Tree Species and Epiphyte Taxa Determine the "Metabolomic niche" of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34822376
PubMed Central
PMC8621298
DOI
10.3390/metabo11110718
PII: metabo11110718
Knihovny.cz E-zdroje
- Klíčová slova
- French Guiana, bacteria, canopy soils, epiphyte, metabolomics,
- Publikační typ
- časopisecké články MeSH
Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes.
AMAP University Montpellier CIRAD CNRS INRAE IRD 34000 Montpellier France
Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE UK
CREAF Cerdanyola del Vallès 08193 Catalonia Spain
Department of Biology University of Antwerp BE 2610 Wilrijk Belgium
Department of Zoology College of Science King Saud University P O Box 2455 Riyadh 11451 Saudi Arabia
Zobrazit více v PubMed
Connell J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199:1302–1310. doi: 10.1126/science.199.4335.1302. PubMed DOI
John R., Dalling J.W., Harms K.E., Yavitt J.B., Stallard R.F., Mirabello M., Hubbell S.P., Valencia R., Navarrete H., Vallejo M., et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA. 2007;104:864–869. doi: 10.1073/pnas.0604666104. PubMed DOI PMC
Wright J.S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia. 2002;130:1–14. doi: 10.1007/s004420100809. PubMed DOI
Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nat. Cell Biol. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Achard F., Eva H.D., Stibig H.-J., Mayaux P., Gallego J., Richards T., Malingreau J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science. 2002;297:999–1002. doi: 10.1126/science.1070656. PubMed DOI
Volkov I., Banavar J.R., He F., Hubbell S.P., Maritan A. Density dependence explains tree species abundance and diversity in tropical forests. Nat. Cell Biol. 2005;438:658–661. doi: 10.1038/nature04030. PubMed DOI
Aiba S.-I., Sawada Y., Takyu M., Seino T., Kitayama K., Repin R. Structure, floristics and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils. Aust. J. Bot. 2015;63:191–203. doi: 10.1071/BT14238. DOI
LeBauer D.S., Treseder K.K. Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology. 2008;89:371–379. doi: 10.1890/06-2057.1. PubMed DOI
Fujii K., Shibata M., Kitajima K., Ichie T., Kitayama K., Turner B. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol. Res. 2018;33:149–160. doi: 10.1007/s11284-017-1511-y. DOI
Xu W., Ci X., Song C., He T., Zhang W., Li Q., Li J. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecol. Evol. 2016;6:8719–8726. doi: 10.1002/ece3.2529. PubMed DOI PMC
Pennington R.T., Lavin M., Oliveira-Filho A. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annu. Rev. Ecol. Evol. Syst. 2009;40:437–457. doi: 10.1146/annurev.ecolsys.110308.120327. DOI
Matos F.A.R., Magnago L., Gastauer M., Carreiras J.M.B., Simonelli M., Meira-Neto J.A.A., Edwards D.P. Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. J. Ecol. 2016;105:265–276. doi: 10.1111/1365-2745.12661. DOI
Martins K., Marques M., dos Santos E., Marques R. Effects of soil conditions on the diversity of tropical forests across a successional gradient. For. Ecol. Manag. 2015;349:4–11. doi: 10.1016/j.foreco.2015.04.018. DOI
Mandl N.A., Kessler M., Gradstein R. Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Plant Ecol. Divers. 2009;2:313–321. doi: 10.1080/17550870903341877. DOI
Clark D.B., Clark D.A., Read J.M. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J. Ecol. 1998;86:101–112. doi: 10.1046/j.1365-2745.1998.00238.x. DOI
Becerra J.X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. USA. 2015;112:6098–6103. doi: 10.1073/pnas.1418643112. PubMed DOI PMC
Nadkarni N.M., Schafer D., Matelson T.J., Solano R. Comparison of srboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia. 2002;46:24–33. doi: 10.1078/0031-4056-00110. DOI
Lowman M.D., Rinker H.B. Forest Canopies. 2nd ed. Academic Press; Cambridge, MA, USA: 2004. p. 544.
