Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39539276
PubMed Central
PMC11555516
DOI
10.1021/acsptsci.4c00518
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Zobrazit více v PubMed
Baijens L. W. J.; Walshe M.; Aaltonen L.-M.; Arens C.; Cordier R.; Cras P.; Crevier-Buchman L.; Curtis C.; Golusinski W.; Govender R.; et al. European white paper: oropharyngeal dysphagia in head and neck cancer. Eur. Arch Otorhinolaryngol 2021, 278 (2), 577–616. 10.1007/s00405-020-06507-5. PubMed DOI PMC
Sabatini M. E.; Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br. J. Cancer 2020, 122 (3), 306–314. 10.1038/s41416-019-0602-7. PubMed DOI PMC
Johnson D. E.; Burtness B.; Leemans C. R.; Lui V. W. Y.; Bauman J. E.; Grandis J. R. Head and neck squamous cell carcinoma. Nature Reviews Disease Primers 2020, 6 (1), 92.10.1038/s41572-020-00224-3. PubMed DOI PMC
Mourad M.; Jetmore T.; Jategaonkar A. A.; Moubayed S.; Moshier E.; Urken M. L. Epidemiological Trends of Head and Neck Cancer in the United States: A SEER Population Study. J. Oral Maxillofac Surg 2017, 75 (12), 2562–2572. 10.1016/j.joms.2017.05.008. PubMed DOI PMC
Dittberner A.; Friedl B.; Wittig A.; Buentzel J.; Kaftan H.; Boeger D.; Mueller A. H.; Schultze-Mosgau S.; Schlattmann P.; Ernst T. Gender Disparities in Epidemiology, Treatment, and Outcome for Head and Neck Cancer in Germany: A Population-Based Long-Term Analysis from 1996 to 2016 of the Thuringian Cancer Registry. Cancers 2020, 12 (11), 3418.10.3390/cancers12113418. PubMed DOI PMC
Argiris A.; Karamouzis M. V.; Raben D.; Ferris R. L. Head and neck cancer. Lancet 2008, 371 (9625), 1695–1709. 10.1016/S0140-6736(08)60728-X. PubMed DOI PMC
Hashim D.; Genden E.; Posner M.; Hashibe M.; Boffetta P. Head and neck cancer prevention: from primary prevention to impact of clinicians on reducing burden. Ann. Oncol 2019, 30 (5), 744–756. 10.1093/annonc/mdz084. PubMed DOI PMC
Cillo A. R.; Kürten C. H. L.; Tabib T.; Qi Z.; Onkar S.; Wang T.; Liu A.; Duvvuri U.; Kim S.; Soose R. J.; et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity 2020, 52 (1), 183–199. 10.1016/j.immuni.2019.11.014. PubMed DOI PMC
Alsahafi E.; Begg K.; Amelio I.; Raulf N.; Lucarelli P.; Sauter T.; Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019, 10 (8), 540–540. 10.1038/s41419-019-1769-9. PubMed DOI PMC
Owens D.; Paleri V.; Jones A. V. Head and neck cancer explained: an overview of management pathways. Br Dent J. 2022, 233 (9), 721–725. 10.1038/s41415-022-5199-1. PubMed DOI PMC
Kiong K. L.; Diaz E. M.; Gross N. D.; Diaz E. M. Jr.; Hanna E. Y. The impact of COVID-19 on head and neck cancer diagnosis and disease extent. Head Neck 2021, 43 (6), 1890–1897. 10.1002/hed.26665. PubMed DOI PMC
Solis R. N.; Mehrzad M.; Faiq S.; Frusciante R. P.; Sekhon H. K.; Abouyared M.; Bewley A. F.; Farwell D. G.; Birkeland A. C. The Impact of COVID-19 on Head and Neck Cancer Treatment: Before and During the Pandemic. OTO Open 2021, 10.1177/2473974X211068075. PubMed DOI PMC
Siegel R. L.; Miller K. D.; Jemal A. Cancer statistics, 2016. CA: A Cancer Journal for Clinicians 2016, 66 (1), 7–30. 10.3322/caac.21332. PubMed DOI
Siegel R. L.; Miller K. D.; Jemal A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians 2017, 67 (1), 7–30. 10.3322/caac.21387. PubMed DOI
Siegel R. L.; Miller K. D.; Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians 2018, 68 (1), 7–30. 10.3322/caac.21442. PubMed DOI
Siegel R. L.; Miller K. D.; Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians 2019, 69 (1), 7–34. 10.3322/caac.21551. PubMed DOI
Siegel R. L.; Miller K. D.; Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 2020, 70 (1), 7–30. 10.3322/caac.21590. PubMed DOI
Siegel R. L.; Miller K. D.; Fuchs H. E.; Jemal A. Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians 2021, 71 (1), 7–33. 10.3322/caac.21654. PubMed DOI
Siegel R. L.; Miller K. D.; Fuchs H. E.; Jemal A. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians 2022, 72 (1), 7–33. 10.3322/caac.21708. PubMed DOI
Siegel R. L.; Miller K. D.; Wagle N. S.; Jemal A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 2023, 73 (1), 17–48. 10.3322/caac.21763. PubMed DOI
Siegel R. L.; Giaquinto A. N.; Jemal A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians 2024, 74 (1), 12–49. 10.3322/caac.21820. PubMed DOI
Mireştean C. C.; Iancu R. I.; Iancu D. P. T. p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons. Diagnostics 2022, 12 (12), 3052.10.3390/diagnostics12123052. PubMed DOI PMC
Basyuni S.; Nugent G.; Ferro A.; Barker E.; Reddin I.; Jones O.; Lechner M.; O’Leary B.; Jones T.; Masterson L.; et al. Value of p53 sequencing in the prognostication of head and neck cancer: a systematic review and meta-analysis. Sci. Rep. 2022, 12 (1), 20776.10.1038/s41598-022-25291-2. PubMed DOI PMC
de Bakker T.; Journe F.; Descamps G.; Saussez S.; Dragan T.; Ghanem G.; Krayem M.; Van Gestel D. Restoring p53 Function in Head and Neck Squamous Cell Carcinoma to Improve Treatments. Front Oncol 2022, 11, 79999310.3389/fonc.2021.799993. PubMed DOI PMC
