PGL. An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem Rev. 2011;10: 205–216. 10.1007/s11101-010-9175-z PubMed DOI PMC
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, et al. Opposite metabolic responses of shoots and roots to drought. Sci Rep. 2014;4: 1–7. PubMed PMC
Peñuelas J, Sardans J. Ecology: Elementary factors. Nature. 2009;460: 803–804. 10.1038/460803a PubMed DOI
Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol. 2002;48: 155–71. Available: http://www.ncbi.nlm.nih.gov/pubmed/11860207 PubMed
Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Mirabello MJ. Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Aust J Soil Res. 2009;47: 674.
Wilson M, Lindow SE. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994;60: 4468–4477. PubMed PMC
Binkley D, Giardina C, Bashkin MA. Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. For Ecol Manage. 2000;128: 241–247.
Mirmanto E, Proctor J, Green J, Nagy L. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos Trans R Soc London B Biol Sci. 1999;354: 1825–1829. 10.1098/rstb.1999.0524 PubMed DOI PMC
Tanner EVJ, Kapos V, Franco W. Nitorgen and Phosphorus Fertilization Effects on Venezuelan Montane Forest Trunk Growth and Litterfall. Ecology. 1992;73: 78–86.
Corre MD, Veldkamp E, Arnold J, Wright SJ. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology. 2010;91: 1715–1729. PubMed
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Guenther A, Llusià J, Rico L, et al. Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biol. BMC Plant Biology; 2016;16: 78 10.1186/s12870-016-0767-7 PubMed DOI PMC
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, et al. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015;207: 591–603. 10.1111/nph.13377 PubMed DOI
Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrectsen BR, Ingvarsson PK. Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett. 2013;16: 791–798. 10.1111/ele.12114 PubMed DOI
Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJB. Genetic analysis of metabolome-phenotype interactions: From model to crop species. Trends Genet. 2013;29: 41–50. 10.1016/j.tig.2012.09.006 PubMed DOI
Montero-Vargas JM, González-González LH, Gálvez-Ponce E, Ramírez-Chávez E, Molina-Torres J, Chagolla A, et al. Metabolic phenotyping for the classification of coffee trees and the exploration of selection markers. Mol Biosyst. 2013;9: 693–9. 10.1039/c3mb25509c PubMed DOI
Schweiger R, Baier MC, Perscke M, Muller C. Hugh specificity in plant leaf metabolomics responses to arbuscular mycorrhiza. Nat Commun. 2014;5: 3886 10.1038/ncomms4886 PubMed DOI
Tohge T, de Souza LP, Fernie AR. Genome-enabled plant metabolomics. J Chromatogr B Anal Technol Biomed Life Sci. Elsevier B.V.; 2014;966: 7–20. PubMed
Robinson AR, Gheneim R, Kozak R a, Ellis DD, Mansfield SD. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. J Exp Bot. 2005;56: 2807–2819. 10.1093/jxb/eri273 PubMed DOI
Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber D a, Tolstikov V, et al. Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytol. 2012;193: 890–902. 10.1111/j.1469-8137.2011.03976.x PubMed DOI
Ghasemzadeh A, Ghasemzadeh N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plants Res. 2011;5: 6697–6703.
Ameh SJ, Tarfa FD, Ebeshi BU. Traditional herbal management of sickle cell anemia: Lessons from Nigeria. Anemia. 2012;2012. PubMed PMC
Niinemets U. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct Ecol. 1997;11: 518–531.
Kitajima K. depend tree seedlings tropical Do shade-tolerant analysis growth Functional longer on seed reserves? species of three Bignoniaceae. Funct Ecol. 2002;16: 433–444.
Marino G, Aqil M, Shipley B. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct Ecol. 2010;24: 263–272.
