Tree Species and Epiphyte Taxa Determine the "Metabolomic niche" of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest

. 2021 Oct 21 ; 11 (11) : . [epub] 20211021

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34822376

Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes.

Zobrazit více v PubMed

Connell J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199:1302–1310. doi: 10.1126/science.199.4335.1302. PubMed DOI

John R., Dalling J.W., Harms K.E., Yavitt J.B., Stallard R.F., Mirabello M., Hubbell S.P., Valencia R., Navarrete H., Vallejo M., et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA. 2007;104:864–869. doi: 10.1073/pnas.0604666104. PubMed DOI PMC

Wright J.S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia. 2002;130:1–14. doi: 10.1007/s004420100809. PubMed DOI

Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nat. Cell Biol. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI

Achard F., Eva H.D., Stibig H.-J., Mayaux P., Gallego J., Richards T., Malingreau J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science. 2002;297:999–1002. doi: 10.1126/science.1070656. PubMed DOI

Volkov I., Banavar J.R., He F., Hubbell S.P., Maritan A. Density dependence explains tree species abundance and diversity in tropical forests. Nat. Cell Biol. 2005;438:658–661. doi: 10.1038/nature04030. PubMed DOI

Aiba S.-I., Sawada Y., Takyu M., Seino T., Kitayama K., Repin R. Structure, floristics and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils. Aust. J. Bot. 2015;63:191–203. doi: 10.1071/BT14238. DOI

LeBauer D.S., Treseder K.K. Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology. 2008;89:371–379. doi: 10.1890/06-2057.1. PubMed DOI

Fujii K., Shibata M., Kitajima K., Ichie T., Kitayama K., Turner B. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol. Res. 2018;33:149–160. doi: 10.1007/s11284-017-1511-y. DOI

Xu W., Ci X., Song C., He T., Zhang W., Li Q., Li J. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecol. Evol. 2016;6:8719–8726. doi: 10.1002/ece3.2529. PubMed DOI PMC

Pennington R.T., Lavin M., Oliveira-Filho A. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annu. Rev. Ecol. Evol. Syst. 2009;40:437–457. doi: 10.1146/annurev.ecolsys.110308.120327. DOI

Matos F.A.R., Magnago L., Gastauer M., Carreiras J.M.B., Simonelli M., Meira-Neto J.A.A., Edwards D.P. Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. J. Ecol. 2016;105:265–276. doi: 10.1111/1365-2745.12661. DOI

Martins K., Marques M., dos Santos E., Marques R. Effects of soil conditions on the diversity of tropical forests across a successional gradient. For. Ecol. Manag. 2015;349:4–11. doi: 10.1016/j.foreco.2015.04.018. DOI

Mandl N.A., Kessler M., Gradstein R. Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Plant Ecol. Divers. 2009;2:313–321. doi: 10.1080/17550870903341877. DOI

Clark D.B., Clark D.A., Read J.M. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J. Ecol. 1998;86:101–112. doi: 10.1046/j.1365-2745.1998.00238.x. DOI

Becerra J.X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. USA. 2015;112:6098–6103. doi: 10.1073/pnas.1418643112. PubMed DOI PMC

Nadkarni N.M., Schafer D., Matelson T.J., Solano R. Comparison of srboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia. 2002;46:24–33. doi: 10.1078/0031-4056-00110. DOI

Lowman M.D., Rinker H.B. Forest Canopies. 2nd ed. Academic Press; Cambridge, MA, USA: 2004. p. 544.

Ozanne C.M.P., Anhuf D., Boulter S.L., Keller M., Kitching R.L., Körner C., Meinzer F.C., Mitchell A.W., Nakashizuka T., Silva Dias P.L., et al. Biodiversity meets the almosphere: A global view of forest canopies. Science. 2003;301:183–186. doi: 10.1126/science.1084507. PubMed DOI

Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003;54:655–670. doi: 10.1046/j.1351-0754.2003.0556.x. DOI

Floren A., von Rintelen T., Hebert P.D.N., de Araujo B.C., Schmidt S., Balke M., Narakusumo R.P., Peggie D., Ubaidillah R., von Rintelen K., et al. Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-73519-w. PubMed DOI PMC