Gleber-Netto F. O.; Zhao M.; Trivedi S.; Wang J.; Jasser S.; McDowell C.; Kadara H.; Zhang J.; Wang J.; William W. N. Jr.; et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer 2018, 124 (1), 84–94. 10.1002/cncr.31063. PubMed DOI PMC
Kandoth C.; McLellan M. D.; Vandin F.; Ye K.; Niu B.; Lu C.; Xie M.; Zhang Q.; McMichael J. F.; Wyczalkowski M. A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502 (7471), 333–339. 10.1038/nature12634. PubMed DOI PMC
Li M.; Sun D.; Song N.; Chen X.; Zhang X.; Zheng W.; Yu Y.; Han C. Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain-of-function and targeting therapy (Review). Oncol. Rep. 2023, 10.3892/or.2023.8599. PubMed DOI PMC
Diez-Fraile A.; Ceulaer J. D.; Derpoorter C.; Spaas C.; Backer T. D.; Lamoral P.; Abeloos J.; Lammens T. Circulating Non-Coding RNAs in Head and Neck Cancer: Roles in Diagnosis, Prognosis, and Therapy Monitoring. Cells 2021, 10 (1), 48.10.3390/cells10010048. PubMed DOI PMC
Talani C.; Mäkitie A.; Beran M.; Holmberg E.; Laurell G.; Farnebo L. Early mortality after diagnosis of cancer of the head and neck - A population-based nationwide study. PLoS One 2019, 14 (10), e0223154–e0223154. 10.1371/journal.pone.0223154. PubMed DOI PMC
Dytrych P.; Kejík Z.; Hajduch J.; Kaplánek R.; Veselá K.; Kučnirová K.; Skaličková M.; Venhauerová A.; Hoskovec D.; Martásek P.; et al. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023, 163, 11475810.1016/j.biopha.2023.114758. PubMed DOI
Kejík Z.; Kaplánek R.; Dytrych P.; Masařík M.; Veselá K.; Abramenko N.; Hoskovec D.; Vašáková M.; Králová J.; Martásek P. Circulating tumour cells (Ctcs) in nsclc: From prognosis to therapy design. Pharmaceutics 2021, 13 (11), 1879.10.3390/pharmaceutics13111879. PubMed DOI PMC
Jakubek M.; Kejík Z.; Kaplánek R.; Hromádka R.; Šandriková V.; Sýkora D.; Antonyová V.; Urban M.; Dytrych P.; Mikula I.; et al. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 2019, 118, 10927810.1016/j.biopha.2019.109278. PubMed DOI
Kuo C. L.; Wu S. Y.; Ip S. W.; Wu P. P.; Yu C. S.; Yang J. S.; Chen P. Y.; Wu S. H.; Chung J. G. Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int. J. Oncol. 2011, 39 (2), 319–328. 10.3892/ijo.2011.1057. PubMed DOI
Kumar B.; Yadav A.; Hideg K.; Kuppusamy P.; Teknos T. N.; Kumar P. A novel curcumin analog (H-4073) enhances the therapeutic efficacy of cisplatin treatment in head and neck cancer. PLoS One 2014, 9 (3), e9320810.1371/journal.pone.0093208. PubMed DOI PMC
Khafif A.; Lev-Ari S.; Vexler A.; Barnea I.; Starr A.; Karaush V.; Haif S.; Ben-Yosef R. Curcumin: a potential radio-enhancer in head and neck cancer. Laryngoscope 2009, 119 (10), 2019–2026. 10.1002/lary.20582. PubMed DOI
Pan Y.; Liu G.; Xiao J.; Su B.; Zhou F.; Wei Y. A novel curcuminoid exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Int. J. Oncol. 2016, 48 (5), 2175–2183. 10.3892/ijo.2016.3425. PubMed DOI
Mohankumar K.; Pajaniradje S.; Sridharan S.; Singh V. K.; Ronsard L.; Banerjea A. C.; Selvanesan B. C.; Coumar M. S.; Periyasamy L.; Rajagopalan R. Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell Oncol (Dordr) 2014, 37 (6), 439–454. 10.1007/s13402-014-0207-3. PubMed DOI
Lee H. M.; Patel V.; Shyur L. F.; Lee W. L. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine 2016, 23 (12), 1535–1544. 10.1016/j.phymed.2016.09.005. PubMed DOI
Kocaadam B.; Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition 2017, 57 (13), 2889–2895. 10.1080/10408398.2015.1077195. PubMed DOI
Goel A.; Kunnumakkara A. B.; Aggarwal B. B. Curcumin as ″Curecumin″: from kitchen to clinic. Biochem. Pharmacol. 2008, 75 (4), 787–809. 10.1016/j.bcp.2007.08.016. PubMed DOI
Anand P.; Kunnumakkara A. B.; Newman R. A.; Aggarwal B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics 2007, 4 (6), 807–818. 10.1021/mp700113r. PubMed DOI
Vyas A.; Dandawate P.; Padhye S.; Ahmad A.; Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des 2013, 19 (11), 2047–2069. 10.2174/1381612811319110007. PubMed DOI PMC
Priyadarsini K. I. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des 2013, 19 (11), 2093–2100. 10.2174/138161213805289228. PubMed DOI
Hu R. W.; Carey E. J.; Lindor K. D.; Tabibian J. H. Curcumin in Hepatobiliary Disease: Pharmacotherapeutic Properties and Emerging Potential Clinical Applications. Annals of Hepatology 2017, 16 (6), 835–841. 10.5604/01.3001.0010.5273. PubMed DOI
Pulido-Moran M.; Moreno-Fernandez J.; Ramirez-Tortosa C.; Ramirez-Tortosa M. Curcumin and Health. Molecules 2016, 21 (3), 264.10.3390/molecules21030264. PubMed DOI PMC
Hu M.; Yan H.; Li H.; Feng Y.; Sun W.; Ren Y.; Ma L.; Zeng W.; Huang F.; Jiang Z.; et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci. Rep 2023, 13 (1), 9569.10.1038/s41598-023-36687-z. PubMed DOI PMC
Cheng A. L.; Hsu C. H.; Lin J. K.; Hsu M. M.; Ho Y. F.; Shen T. S.; Ko J. Y.; Lin J. T.; Lin B. R.; Ming-Shiang W.; et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21 (4b), 2895–2900. PubMed