Ozanne C.M.P., Anhuf D., Boulter S.L., Keller M., Kitching R.L., Körner C., Meinzer F.C., Mitchell A.W., Nakashizuka T., Silva Dias P.L., et al. Biodiversity meets the almosphere: A global view of forest canopies. Science. 2003;301:183–186. doi: 10.1126/science.1084507. PubMed DOI
Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003;54:655–670. doi: 10.1046/j.1351-0754.2003.0556.x. DOI
Floren A., von Rintelen T., Hebert P.D.N., de Araujo B.C., Schmidt S., Balke M., Narakusumo R.P., Peggie D., Ubaidillah R., von Rintelen K., et al. Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-73519-w. PubMed DOI PMC
Paoletti M.G., Taylor R.A.J., Stinner B.R., Stinner D.H., Benzing D.H. Diversity of soil fauna in the canopy and forest floor of a Venezuela cloud forest. J. Trop. Ecol. 1991;7:373–383. doi: 10.1017/S0266467400005654. DOI
Beaulieu F., Walter D.E., Proctor H.C., Kitching R.L. The Canopy starts at 0.5 cm: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica. 2010;42:704–709. doi: 10.1111/j.1744-7429.2010.00638.x. DOI
Cardelús C.L., Mack M.C., Woods C., Demarco J., Treseder K. The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant Soil. 2008;318:47–61. doi: 10.1007/s11104-008-9816-9. DOI
Lesica P., Antibus R.K. Canopy Soils and epiphyte richness. Res. Explor. 1991;7:156.
Looby C.I., Hollenbeck E.C., Treseder K.K. Fungi in the Canopy: How Soil Fungi and Extracellular Enzymes Differ Between Canopy and Ground Soils. Ecosystems. 2019;23:768–782. doi: 10.1007/s10021-019-00439-w. DOI
Victoriano-Romero E., García-Franco J.G., Mehltreter K., Valencia-Díaz S., Toledo-Hernandez A., Flores-Palacios A. Ephiphyte associations and canopy soil volumen: Nutrient capital and factors influencing soil retention in the canopy. Plant Biol. 2019;22:541–552. doi: 10.1111/plb.13080. PubMed DOI
Janzen D.H. Herbivores and the Number of Tree Species in Tropical Forests. Am. Nat. 1970;104:501–528. doi: 10.1086/282687. DOI
Leroy C., Carrias J.-F., Céréghino R., Corbara B. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J. Plant Ecol. 2016;9:241–255. doi: 10.1093/jpe/rtv052. DOI
Lyons B., Nadkarni N.M., North M.P. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Can. J. Bot. 2000;78:957–968. doi: 10.1139/cjb-78-7-957. DOI
Neider J., Prosperí J., Michaloud G. Epiphytes and their contribution to canopy diversity. Plant Ecol. 2001;153:51–63. doi: 10.1023/A:1017517119305. DOI
Zotz G. The systematic distribution of vascular epiphytes—A critical update. Bot. J. Linn. Soc. 2013;171:453–481. doi: 10.1111/boj.12010. DOI
Gotsch S.G., Nadkarni N., Darby A., Glunk A., Dix M., Davidson K., Dawson T.E. Life in the treetops: Ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecol. Monogr. 2015;85:393–412. doi: 10.1890/14-1076.1. DOI
Benzing D.H. Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press; Cambridge, MA, USA: 2000. DOI
Ngai J.T., Srivastava D.S. Predators accelerate nutrient cycling in a bromeliad ecosystem. Science. 2006;314:963. doi: 10.1126/science.1132598. PubMed DOI
Wardle D., Yeates G., Barker G., Bonner K. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 2006;38:1052–1062. doi: 10.1016/j.soilbio.2005.09.003. DOI
Pittl E., Innerebner G., Wanek W., Insam H. Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica. Plant Soil. 2009;329:65–74. doi: 10.1007/s11104-009-0134-7. DOI
Donald J., Bonnett S., Cutler M., Majalap N., Maxfield P., Ellwood M.D.F. Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil. Forest. 2017;8:474. doi: 10.3390/f8120474. DOI
Nakamura A., Kitching R.L., Cao M., Creedy T.J., Fayle T., Freiberg M., Hewitt C.N., Itioka T., Koh L.P., Ma K., et al. Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends Ecol. Evol. 2017;32:438–451. doi: 10.1016/j.tree.2017.02.020. PubMed DOI
Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics: Overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI
Chen M.-S. Inducible direct plant defense against insect herbivores: A review. Insect Sci. 2008;15:101–114. doi: 10.1111/j.1744-7917.2008.00190.x. PubMed DOI
Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol. Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833. PubMed DOI
Gargallo-Garriga A., Wright S.J., Sardans J., Pérez-Trujillo M., Oravec M., Večeřová K., Urban O., Fernández-Martínez M., Parella T., Peñuelas J. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position. PLoS ONE. 2017;12:e0177030. doi: 10.1371/journal.pone.0177030. PubMed DOI PMC
Hewavitharana S.S., Klarer E., Reed A.J., Leisso R., Poirier B., Honaas L., Rudell D.R., Mazzola M. Temporal Dynamics of the Soil Metabolome and Microbiome during Simulated Anaerobic Soil Disinfestation. Front. Microbiol. 2019;10:2365. doi: 10.3389/fmicb.2019.02365. PubMed DOI PMC
Song Y., Li X., Yao S., Yang X., Jiang X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Sci. Total Environ. 2020;728:138439. doi: 10.1016/j.scitotenv.2020.138439. PubMed DOI
Peñuelas J., Sardans J., Ogaya R., Estiarte M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 2008;56:613–622.
Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2009;5:3–21. doi: 10.1007/s11306-008-0152-0. DOI
Musila W., Todt H., Uster D., Dalitz H. African Biodiversity. Springer; Boston, MA, USA: 2005. Is Geodiversity Correlated to Biodiversity? A Case Study of the Relationship between Spatial Heterogeneity of Soil Resources and Tree Diversity in a Western Kenyan Rainforest; pp. 405–414.
Schreeg L.A., Mack M.C., Turner B.L. Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry. 2013;113:507–524. doi: 10.1007/s10533-012-9781-5. DOI
Osborne B.B., Nasto M.K., Soper F.M., Asner G.P., Balzotti C.S., Cleveland C.C., Taylor P.G., Townsend A.R., Porder S. Leaf litter inputs reinforce islands on nitrogen fertility in a lowland tropical rainforest. Biogeochemistry. 2020;147:293–306. doi: 10.1007/s10533-020-00643-0. DOI
Matson A.L., Corre M.D., Burneo J.I., Veldkamp E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry. 2015;122:281–294. doi: 10.1007/s10533-014-0041-8. DOI
Nadkarni N.M., Schaefer D., Matelson T.J., Solano R. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. For. Ecol. Manag. 2004;198:223–236. doi: 10.1016/j.foreco.2004.04.011. DOI
Scheffers B.R., Phillips B.L., Shoo L.P. Asplenium bird’s nets ferns in rainforest canopies are climate-contingent refuges for frogs. Glob. Ecol. Conserv. 2014;2:37–46.
Aguilar-Cruz Y., Garcia-Franco J.G., Zotz G. Microsites and early litter decomposition patterns in the soil and forest canopy at tregional scale. Biogeochemistry. 2020;151:15–30. doi: 10.1007/s10533-020-00705-3. DOI
Zaharescu D.G., Burghelea C.I., Dontsova K., Presler J.K., Hunt E.A., Domanik K.J., Amistadi M.K., Sandhaus S., Munoz E.N., Gaddis E.E., et al. Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering. Sci. Rep. 2019;9:15006. doi: 10.1038/s41598-019-51274-x. PubMed DOI PMC
Enloe H.A., Quideau S.A., Graham R.C., Sillett S.C., Oh S.-W., Wasylishen R.E. Soil Organic Matter Processes in Old-Growth Redwood Forest Canopies. Soil Sci. Soc. Am. J. 2010;74:161–171. doi: 10.2136/sssaj2009.0031. DOI
Marí M.L.G., Toledo J.J., Nascimento H.E.M., Zartman C.E. Regional and Fine Scale Variation of Holoepiphyte Community Structure in Central Amazonian White-Sand Forests. Biotropica. 2016;48:70–80. doi: 10.1111/btp.12300. DOI
Gotsch S.G., Nadkarni N., Amici A. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. J. Trop. Ecol. 2016;32:455–468. doi: 10.1017/S026646741600033X. DOI
Benner J.W. Epiphytes preferentially colonize high-phosphorus host trees in unfertilized Hawaiian montane forests. Bryol. 2011;114:335–345. doi: 10.1639/0007-2745-114.2.335. DOI
Ledo A., Burslem D.F., Condés S., Montes F. Micro-scale habitat associations of woody plants in a neotropical cloud forest. J. Veg. Sci. 2013;24:1086–1097. doi: 10.1111/jvs.12023. DOI
Zotz G., Schultz S. The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol. 2007;195:131–141. doi: 10.1007/s11258-007-9310-0. DOI
Boelter C.R., Dambos C.S., Nascimiento H.E.M., Zartman C.E. A tangled web in tropical tree-tops: Effects of edaphic variation, neighborhood phorophyte composition and bark characteristics on epiphytes in a Central Amazonian forest. J. Veg. Sci. 2014;25:1090–1099. doi: 10.1111/jvs.12154. DOI
Obregon A., Gehrig-Downie C., Gradstein S.R., Rollenbeck R., Bendix J. Canopy level fog occurrence in a tropical lowland forest of French Guaiana as a prerequisite for high epiphyte diversity. Agric. For. Metereol. 2011;151:290–300. doi: 10.1016/j.agrformet.2010.11.003. DOI