Paoletti M.G., Taylor R.A.J., Stinner B.R., Stinner D.H., Benzing D.H. Diversity of soil fauna in the canopy and forest floor of a Venezuela cloud forest. J. Trop. Ecol. 1991;7:373–383. doi: 10.1017/S0266467400005654. DOI

Beaulieu F., Walter D.E., Proctor H.C., Kitching R.L. The Canopy starts at 0.5 cm: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica. 2010;42:704–709. doi: 10.1111/j.1744-7429.2010.00638.x. DOI

Cardelús C.L., Mack M.C., Woods C., Demarco J., Treseder K. The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant Soil. 2008;318:47–61. doi: 10.1007/s11104-008-9816-9. DOI

Lesica P., Antibus R.K. Canopy Soils and epiphyte richness. Res. Explor. 1991;7:156.

Looby C.I., Hollenbeck E.C., Treseder K.K. Fungi in the Canopy: How Soil Fungi and Extracellular Enzymes Differ Between Canopy and Ground Soils. Ecosystems. 2019;23:768–782. doi: 10.1007/s10021-019-00439-w. DOI

Victoriano-Romero E., García-Franco J.G., Mehltreter K., Valencia-Díaz S., Toledo-Hernandez A., Flores-Palacios A. Ephiphyte associations and canopy soil volumen: Nutrient capital and factors influencing soil retention in the canopy. Plant Biol. 2019;22:541–552. doi: 10.1111/plb.13080. PubMed DOI

Janzen D.H. Herbivores and the Number of Tree Species in Tropical Forests. Am. Nat. 1970;104:501–528. doi: 10.1086/282687. DOI

Leroy C., Carrias J.-F., Céréghino R., Corbara B. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J. Plant Ecol. 2016;9:241–255. doi: 10.1093/jpe/rtv052. DOI

Lyons B., Nadkarni N.M., North M.P. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Can. J. Bot. 2000;78:957–968. doi: 10.1139/cjb-78-7-957. DOI

Neider J., Prosperí J., Michaloud G. Epiphytes and their contribution to canopy diversity. Plant Ecol. 2001;153:51–63. doi: 10.1023/A:1017517119305. DOI

Zotz G. The systematic distribution of vascular epiphytes—A critical update. Bot. J. Linn. Soc. 2013;171:453–481. doi: 10.1111/boj.12010. DOI

Gotsch S.G., Nadkarni N., Darby A., Glunk A., Dix M., Davidson K., Dawson T.E. Life in the treetops: Ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecol. Monogr. 2015;85:393–412. doi: 10.1890/14-1076.1. DOI

Benzing D.H. Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press; Cambridge, MA, USA: 2000. DOI

Ngai J.T., Srivastava D.S. Predators accelerate nutrient cycling in a bromeliad ecosystem. Science. 2006;314:963. doi: 10.1126/science.1132598. PubMed DOI

Wardle D., Yeates G., Barker G., Bonner K. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 2006;38:1052–1062. doi: 10.1016/j.soilbio.2005.09.003. DOI

Pittl E., Innerebner G., Wanek W., Insam H. Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica. Plant Soil. 2009;329:65–74. doi: 10.1007/s11104-009-0134-7. DOI

Donald J., Bonnett S., Cutler M., Majalap N., Maxfield P., Ellwood M.D.F. Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil. Forest. 2017;8:474. doi: 10.3390/f8120474. DOI

Nakamura A., Kitching R.L., Cao M., Creedy T.J., Fayle T., Freiberg M., Hewitt C.N., Itioka T., Koh L.P., Ma K., et al. Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends Ecol. Evol. 2017;32:438–451. doi: 10.1016/j.tree.2017.02.020. PubMed DOI

Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics: Overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI

Chen M.-S. Inducible direct plant defense against insect herbivores: A review. Insect Sci. 2008;15:101–114. doi: 10.1111/j.1744-7917.2008.00190.x. PubMed DOI

Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol. Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833. PubMed DOI

Gargallo-Garriga A., Wright S.J., Sardans J., Pérez-Trujillo M., Oravec M., Večeřová K., Urban O., Fernández-Martínez M., Parella T., Peñuelas J. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position. PLoS ONE. 2017;12:e0177030. doi: 10.1371/journal.pone.0177030. PubMed DOI PMC

Hewavitharana S.S., Klarer E., Reed A.J., Leisso R., Poirier B., Honaas L., Rudell D.R., Mazzola M. Temporal Dynamics of the Soil Metabolome and Microbiome during Simulated Anaerobic Soil Disinfestation. Front. Microbiol. 2019;10:2365. doi: 10.3389/fmicb.2019.02365. PubMed DOI PMC

Song Y., Li X., Yao S., Yang X., Jiang X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Sci. Total Environ. 2020;728:138439. doi: 10.1016/j.scitotenv.2020.138439. PubMed DOI

Peñuelas J., Sardans J., Ogaya R., Estiarte M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 2008;56:613–622.

Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2009;5:3–21. doi: 10.1007/s11306-008-0152-0. DOI

Musila W., Todt H., Uster D., Dalitz H. African Biodiversity. Springer; Boston, MA, USA: 2005. Is Geodiversity Correlated to Biodiversity? A Case Study of the Relationship between Spatial Heterogeneity of Soil Resources and Tree Diversity in a Western Kenyan Rainforest; pp. 405–414.

Schreeg L.A., Mack M.C., Turner B.L. Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry. 2013;113:507–524. doi: 10.1007/s10533-012-9781-5. DOI

Osborne B.B., Nasto M.K., Soper F.M., Asner G.P., Balzotti C.S., Cleveland C.C., Taylor P.G., Townsend A.R., Porder S. Leaf litter inputs reinforce islands on nitrogen fertility in a lowland tropical rainforest. Biogeochemistry. 2020;147:293–306. doi: 10.1007/s10533-020-00643-0. DOI

Matson A.L., Corre M.D., Burneo J.I., Veldkamp E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry. 2015;122:281–294. doi: 10.1007/s10533-014-0041-8. DOI

Nadkarni N.M., Schaefer D., Matelson T.J., Solano R. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. For. Ecol. Manag. 2004;198:223–236. doi: 10.1016/j.foreco.2004.04.011. DOI

Scheffers B.R., Phillips B.L., Shoo L.P. Asplenium bird’s nets ferns in rainforest canopies are climate-contingent refuges for frogs. Glob. Ecol. Conserv. 2014;2:37–46.

Aguilar-Cruz Y., Garcia-Franco J.G., Zotz G. Microsites and early litter decomposition patterns in the soil and forest canopy at tregional scale. Biogeochemistry. 2020;151:15–30. doi: 10.1007/s10533-020-00705-3. DOI

Zaharescu D.G., Burghelea C.I., Dontsova K., Presler J.K., Hunt E.A., Domanik K.J., Amistadi M.K., Sandhaus S., Munoz E.N., Gaddis E.E., et al. Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering. Sci. Rep. 2019;9:15006. doi: 10.1038/s41598-019-51274-x. PubMed DOI PMC

Enloe H.A., Quideau S.A., Graham R.C., Sillett S.C., Oh S.-W., Wasylishen R.E. Soil Organic Matter Processes in Old-Growth Redwood Forest Canopies. Soil Sci. Soc. Am. J. 2010;74:161–171. doi: 10.2136/sssaj2009.0031. DOI

Marí M.L.G., Toledo J.J., Nascimento H.E.M., Zartman C.E. Regional and Fine Scale Variation of Holoepiphyte Community Structure in Central Amazonian White-Sand Forests. Biotropica. 2016;48:70–80. doi: 10.1111/btp.12300. DOI

Gotsch S.G., Nadkarni N., Amici A. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. J. Trop. Ecol. 2016;32:455–468. doi: 10.1017/S026646741600033X. DOI

Benner J.W. Epiphytes preferentially colonize high-phosphorus host trees in unfertilized Hawaiian montane forests. Bryol. 2011;114:335–345. doi: 10.1639/0007-2745-114.2.335. DOI

Ledo A., Burslem D.F., Condés S., Montes F. Micro-scale habitat associations of woody plants in a neotropical cloud forest. J. Veg. Sci. 2013;24:1086–1097. doi: 10.1111/jvs.12023. DOI

Zotz G., Schultz S. The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol. 2007;195:131–141. doi: 10.1007/s11258-007-9310-0. DOI

Boelter C.R., Dambos C.S., Nascimiento H.E.M., Zartman C.E. A tangled web in tropical tree-tops: Effects of edaphic variation, neighborhood phorophyte composition and bark characteristics on epiphytes in a Central Amazonian forest. J. Veg. Sci. 2014;25:1090–1099. doi: 10.1111/jvs.12154. DOI