Sugiyama Y.; Kawakishi S.; Osawa T. Involvement of the β-diketone moiety in the antioxidative Mechanism of Tetrahydrocurcumin. Biochem. Pharmacol. 1996, 52 (4), 519–525. 10.1016/0006-2952(96)00302-4. PubMed DOI
Xu G.; Chu Y.; Jiang N.; Yang J.; Li F. The three dimensional Quantitative Structure Activity Relationships (3D-QSAR) and docking studies of curcumin derivatives as androgen receptor antagonists. Int. J. Mol. Sci. 2012, 13 (5), 6138–6155. 10.3390/ijms13056138. PubMed DOI PMC
Yadav B.; Taurin S.; Rosengren R. J.; Schumacher M.; Diederich M.; Somers-Edgar T. J.; Larsen L. Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Bioorg. Med. Chem. 2010, 18 (18), 6701–6707. 10.1016/j.bmc.2010.07.063. PubMed DOI
Chen J.; Zhang L.; Shu Y.; Chen L.; Zhu M.; Yao S.; Wang J.; Wu J.; Liang G.; Wu H.; et al. Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κ B. BioMed Res. Int. 2017, 2017, 475126010.1155/2017/4751260. PubMed DOI PMC
Chien M.-H.; Shih P.-C.; Ding Y.-F.; Chen L.-H.; Hsieh F.-K.; Tsai M.-Y.; Li P.-Y.; Lin C.-W.; Yang S.-F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert Opinion on Therapeutic Targets 2022, 26 (4), 375–388. 10.1080/14728222.2022.2061349. PubMed DOI
Su C.-W.; Chuang C.-Y.; Chen Y.-T.; Yang W.-E.; Pan Y.-P.; Lin C.-W.; Yang S.-F. FLLL32 Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells by Regulating the p38 Pathway. Int. J. Mol. Sci. 2021, 22 (21), 11860.10.3390/ijms222111860. PubMed DOI PMC
Chen C.-W.; Hsieh M.-J.; Ju P.-C.; Hsieh Y.-H.; Su C.-W.; Chen Y.-L.; Yang S.-F.; Lin C.-W. Curcumin analog HO-3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. Journal of Cellular and Molecular Medicine 2022, 26 (8), 2273–2284. 10.1111/jcmm.17248. PubMed DOI PMC
Semlali A.; Contant C.; Al-Otaibi B.; Al-Jammaz I.; Chandad F. The curcumin analog (PAC) suppressed cell survival and induced apoptosis and autophagy in oral cancer cells. Sci. Rep. 2021, 11 (1), 11701.10.1038/s41598-021-90754-x. PubMed DOI PMC
Cohen E. E.; Lingen M. W.; Vokes E. E. The expanding role of systemic therapy in head and neck cancer. J. Clin Oncol 2004, 22 (9), 1743–1752. 10.1200/JCO.2004.06.147. PubMed DOI
Chandana S. R.; Conley B. A. Neoadjuvant chemotherapy for locally advanced squamous cancers of the head and neck: current status and future prospects. Curr. Opin Oncol 2009, 21 (3), 218–223. 10.1097/CCO.0b013e328329abe5. PubMed DOI
Vissink A.; Jansma J.; Spijkervet F. K.; Burlage F. R.; Coppes R. P. Oral sequelae of head and neck radiotherapy. Crit Rev. Oral Biol. Med. 2003, 14 (3), 199–212. 10.1177/154411130301400305. PubMed DOI
Wilken R.; Veena M. S.; Wang M. B.; Srivatsan E. S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12.10.1186/1476-4598-10-12. PubMed DOI PMC
Posner M. R. Integrating systemic agents into multimodality treatment of locally advanced head and neck cancer. Ann. Oncol. 2010, 21, vii246–251. 10.1093/annonc/mdq291. PubMed DOI
Adelstein D. J.; Moon J.; Hanna E.; Giri P. G.; Mills G. M.; Wolf G. T.; Urba S. G. Docetaxel, cisplatin, and fluorouracil induction chemotherapy followed by accelerated fractionation/concomitant boost radiation and concurrent cisplatin in patients with advanced squamous cell head and neck cancer: A Southwest Oncology Group phase II trial (S0216). Head Neck 2010, 32 (2), 221–228. 10.1002/hed.21179. PubMed DOI PMC
Viale A.; Corti D.; Draetta G. F. Tumors and Mitochondrial Respiration: A Neglected Connection. Cancer Res. 2015, 75 (18), 3687–3691. 10.1158/0008-5472.CAN-15-0491. PubMed DOI
Denisenko T. V.; Gorbunova A. S.; Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev Biol. 2019, 7, 355.10.3389/fcell.2019.00355. PubMed DOI PMC
Mantel C.; Messina-Graham S.; Moh A.; Cooper S.; Hangoc G.; Fu X. Y.; Broxmeyer H. E. Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 2012, 120 (13), 2589–2599. 10.1182/blood-2012-01-404004. PubMed DOI PMC
Gorrini C.; Harris I. S.; Mak T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discovery 2013, 12 (12), 931–947. 10.1038/nrd4002. PubMed DOI
Ossikbayeva S.; Khanin M.; Sharoni Y.; Trachtenberg A.; Tuleukhanov S.; Sensenig R.; Rom S.; Danilenko M.; Orynbayeva Z. Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants 2021, 10 (10), 1591.10.3390/antiox10101591. PubMed DOI PMC
Zhou G.; Liu Z.; Myers J. N. TP53 Mutations in Head and Neck Squamous Cell Carcinoma and Their Impact on Disease Progression and Treatment Response. Journal of Cellular Biochemistry 2016, 117 (12), 2682–2692. 10.1002/jcb.25592. PubMed DOI PMC
Oak S.; Karajgikar O.; Teni T. Curcumin mediates selective aggregation of mutant p53 in cancer cells: A promising therapeutic strategy. Biochem. Biophys. Res. Commun. 2023, 677, 141–148. 10.1016/j.bbrc.2023.08.016. PubMed DOI
Dai C.; Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 2010, 16 (11), 528–536. 10.1016/j.molmed.2010.09.002. PubMed DOI PMC