Bohlman S.A., Matelson T.J., Nadkarni N.M. Moisture and Temperature Patterns of Canopy Humus and Forest Floor Soil of a Montane Cloud Forest, Costa Rica. Biotropica. 1995;27:13. doi: 10.2307/2388898. DOI
Benner J.W., Vitousek P.M. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol. Lett. 2007;10:628–636. doi: 10.1111/j.1461-0248.2007.01054.x. PubMed DOI
Li Y.Q., Ruan H.H., Zou X.M., Myster R.W. Response of major soil decomposers to landscape in a Puerto Rican rainforest. Soil Sci. 2005;170:202–211. doi: 10.1097/00010694-200503000-00006. DOI
Sahu S.C., Dhal N.K., Lal B., Mohanty R.C. Differences in tree species diversity and soil nutrient status in a tropical sacred forest ecosystem on Niyamgiri hill range, Eastern Ghats, India. J. Mt. Sci. 2012;9:492–500. doi: 10.1007/s11629-012-2302-0. DOI
Prada C.M., Morris A., Andersen K.M., Turner B.L., Caballero P., Dalling J.W. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of three communities in premontane tropical forest. J. Veg. Sci. 2017;278:859–870. doi: 10.1111/jvs.12540. DOI
Amani C. Impact of Soil Heterogeneity on Forest Structure and Diversity of Tree Species in the Central Congo Basin. Int. J. Plant Sci. 2018;179:198–208. doi: 10.1086/696149. DOI
Paoli G.D., Curran L.M., Zak D.R. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: Evidence for niche partitioning by tropical rain forest trees. J. Ecol. 2006;94:157–170. doi: 10.1111/j.1365-2745.2005.01077.x. DOI
Kuzmeier S., Wiedemann T., Biber P., Schad P., Krasilnikov P.V. Effects of Edaphic factors on the tree stand siversity in a tropical forest of Sierra Madre del Sur, Mexico. Eurasian Soil Sci. 2012;45:740–751. doi: 10.1134/S1064229312080042. DOI
Ewel J.J., Mazzarino M.J., Celis G. Soil Changes in Model Tropical Ecosystems: Effects of Stand Longevity Outweigh Plant Diversity and Tree Species Identity in a Fertile Volcanic Soil. Ecosystems. 2014;17:820–836. doi: 10.1007/s10021-014-9753-9. DOI
Sarvade S., Gupta B., Singh M. Composition, diversity and distribution of tree species in response to changing soil properties with increasing distance from water source—A case study of Gobind Sagar Reservoir in India. J. Mt. Sci. 2016;13:522–533. doi: 10.1007/s11629-015-3493-y. DOI
Gehrig--Downie C., Obregón A., Bendix J., Gradstein R.S. Epiphyte biomass and canopy microclimate in the tropical lowland cloud forest of French Guaiana. Biotropica. 2011;43:591–596. doi: 10.1111/j.1744-7429.2010.00745.x. DOI
Woods C.L., Cardelús C.L., DeWalt S.J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015;103:421–430. doi: 10.1111/1365-2745.12357. DOI
Eskov A., Zverev A., Abakumov E. Microbiomes in Suspended Soils of Vascular Epiphytes Differ from Terrestrial Soil Microbiomes and from Each Other. Microorganisms. 2021;9:1033. doi: 10.3390/microorganisms9051033. PubMed DOI PMC
Rascher U., Freiberg M., Lüttge U. Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana. Front. Plant Sci. 2012;2:117. doi: 10.3389/fpls.2011.00117. PubMed DOI PMC
Pardow A., Gehrig-Downie C., Gradstein R., Lakatos M. Functional diversity of epiphytes in two tropical lowland rain-forest, French Guaiana: Using bryophyte life-forms to detect areas of high biodiversity. Biodivers. Conserv. 2012;21:3637–3655. doi: 10.1007/s10531-012-0386-z. DOI
Ruiz-Cordova J.P., Toledo-Hernández V.H., Flores-Palacios A. The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico) Flora-Morphol. Distrib. Funct. Ecol. Plants. 2014;209:375–384. doi: 10.1016/j.flora.2014.06.003. DOI