Obregon A., Gehrig-Downie C., Gradstein S.R., Rollenbeck R., Bendix J. Canopy level fog occurrence in a tropical lowland forest of French Guaiana as a prerequisite for high epiphyte diversity. Agric. For. Metereol. 2011;151:290–300. doi: 10.1016/j.agrformet.2010.11.003. DOI

Bohlman S.A., Matelson T.J., Nadkarni N.M. Moisture and Temperature Patterns of Canopy Humus and Forest Floor Soil of a Montane Cloud Forest, Costa Rica. Biotropica. 1995;27:13. doi: 10.2307/2388898. DOI

Benner J.W., Vitousek P.M. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol. Lett. 2007;10:628–636. doi: 10.1111/j.1461-0248.2007.01054.x. PubMed DOI

Li Y.Q., Ruan H.H., Zou X.M., Myster R.W. Response of major soil decomposers to landscape in a Puerto Rican rainforest. Soil Sci. 2005;170:202–211. doi: 10.1097/00010694-200503000-00006. DOI

Sahu S.C., Dhal N.K., Lal B., Mohanty R.C. Differences in tree species diversity and soil nutrient status in a tropical sacred forest ecosystem on Niyamgiri hill range, Eastern Ghats, India. J. Mt. Sci. 2012;9:492–500. doi: 10.1007/s11629-012-2302-0. DOI

Prada C.M., Morris A., Andersen K.M., Turner B.L., Caballero P., Dalling J.W. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of three communities in premontane tropical forest. J. Veg. Sci. 2017;278:859–870. doi: 10.1111/jvs.12540. DOI

Amani C. Impact of Soil Heterogeneity on Forest Structure and Diversity of Tree Species in the Central Congo Basin. Int. J. Plant Sci. 2018;179:198–208. doi: 10.1086/696149. DOI

Paoli G.D., Curran L.M., Zak D.R. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: Evidence for niche partitioning by tropical rain forest trees. J. Ecol. 2006;94:157–170. doi: 10.1111/j.1365-2745.2005.01077.x. DOI

Kuzmeier S., Wiedemann T., Biber P., Schad P., Krasilnikov P.V. Effects of Edaphic factors on the tree stand siversity in a tropical forest of Sierra Madre del Sur, Mexico. Eurasian Soil Sci. 2012;45:740–751. doi: 10.1134/S1064229312080042. DOI

Ewel J.J., Mazzarino M.J., Celis G. Soil Changes in Model Tropical Ecosystems: Effects of Stand Longevity Outweigh Plant Diversity and Tree Species Identity in a Fertile Volcanic Soil. Ecosystems. 2014;17:820–836. doi: 10.1007/s10021-014-9753-9. DOI

Sarvade S., Gupta B., Singh M. Composition, diversity and distribution of tree species in response to changing soil properties with increasing distance from water source—A case study of Gobind Sagar Reservoir in India. J. Mt. Sci. 2016;13:522–533. doi: 10.1007/s11629-015-3493-y. DOI

Gehrig--Downie C., Obregón A., Bendix J., Gradstein R.S. Epiphyte biomass and canopy microclimate in the tropical lowland cloud forest of French Guaiana. Biotropica. 2011;43:591–596. doi: 10.1111/j.1744-7429.2010.00745.x. DOI

Woods C.L., Cardelús C.L., DeWalt S.J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015;103:421–430. doi: 10.1111/1365-2745.12357. DOI

Eskov A., Zverev A., Abakumov E. Microbiomes in Suspended Soils of Vascular Epiphytes Differ from Terrestrial Soil Microbiomes and from Each Other. Microorganisms. 2021;9:1033. doi: 10.3390/microorganisms9051033. PubMed DOI PMC

Rascher U., Freiberg M., Lüttge U. Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana. Front. Plant Sci. 2012;2:117. doi: 10.3389/fpls.2011.00117. PubMed DOI PMC

Pardow A., Gehrig-Downie C., Gradstein R., Lakatos M. Functional diversity of epiphytes in two tropical lowland rain-forest, French Guaiana: Using bryophyte life-forms to detect areas of high biodiversity. Biodivers. Conserv. 2012;21:3637–3655. doi: 10.1007/s10531-012-0386-z. DOI