Sengupta S.; Ghufran S. M.; Khan A.; Biswas S.; Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int. 2022, 22 (1), 416.10.1186/s12935-022-02831-4. PubMed DOI PMC
Fan Y. J.; Zhou Y. X.; Zhang L. R.; Lin Q. F.; Gao P. Z.; Cai F.; Zhu L. P.; Liu B.; Xu J. H. C1206, a novel curcumin derivative, potently inhibits Hsp90 and human chronic myeloid leukemia cells in vitro. Acta Pharmacol Sin 2018, 39 (4), 649–658. 10.1038/aps.2017.160. PubMed DOI PMC
Gilardini Montani M. S.; Cecere N.; Granato M.; Romeo M. A.; Falcinelli L.; Ciciarelli U.; D’Orazi G.; Faggioni A.; Cirone M. Mutant p53, Stabilized by Its Interplay with HSP90, Activates a Positive Feed-Back Loop Between NRF2 and p62 that Induces Chemo-Resistance to Apigenin in Pancreatic Cancer Cells. Cancers 2019, 11 (5), 703.10.3390/cancers11050703. PubMed DOI PMC
Balakrishnan S.; Manoharan S.; Alias L. M.; Nirmal M. R. Effect of curcumin and ferulic acid on modulation of expression pattern of p53 and bcl-2 proteins in 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Indian J. Biochem. Biophys. 2010, 47 (1), 7–12. PubMed
Borges G. A.; Elias S. T.; Amorim B.; de Lima C. L.; Coletta R. D.; Castilho R. M.; Squarize C. H.; Guerra E. N. S. Curcumin downregulates the PI3K–AKT–mTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytotherapy Research 2020, 34 (12), 3311–3324. 10.1002/ptr.6780. PubMed DOI
Mohankumar K.; Pajaniradje S.; Sridharan S.; Singh V. K.; Ronsard L.; Banerjea A. C.; Selvanesan B. C.; Coumar M. S.; Periyasamy L.; Rajagopalan R. Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cellular Oncology 2014, 37 (6), 439–454. 10.1007/s13402-014-0207-3. PubMed DOI
Li Q.; Tie Y.; Alu A.; Ma X.; Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduction and Targeted Therapy 2023, 8 (1), 31.10.1038/s41392-022-01297-0. PubMed DOI PMC
Jimi E.; Kokabu S.; Matsubara T.; Nakatomi C.; Matsuo K.; Watanabe S. NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. Oral Science International 2016, 13 (1), 1–6. 10.1016/S1348-8643(15)00038-5. DOI
Marquard F. E.; Jücker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem. Pharmacol. 2020, 172, 11372910.1016/j.bcp.2019.113729. PubMed DOI
Zhen L.; Fan D.; Yi X.; Cao X.; Chen D.; Wang L. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int. J. Clin. Exp. Pathol. 2014, 7 (10), 6438–6446. PubMed PMC
Anisuzzaman A. S. M.; Haque A.; Rahman M. A.; Wang D.; Fuchs J. R.; Hurwitz S.; Liu Y.; Sica G.; Khuri F. R.; Chen Z.; et al. Preclinical In Vitro, In Vivo, and Pharmacokinetic Evaluations of FLLL12 for the Prevention and Treatment of Head and Neck Cancers. Cancer Prevention Research 2016, 9 (1), 63–73. 10.1158/1940-6207.CAPR-15-0240. PubMed DOI PMC
Mohan M.; Hussain M. A.; Khan F. A.; Anindya R. Symmetrical and un-symmetrical curcumin analogues as selective COX-1 and COX-2 inhibitor. Eur. J. Pharm. Sci. 2021, 160, 10574310.1016/j.ejps.2021.105743. PubMed DOI
LoTempio M. M.; Veena M. S.; Steele H. L.; Ramamurthy B.; Ramalingam T. S.; Cohen A. N.; Chakrabarti R.; Srivatsan E. S.; Wang M. B. Curcumin Suppresses Growth of Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2005, 11 (19), 6994–7002. 10.1158/1078-0432.CCR-05-0301. PubMed DOI
Lee G. J.; Lim H.; Seo J. Y.; Kang K. R.; Kim D. K.; You J. S.; Oh J. S.; Seo Y. S.; Kim J. S. Demethoxycurcumin induces apoptosis via inhibition of NF-κB pathway in FaDu human head and neck squamous cell carcinoma. Transl Cancer Res. 2022, 11 (5), 1064–1075. 10.21037/tcr-21-2410. PubMed DOI PMC
Tomeh M. A.; Hadianamrei R.; Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20 (5), 1033.10.3390/ijms20051033. PubMed DOI PMC
Aggarwal B. B.; Kumar A.; Bharti A. C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23 (1a), 363–398. PubMed
Chen J.; He Z.-M.; Wang F.-L.; Zhang Z.-S.; Liu X.-z.; Zhai D.-D.; Chen W.-D. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur. J. Pharmacol. 2016, 772, 33–42. 10.1016/j.ejphar.2015.12.038. PubMed DOI
Komal K.; Chaudhary S.; Yadav P.; Parmanik R.; Singh M. The Therapeutic and Preventive Efficacy of Curcumin and Its Derivatives in Esophageal Cancer. Asian Pac. J. Cancer Prev. 2019, 20 (5), 1329–1337. 10.31557/APJCP.2019.20.5.1329. PubMed DOI PMC
Mishra A.; Kumar R.; Tyagi A.; Kohaar I.; Hedau S.; Bharti A. C.; Sarker S.; Dey D.; Saluja D.; Das B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience 2015, 9, 525.10.3332/ecancer.2015.525. PubMed DOI PMC
Xu X.-Y.; Meng X.; Li S.; Gan R.-Y.; Li Y.; Li H.-B. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018, 10 (10), 1553.10.3390/nu10101553. PubMed DOI PMC
Aggarwal B. B.; Gupta S. C.; Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 2013, 169 (8), 1672–1692. 10.1111/bph.12131. PubMed DOI PMC
Phillips J. M.; Clark C.; Herman-Ferdinandez L.; Moore-Medlin T.; Rong X.; Gill J. R.; Clifford J. L.; Abreo F.; Nathan C.-A. O. Curcumin Inhibits Skin Squamous Cell Carcinoma Tumor Growth In Vivo. Otolaryngol. Head Neck Surg. 2011, 145 (1), 58–63. 10.1177/0194599811400711. PubMed DOI