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem. Elsevier Masson SAS; 2013;72: 1–20. PubMed
Estiarte M, Peñuelas J. Excess carbon: the relationship with phenotypical plasticity in storage and defense functions of plants. Orsis Org i Sist Rev botànica Zool i Ecol. 1999;14: 159–203. Available: http://dialnet.unirioja.es/servlet/articulo?codigo=809419&info=resumen
Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, et al. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol Biochem. 2015;93: 74–83. 10.1016/j.plaphy.2015.01.001 PubMed DOI
Martz F, Jaakola L, Julkunen-Tiitto R, Stark S. Phenolic Composition and Antioxidant Capacity of Bilberry (Vaccinium myrtillus) Leaves in Northern Europe Following Foliar Development and Along Environmental Gradients. J Chem Ecol. 2010;36: 1017–1028. 10.1007/s10886-010-9836-9 PubMed DOI
Zhao HJ, Zou Q. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica. 2002;40: 523–527.
Randi A, Freitas M, Rodrigues A, Maraschin M, Torres M. Acclimation and photoprotection of young gametophytes of Acrostichum danaeifolium to UV-B stress. Photosynthetica. 2014;52: 50–56.
Beggs JJ, Chapman BJ. Australian Strike Activity in an International Context: 1964–85. J Ind Relations. 1986;2: 137–149.
Hahlbrock K, Lamb CJ, Purwin C, Ebel J, Fautz E, Schäfer E. Rapid Response of Suspension-cultured Parsley Cells to the Elicitor from Phytophthora megasperma var. sojae INDUCTION OF THE ENZYMES OF GENERAL PHENYLPROPANOID METABOLISM. Plant Physiol. 1981;67: 768–773. PubMed PMC
Beggs CJ, Stolzer-Jehle A, Wellmann E. Isoflavonoid formation as an indicator of UV stress in bean (Phaseolus vulgaris L.) leaves. Plant Physiol. 1985;79: 630–634. PubMed PMC
Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993;5: 171–179. 10.1105/tpc.5.2.171 PubMed DOI PMC
Lois R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation inAmbidopsis thaliana L. Planta. 1994;194: 498–503.
Stamp N. Out of the quagmire of lant defense hypotheses. Q Rev Biol. 2003;78: 23–55. PubMed
Nguyen HTM, Neelakadan AK, Quach TN, Valliyodan B, Kumar R, Zhang Z, et al. Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis. Plant Physiol Biochem. Elsevier Masson SAS; 2013;73: 23–32. PubMed
Gil M, Pontin M, Berli F, Bottini R, Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. Elsevier Ltd; 2012;77: 89–98. PubMed
Lokvam J, Kursar TA. Divergence in structure and activity of phenolic defenses in young leaves of two co-occurring Inga species. J Chem Ecol. 2005;31: 2563–2580. 10.1007/s10886-005-7614-x PubMed DOI
Lokvam J, Coley PD, Kursar TA. Cinnamoyl glucosides of catechin and dimeric procyanidins from young leaves of Inga umbellifera (Fabaceae). Phytochemistry. 2004;65: 351–358. PubMed
Skillman JB, Garcia M, Virgo A, Winter K. Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways. Am J Bot. 2005;92: 1811–1819. 10.3732/ajb.92.11.1811 PubMed DOI
Gyimah R, Nakao T. Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successional strategies. New For. 2007;33: 217–236.
Zavala JA, Ravetta DA. Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. F Crop Res. 2001;69: 143–149.
Coelho GC, Rachwal MFG, Dedecek RA, Curcio GR, Nietsche K, Schenkel EP. Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Biochem Syst Ecol. 2007;35: 75–80.
Gianoli E, Saldaña A. Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance. Oecologia. 2013;173: 13–21. 10.1007/s00442-013-2590-2 PubMed DOI
Tang J, Baldocchi DD, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol. 2005;11: 1298–1304.
Wang WQ, Sardans J, Wang C, Zeng CS, Tong C, Asensio D, et al. Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecol. 2015; 809–822.
Grassi G, Minotta G. Influence of nutrient supply on shade-sun acclimation of Picea abies seedlings: effects on foliar morphology, photosynthetic performance and growth. Tree Physiol. 2000;20: 645–652. PubMed
Rivas-ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci U S A. 2012;109: 4181–6. 10.1073/pnas.1116092109 PubMed DOI PMC
Sardans J, Peñuelas J. Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche.” Plant Ecol. 2014;215: 441–455. 10.1007/s11258-014-0314-2 PubMed DOI PMC