Ding Y., Liu G., Zang R., Zhang J., Lu X., Huang J. Distribution of vascular epiphytes along a tropical elevational gradient: Disentangling abiotic and biotic determinants. Sci. Rep. 2016;6:19706. doi: 10.1038/srep19706. PubMed DOI PMC
Costa D.S., Zotz G., Hemp A., Kleyer M. Trait patterns of epiphytes compared to other plant life--Forms along a tropical elevation gradient. Funct. Ecol. 2018;32:2073–2084. doi: 10.1111/1365-2435.13121. DOI
Donald J., Maxfield P., Leroy C., Ellwood M.F. Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition. Acta Oecologica. 2020;106:103586. doi: 10.1016/j.actao.2020.103586. DOI
Peña-Claros M., Poorter L., Alarcón A., Blate G., Choque U., Fredericksen T.S., Justiniano M.J., Leaño C., Licona J.C., Pariona W., et al. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest. Biotropica. 2012;44:276–283. doi: 10.1111/j.1744-7429.2011.00813.x. DOI
Chave J., Riéra B., Dubois M.-A. Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability. J. Trop. Ecol. 2001;17:79–96. doi: 10.1017/S0266467401001055. DOI
Gourlet-Fleury S., Guehl J.-M., Laroussinie O. Ecology and Management of a Neotropical Rainforest: Lessons Drawn from Paracou, a Long-Term Experimental Research Site in French Guiana. Elseiver; Paris, France: 2004.
Courtois E.A., Stahl C., Berge J.V.D., Bréchet L., Van Langenhove L., Richter A., Urbina I., Soong J.L., Peñuelas J., Janssens I. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems. 2018;21:1445–1458. doi: 10.1007/s10021-018-0232-6. DOI
Poszwa A., Ferry B., Pollie B., Grimaldi C., Charles-Dominique P., Loubet M., Dambrine E. Variations of plant and soil 87Sr/86Sr along the slope of a tropical inselberg. Ann. For. Sci. 2009;66:512. doi: 10.1051/forest/2009036. DOI
Vand der meer P.J., Bongers F. Patterns of treefall and branch fall in a tropical rain forest in French Guiana. J. Ecol. 1996;84:19–29. doi: 10.2307/2261696. DOI
Réjou-Méchain M., Tymen B., Blanc L., Fauset S., Feldpausch T.R., Monteagudo A., Phillips O., Richard H., Chave J. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens. Environ. 2015;169:93–101. doi: 10.1016/j.rse.2015.08.001. DOI
FAO-ISRIC-ISSS . World Reference Base for Soil Resources. FAO; Rome, Italy: 1998. World Soil Resources Report Nr. 84.
Minh D.H.T., Le Toan T., Rocca F., Tebaldini S., Villard L., Réjou-Méchain M., Phillips O.L., Feldpausch T.R., Dubois-Fernandez P., Scipal K., et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guaiana. Remote Sens. Environ. 2016;175:138–147. doi: 10.1016/j.rse.2015.12.037. DOI
Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2015;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC
Gargallo-Garriga A., Sardans J., Llusià J., Peguero G., Asensio D., Ogaya R., Urbina I., Van Langenhove L., Verryckt L.T., Courtois E.A., et al. 31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees of a French Guiana Rainforest. Molecules. 2020;25:3960. doi: 10.3390/molecules25173960. PubMed DOI PMC
Koch B.P., Dittmar T., Witt M., Kattner G. Fundamentals of Molecular Formula Assignment to Ultrahigh Resolution Mass Data of Natural Organic Matter. Anal. Chem. 2007;79:1758–1763. doi: 10.1021/ac061949s. PubMed DOI
Kellerman A.M., Dittmar T., Kothawala D.N., Tranvik L.J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 2014;5:3804. doi: 10.1038/ncomms4804. PubMed DOI
Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M.H.H., Oksanen M.J. MASS Suggests. The vegan package. Community Ecol. Package. 2007;10:631–637.
Anderson M.J., Gorley R.N., Clarke K.R. PERMANOVA + for PRI-MER: Guide to Software and Statistical Methods. PRIMER-E; Plymouth, UK: 2008.