Wang D.; Veena M. S.; Stevenson K.; Tang C.; Ho B.; Suh J. D.; Duarte V. M.; Faull K. F.; Mehta K.; Srivatsan E. S.; et al. Liposome-Encapsulated Curcumin Suppresses Growth of Head and Neck Squamous Cell Carcinoma In vitro and in Xenografts through the Inhibition of Nuclear Factor κB by an AKT-Independent Pathway. Clin. Cancer Res. 2008, 14 (19), 6228–6236. 10.1158/1078-0432.CCR-07-5177. PubMed DOI
Karavasili C.; Andreadis D. A.; Katsamenis O. L.; Panteris E.; Anastasiadou P.; Kakazanis Z.; Zoumpourlis V.; Markopoulou C. K.; Koutsopoulos S.; Vizirianakis I. S.; et al. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol. Pharmaceutics 2019, 16 (6), 2326–2341. 10.1021/acs.molpharmaceut.8b01221. PubMed DOI
Zhu S.; Moore T.; Morii N.; Howard R.; Arrendale R.; Reddy P.; Evers T.; Zhang H.; Sica G.; G Chen Z.; et al. Synthetic curcumin analog UBS109 inhibits the growth of head and neck squamous cell carcinoma xenografts. Curr. Cancer Drug Targets 2014, 14 (4), 380–393. 10.2174/1568009614666140312163524. PubMed DOI
Zhu S.; Moore T. W.; Lin X.; Morii N.; Mancini A.; Howard R. B.; Culver D.; Arrendale R. F.; Reddy P.; Evers T. J.; et al. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts. Integrative Biology 2012, 4 (6), 633–640. 10.1039/c2ib20007d. PubMed DOI PMC
Duarte V. M.; Han E.; Veena M. S.; Salvado A.; Suh J. D.; Liang L. J.; Faull K. F.; Srivatsan E. S.; Wang M. B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKβ protein of the NFκB pathway. Mol. Cancer Ther 2010, 9 (10), 2665–2675. 10.1158/1535-7163.MCT-10-0064. PubMed DOI PMC
Clark C. A.; McEachern M. D.; Shah S. H.; Rong Y.; Rong X.; Smelley C. L.; Caldito G. C.; Abreo F. W.; Nathan C. O. Curcumin Inhibits Carcinogen and Nicotine-Induced Mammalian Target of Rapamycin Pathway Activation in Head and Neck Squamous Cell Carcinoma. Cancer Prevention Research 2010, 3 (12), 1586–1595. 10.1158/1940-6207.CAPR-09-0244. PubMed DOI
Cohen A. N.; Veena M. S.; Srivatsan E. S.; Wang M. B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase. Arch Otolaryngol Head Neck Surg 2009, 135 (2), 190–197. 10.1001/archotol.135.2.190. PubMed DOI
Kim S. G.; Veena M. S.; Basak S. K.; Han E.; Tajima T.; Gjertson D. W.; Starr J.; Eidelman O.; Pollard H. B.; Srivastava M.; et al. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin. Cancer Res. 2011, 17 (18), 5953–5961. 10.1158/1078-0432.CCR-11-1272. PubMed DOI PMC
Chakravarti N.; Myers J. N.; Aggarwal B. B. Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int. J. Cancer 2006, 119 (6), 1268–1275. 10.1002/ijc.21967. PubMed DOI
Srivastava S.; Mohammad S.; Pant A. B.; Mishra P. R.; Pandey G.; Gupta S.; Farooqui S. Co-delivery of 5-Fluorouracil and Curcumin Nanohybrid Formulations for Improved Chemotherapy Against Oral Squamous Cell Carcinoma. Journal of Maxillofacial and Oral Surgery 2018, 17 (4), 597–610. 10.1007/s12663-018-1126-z. PubMed DOI PMC
Lin Y.-T.; Wang L.-F.; Hsu Y.-C. Curcuminoids Suppress the Growth of Pharynx and Nasopharyngeal Carcinoma Cells through Induced Apoptosis. J. Agric. Food Chem. 2009, 57 (9), 3765–3770. 10.1021/jf803758x. PubMed DOI
Vageli D. P.; Doukas S. G.; Spock T.; Sasaki C. T. Curcumin prevents the bile reflux-induced NF-κB-related mRNA oncogenic phenotype, in human hypopharyngeal cells. Journal of Cellular and Molecular Medicine 2018, 22 (9), 4209–4220. 10.1111/jcmm.13701. PubMed DOI PMC
Hu A.; Huang J. J.; Jin X. J.; Li J. P.; Tang Y. J.; Huang X. F.; Cui H. J.; Xu W. H.; Sun G. B. Curcumin suppresses invasiveness and vasculogenic mimicry of squamous cell carcinoma of the larynx through the inhibition of JAK-2/STAT-3 signaling pathway. Am. J. Cancer Res. 2015, 5 (1), 278–288. PubMed PMC
Zhu X.; Zhu R. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway. OncoTargets and Therapy 2018, 11, 3521–3531. 10.2147/OTT.S159236. PubMed DOI PMC
Mou S.; Zhou Z.; He Y.; Liu F.; Gong L. Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a. Oncol Lett. 2017, 14 (4), 4937–4942. 10.3892/ol.2017.6739. PubMed DOI PMC
Deng X.-z.; Geng S.-s.; Luo M.; Chai J.-j.; Xu Y.; Chen C.-l.; Qiu L.; Ke Q.; Duan Q.-w.; Song S.-m.; et al. Curcumin potentiates laryngeal squamous carcinoma radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression. Journal of Receptors and Signal Transduction 2020, 40 (6), 541–549. 10.1080/10799893.2020.1767649. PubMed DOI
Ma C.; Zhuang Z.; Su Q.; He J.; Li H. Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments. Drug Design, Development and Therapy 2020, 14, 509–518. 10.2147/DDDT.S237830. PubMed DOI PMC
Sharifi S.; Dalir Abdolahinia E.; Ghavimi M. A.; Dizaj S. M.; Aschner M.; Saso L.; Khan H. Effect of Curcumin-Loaded Mesoporous Silica Nanoparticles on the Head and Neck Cancer Cell Line, HN5. Curr. Issues Mol. Biol. 2022, 44 (11), 5247–5259. 10.3390/cimb44110357. PubMed DOI PMC
Abdolahinia D. E.; Ahmadian S.; Bohlouli S.; Gharehbagh J. F.; Jahandizi G. N.; Vahed Z. S.; Saadat R. Y.; Aghbali A.; Sharifi S.; Dizaj M. S.; et al. Effect of Curcumin on the Head and Neck Squamous Cell Carcinoma Cell Line HN5. Current Molecular Pharmacology 2023, 16 (3), 374–380. 10.2174/1874467215666220414143441. PubMed DOI