Ruiz-Cordova J.P., Toledo-Hernández V.H., Flores-Palacios A. The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico) Flora-Morphol. Distrib. Funct. Ecol. Plants. 2014;209:375–384. doi: 10.1016/j.flora.2014.06.003. DOI

Ding Y., Liu G., Zang R., Zhang J., Lu X., Huang J. Distribution of vascular epiphytes along a tropical elevational gradient: Disentangling abiotic and biotic determinants. Sci. Rep. 2016;6:19706. doi: 10.1038/srep19706. PubMed DOI PMC

Costa D.S., Zotz G., Hemp A., Kleyer M. Trait patterns of epiphytes compared to other plant life--Forms along a tropical elevation gradient. Funct. Ecol. 2018;32:2073–2084. doi: 10.1111/1365-2435.13121. DOI

Donald J., Maxfield P., Leroy C., Ellwood M.F. Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition. Acta Oecologica. 2020;106:103586. doi: 10.1016/j.actao.2020.103586. DOI

Peña-Claros M., Poorter L., Alarcón A., Blate G., Choque U., Fredericksen T.S., Justiniano M.J., Leaño C., Licona J.C., Pariona W., et al. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest. Biotropica. 2012;44:276–283. doi: 10.1111/j.1744-7429.2011.00813.x. DOI

Chave J., Riéra B., Dubois M.-A. Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability. J. Trop. Ecol. 2001;17:79–96. doi: 10.1017/S0266467401001055. DOI

Gourlet-Fleury S., Guehl J.-M., Laroussinie O. Ecology and Management of a Neotropical Rainforest: Lessons Drawn from Paracou, a Long-Term Experimental Research Site in French Guiana. Elseiver; Paris, France: 2004.

Courtois E.A., Stahl C., Berge J.V.D., Bréchet L., Van Langenhove L., Richter A., Urbina I., Soong J.L., Peñuelas J., Janssens I. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems. 2018;21:1445–1458. doi: 10.1007/s10021-018-0232-6. DOI

Poszwa A., Ferry B., Pollie B., Grimaldi C., Charles-Dominique P., Loubet M., Dambrine E. Variations of plant and soil 87Sr/86Sr along the slope of a tropical inselberg. Ann. For. Sci. 2009;66:512. doi: 10.1051/forest/2009036. DOI

Vand der meer P.J., Bongers F. Patterns of treefall and branch fall in a tropical rain forest in French Guiana. J. Ecol. 1996;84:19–29. doi: 10.2307/2261696. DOI

Réjou-Méchain M., Tymen B., Blanc L., Fauset S., Feldpausch T.R., Monteagudo A., Phillips O., Richard H., Chave J. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens. Environ. 2015;169:93–101. doi: 10.1016/j.rse.2015.08.001. DOI

FAO-ISRIC-ISSS . World Reference Base for Soil Resources. FAO; Rome, Italy: 1998. World Soil Resources Report Nr. 84.

Minh D.H.T., Le Toan T., Rocca F., Tebaldini S., Villard L., Réjou-Méchain M., Phillips O.L., Feldpausch T.R., Dubois-Fernandez P., Scipal K., et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guaiana. Remote Sens. Environ. 2016;175:138–147. doi: 10.1016/j.rse.2015.12.037. DOI

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2015;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC

Gargallo-Garriga A., Sardans J., Llusià J., Peguero G., Asensio D., Ogaya R., Urbina I., Van Langenhove L., Verryckt L.T., Courtois E.A., et al. 31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees of a French Guiana Rainforest. Molecules. 2020;25:3960. doi: 10.3390/molecules25173960. PubMed DOI PMC

Koch B.P., Dittmar T., Witt M., Kattner G. Fundamentals of Molecular Formula Assignment to Ultrahigh Resolution Mass Data of Natural Organic Matter. Anal. Chem. 2007;79:1758–1763. doi: 10.1021/ac061949s. PubMed DOI

Kellerman A.M., Dittmar T., Kothawala D.N., Tranvik L.J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 2014;5:3804. doi: 10.1038/ncomms4804. PubMed DOI

Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M.H.H., Oksanen M.J. MASS Suggests. The vegan package. Community Ecol. Package. 2007;10:631–637.

Anderson M.J., Gorley R.N., Clarke K.R. PERMANOVA + for PRI-MER: Guide to Software and Statistical Methods. PRIMER-E; Plymouth, UK: 2008.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...