Castellanos M. R.; Pan Q.; Wu Q.; Fang Y. Novel p53 therapies for head and neck cancer. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2 (2), 68–75. 10.1016/j.wjorl.2016.05.005. PubMed DOI PMC
Marur S.; D’Souza G.; Westra W. H.; Forastiere A. A. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncology 2010, 11 (8), 781–789. 10.1016/S1470-2045(10)70017-6. PubMed DOI PMC
Maher D. M.; Bell M. C.; O’Donnell E. A.; Gupta B. K.; Jaggi M.; Chauhan S. C. Curcumin suppresses human papillomavirus oncoproteins, restores p53, rb, and ptpn13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7. Molecular Carcinogenesis 2011, 50 (1), 47–57. 10.1002/mc.20695. PubMed DOI
Mishra A.; Das B. C. Curcumin as an anti-human papillomavirus and anti-cancer compound. Future Oncology 2015, 11 (18), 2487–2490. 10.2217/fon.15.166. PubMed DOI
Pezzani R.; Salehi B.; Vitalini S.; Iriti M.; Zuñiga F. A.; Sharifi-Rad J.; Martorell M.; Martins N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55 (4), 110.10.3390/medicina55040110. PubMed DOI PMC
Semlali A.; Beji S.; Ajala I.; Al-Zharani M.; Rouabhia M. Synergistic Effects of New Curcumin Analog (PAC) and Cisplatin on Oral Cancer Therapy. Current Issues in Molecular Biology 2023, 45 (6), 5018–5035. 10.3390/cimb45060319. PubMed DOI PMC
Lindsay C.; Kostiuk M.; Conrad D.; O’Connell D. A.; Harris J.; Seikaly H.; Biron V. L. Antitumour effects of metformin and curcumin in human papillomavirus positive and negative head and neck cancer cells. Molecular Carcinogenesis 2019, 58 (11), 1946–1959. 10.1002/mc.23087. PubMed DOI
Hu A.; Huang J. J.; Zhang J. F.; Dai W. J.; Li R. L.; Lu Z. Y.; Duan J. L.; Li J. P.; Chen X. P.; Fan J. P.; et al. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget 2017, 8 (31), 50747–50760. 10.18632/oncotarget.17096. PubMed DOI PMC
Piao L.; Mukherjee S.; Chang Q.; Xie X.; Li H.; Castellanos M. R.; Banerjee P.; Iqbal H.; Ivancic R.; Wang X.; et al. TriCurin, a novel formulation of curcumin, epicatechin gallate, and resveratrol, inhibits the tumorigenicity of human papillomavirus-positive head and neck squamous cell carcinoma. Oncotarget 2017, 8 (36), 60025–60035. 10.18632/oncotarget.10620. PubMed DOI PMC
Brábek J.; Jakubek M.; Vellieux F.; Novotný J.; Kolář M.; Lacina L.; Szabo P.; Strnadová K.; Rösel D.; Dvořánková B. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020, 21 (21), 7937.10.3390/ijms21217937. PubMed DOI PMC
Rašková M.; Lacina L.; Kejík Z.; Venhauerová A.; Skaličková M.; Kolář M.; Jakubek M.; Rosel D.; Smetana K.; Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022, 11 (22), 3698.10.3390/cells11223698. PubMed DOI PMC
Gál P.; Brábek J.; Holub M.; Jakubek M.; Šedo A.; Lacina L.; Strnadová K.; Dubový P.; Hornychová H.; Ryška A.; et al. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol. 2022, 158 (5), 415–434. 10.1007/s00418-022-02140-x. PubMed DOI PMC
León X.; García J.; Farré N.; Majercakova K.; Avilés-Jurado F.-X.; Quer M.; Camacho M. Predictive capacity of IL-8 expression in head and neck squamous carcinoma patients treated with radiotherapy or chemoradiotherapy. Acta Otorrinolaringologica (English Edition) 2021, 72 (6), 337–343. 10.1016/j.otoeng.2020.05.006. PubMed DOI
Astradsson T.; Sellberg F.; Berglund D.; Ehrsson Y. T.; Laurell G. F. E. Systemic Inflammatory Reaction in Patients With Head and Neck Cancer-An Explorative Study. Front Oncol 2019, 9, 1177.10.3389/fonc.2019.01177. PubMed DOI PMC
Squarize C. H.; Castilho R. M.; Sriuranpong V.; Pinto D. S. Jr.; Gutkind J. S. Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 2006, 8 (9), 733–746. 10.1593/neo.06274. PubMed DOI PMC
Cottin S. C.; Turcotte S.; Douville P.; Meyer F.; Bairati I. Predictors of circulating INTERLEUKIN-6 levels in head and neck cancer patients. Cancers Head Neck 2018, 10.1186/s41199-018-0029-5. PubMed DOI PMC
Jinno T.; Kawano S.; Maruse Y.; Matsubara R.; Goto Y.; Sakamoto T.; Hashiguchi Y.; Kaneko N.; Tanaka H.; Kitamura R.; et al. Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol. Rep. 2015, 33 (5), 2161–2168. 10.3892/or.2015.3838. PubMed DOI PMC
Xie K. Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews 2001, 12 (4), 375–391. 10.1016/S1359-6101(01)00016-8. PubMed DOI
Cohen R. F.; Contrino J.; Spiro J. D.; Mann E. A.; Chen L. L.; Kreutzer D. L. Interleukin-8 Expression by Head and Neck Squamous Cell Carcinoma. Arch. Otolaryngol. Head Neck Surg. 1995, 121 (2), 202–209. 10.1001/archotol.1995.01890020064013. PubMed DOI
Park M. H.; Hong J. T. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016, 5 (2), 15.10.3390/cells5020015. PubMed DOI PMC
Loercher A.; Lee T. L.; Ricker J. L.; Howard A.; Geoghegen J.; Chen Z.; Sunwoo J. B.; Sitcheran R.; Chuang E. Y.; Mitchell J. B.; et al. Nuclear Factor-κB is an Important Modulator of the Altered Gene Expression Profile and Malignant Phenotype in Squamous Cell Carcinoma. Cancer Res. 2004, 64 (18), 6511–6523. 10.1158/0008-5472.CAN-04-0852. PubMed DOI
Oeckinghaus A.; Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009, 1 (4), a00003410.1101/cshperspect.a000034. PubMed DOI PMC
Liu T.; Zhang L.; Joo D.; Sun S. C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017, 2, 17023.10.1038/sigtrans.2017.23. PubMed DOI PMC
Vander Broek R.; Snow G. E.; Chen Z.; Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncology 2014, 50 (10), 930–941. 10.1016/j.oraloncology.2013.10.005. PubMed DOI PMC
Jackson-Bernitsas D. G.; Ichikawa H.; Takada Y.; Myers J. N.; Lin X. L.; Darnay B. G.; Chaturvedi M. M.; Aggarwal B. B. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-κB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 2007, 26 (10), 1385–1397. 10.1038/sj.onc.1209945. PubMed DOI
Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol. 2006, 38 (10), 1647–1653. 10.1016/j.biocel.2006.03.023. PubMed DOI
Bhave S. L.; Teknos T. N.; Pan Q. Molecular parameters of head and neck cancer metastasis. Crit Rev. Eukaryot Gene Expr 2011, 21 (2), 143–153. 10.1615/CritRevEukarGeneExpr.v21.i2.40. PubMed DOI PMC
Strzelak A.; Ratajczak A.; Adamiec A.; Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public Health 2018, 15 (5), 1033.10.3390/ijerph15051033. PubMed DOI PMC
Druzgal C. H.; Chen Z.; Yeh N. T.; Thomas G. R.; Ondrey F. G.; Duffey D. C.; Vilela R. J.; Ende K.; McCullagh L.; Rudy S. F.; et al. A pilot study of longitudinal serum cytokine and angiogenesis factor levels as markers of therapeutic response and survival in patients with head and neck squamous cell carcinoma. Head & Neck 2005, 27 (9), 771–784. 10.1002/hed.20246. PubMed DOI
Allen C. T.; Ricker J. L.; Chen Z.; Van Waes C. Role of activated nuclear factor-κB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head & Neck 2007, 29 (10), 959–971. 10.1002/hed.20615. PubMed DOI
Sharma C.; Kaur J.; Shishodia S.; Aggarwal B. B.; Ralhan R. Curcumin down regulates smokeless tobacco-induced NF-κB activation and COX-2 expression in human oral premalignant and cancer cells. Toxicology 2006, 228 (1), 1–15. 10.1016/j.tox.2006.07.027. PubMed DOI
Aggarwal S.; Takada Y.; Singh S.; Myers J. N.; Aggarwal B. B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-κB signaling. Int. J. Cancer 2004, 111 (5), 679–692. 10.1002/ijc.20333. PubMed DOI
Mortezaee K.; Salehi E.; Mirtavoos-mahyari H.; Motevaseli E.; Najafi M.; Farhood B.; Rosengren R. J.; Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. Journal of Cellular Physiology 2019, 234 (8), 12537–12550. 10.1002/jcp.28122. PubMed DOI
Geiger J. L.; Grandis J. R.; Bauman J. E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol 2016, 56, 84–92. 10.1016/j.oraloncology.2015.11.022. PubMed DOI PMC
Zhang J.; Wang F.; Liu F.; Xu G. Predicting STAT1 as a prognostic marker in patients with solid cancer. Ther. Adv. Med. Oncol. 2020, 12, 175883592091755810.1177/1758835920917558. PubMed DOI PMC
RIEBE C.; PRIES R.; SCHROEDER K. N.; WOLLENBERG B. Phosphorylation of STAT3 in Head and Neck Cancer Requires p38 MAPKinase, whereas Phosphorylation of STAT1 Occurs via a Different Signaling Pathway. Anticancer Res. 2011, 31 (11), 3819–3825. PubMed
Xi S.; Dyer K. F.; Kimak M.; Zhang Q.; Gooding W. E.; Chaillet J. R.; Chai R. L.; Ferrell R. E.; Zamboni B.; Hunt J.; et al. Decreased STAT1 Expression by Promoter Methylation in Squamous Cell Carcinogenesis. JNCI: Journal of the National Cancer Institute 2006, 98 (3), 181–189. 10.1093/jnci/djj020. PubMed DOI
Aigner P.; Just V.; Stoiber D. STAT3 isoforms: Alternative fates in cancer?. Cytokine 2019, 118, 27–34. 10.1016/j.cyto.2018.07.014. PubMed DOI
Zhang H.-X.; Yang P.-L.; Li E.-M.; Xu L.-Y. STAT3beta, a distinct isoform from STAT3. Int. J. Biochem. Cell Biol. 2019, 110, 130–139. 10.1016/j.biocel.2019.02.006. PubMed DOI
Bill M. A.; Fuchs J. R.; Li C.; Yui J.; Bakan C.; Benson D. M.; Schwartz E. B.; Abdelhamid D.; Lin J.; Hoyt D. G.; et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Molecular Cancer 2010, 9 (1), 165.10.1186/1476-4598-9-165. PubMed DOI PMC
Liu Y.; Wang X.; Zeng S.; Zhang X.; Zhao J.; Zhang X.; Chen X.; Yang W.; Yang Y.; Dong Z.; et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research 2018, 37 (1), 303.10.1186/s13046-018-0959-0. PubMed DOI PMC
Tošić I.; Frank D. A. STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications. Neoplasia 2021, 23 (12), 1167–1178. 10.1016/j.neo.2021.10.003. PubMed DOI PMC
Aggarwal B. B.; Kunnumakkara A. B.; Harikumar K. B.; Gupta S. R.; Tharakan S. T.; Koca C.; Dey S.; Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship?. Ann. N.Y. Acad. Sci. 2009, 1171, 59–76. 10.1111/j.1749-6632.2009.04911.x. PubMed DOI PMC
Yang J.; Kunimoto H.; Katayama B.; Zhao H.; Shiromizu T.; Wang L.; Ozawa T.; Tomonaga T.; Tsuruta D.; Nakajima K. Phospho-Ser727 triggers a multistep inactivation of STAT3 by rapid dissociation of pY705-SH2 through C-terminal tail modulation. Int. Immunol. 2020, 32 (2), 73–88. 10.1093/intimm/dxz061. PubMed DOI PMC
Konduri S. D.; Bangaru M. L. Y.; Do P. T.; Chen S.; Woodliff J.; Kansra S. In Vitro Growth Suppression of Renal Carcinoma Cells by Curcumin. Journal of Patient-Centered Research and Reviews 2015, 2 (4), 156–164. 10.17294/2330-0698.1197. DOI
Frederick M. J.; VanMeter A. J.; Gadhikar M. A.; Henderson Y. C.; Yao H.; Pickering C. C.; Williams M. D.; El-Naggar A. K.; Sandulache V.; Tarco E.; et al. Phosphoproteomic Analysis of Signaling Pathways in Head and Neck Squamous Cell Carcinoma Patient Samples. Am. J. Pathol. 2011, 178 (2), 548–571. 10.1016/j.ajpath.2010.10.044. PubMed DOI PMC
Leeman R. J.; Lui V. W. Y.; Grandis J. R. STAT3 as a therapeutic target in head and neck cancer. Expert Opinion on Biological Therapy 2006, 6 (3), 231–241. 10.1517/14712598.6.3.231. PubMed DOI
Sriuranpong V.; Park J. I.; Amornphimoltham P.; Patel V.; Nelkin B. D.; Gutkind J. S. Epidermal Growth Factor Receptor-independent Constitutive Activation of STAT3 in Head and Neck Squamous Cell Carcinoma Is Mediated by the Autocrine/Paracrine Stimulation of the Interleukin 6/gp130 Cytokine System. Cancer Res. 2003, 63 (11), 2948–2956. PubMed
Devi Y. S.; DeVine M.; DeKuiper J.; Ferguson S.; Fazleabas A. T. Inhibition of IL-6 signaling pathway by curcumin in uterine decidual cells. PLoS One 2015, 10 (5), e012562710.1371/journal.pone.0125627. PubMed DOI PMC
Song J. I.; Grandis J. R. STAT signaling in head and neck cancer. Oncogene 2000, 19 (21), 2489–2495. 10.1038/sj.onc.1203483. PubMed DOI
Lee T. L.; Yeh J.; Friedman J.; Yan B.; Yang X.; Yeh N. T.; Van Waes C.; Chen Z. A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int. J. Cancer 2008, 122 (9), 1987–1998. 10.1002/ijc.23324. PubMed DOI
Jorissen R. N.; Walker F.; Pouliot N.; Garrett T. P. J.; Ward C. W.; Burgess A. W. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 2003, 284 (1), 31–53. 10.1016/S0014-4827(02)00098-8. PubMed DOI
Burgess A. W.; Cho H.-S.; Eigenbrot C.; Ferguson K. M.; Garrett T. P. J.; Leahy D. J.; Lemmon M. A.; Sliwkowski M. X.; Ward C. W.; Yokoyama S. An Open-and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Mol. Cell 2003, 12 (3), 541–552. 10.1016/S1097-2765(03)00350-2. PubMed DOI
Saddawi-Konefka R.; Schokrpur S.; Lui A. J.; Gutkind J. S. HER2 and HER3 as Therapeutic Targets in Head and Neck Cancer. Cancer J. 2022, 28 (5), 339–345. 10.1097/PPO.0000000000000622. PubMed DOI PMC
Pollock N. I.; Grandis J. R. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res. 2015, 21 (3), 526–533. 10.1158/1078-0432.CCR-14-1432. PubMed DOI PMC
Zhang J.; Saba N. F.; Chen G. Z.; Shin D. M. Targeting HER (ERBB) signaling in head and neck cancer: An essential update. Mol. Aspects Med. 2015, 45, 74–86. 10.1016/j.mam.2015.07.001. PubMed DOI PMC
Shishodia S. Molecular mechanisms of curcumin action: Gene expression. BioFactors 2013, 39 (1), 37–55. 10.1002/biof.1041. PubMed DOI
Chen A.; Xu J.; Johnson A. C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006, 25 (2), 278–287. 10.1038/sj.onc.1209019. PubMed DOI
Roskoski R. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun. 2004, 319 (1), 1–11. 10.1016/j.bbrc.2004.04.150. PubMed DOI
Zimmermann M.; Zouhair A.; Azria D.; Ozsahin M. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 2006, 1, 11.10.1186/1748-717X-1-11. PubMed DOI PMC
Chang J. W.; Kim C.-H. Molecular Targeted Therapy of Head and Neck Cancer: Promising Molecular Targets of Post-Epidermal Growth Factor Receptor Era. Korean Journal of Otorhinolaryngology-head and Neck Surgery 2014, 57, 575–583. 10.3342/kjorl-hns.2014.57.9.575. DOI
Fasano M.; Della Corte C. M.; Viscardi G.; Di Liello R.; Paragliola F.; Sparano F.; Iacovino M. L.; Castrichino A.; Doria F.; Sica A.; et al. Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther. Adv. Med. Oncol. 2021, 13, 175883592094941810.1177/1758835920949418. PubMed DOI PMC
Grandis J. R.; Tweardy D. J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53 (15), 3579–3584. PubMed
Kalyankrishna S.; Grandis J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin Oncol 2006, 24 (17), 2666–2672. 10.1200/JCO.2005.04.8306. PubMed DOI
Zhang Q.; Thomas S. M.; Xi S.; Smithgall T. E.; Siegfried J. M.; Kamens J.; Gooding W. E.; Grandis J. R. SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res. 2004, 64 (17), 6166–6173. 10.1158/0008-5472.CAN-04-0504. PubMed DOI
Harari P. M.; Wheeler D. L.; Grandis J. R. Molecular target approaches in head and neck cancer: epidermal growth factor receptor and beyond. Semin Radiat Oncol 2009, 19 (1), 63–68. 10.1016/j.semradonc.2008.09.009. PubMed DOI PMC
Byeon H. K.; Ku M.; Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Experimental & Molecular Medicine 2019, 51 (1), 1–14. 10.1038/s12276-018-0202-2. PubMed DOI PMC
Rehmani H. S.; Issaeva N. EGFR in head and neck squamous cell carcinoma: exploring possibilities of novel drug combinations. Ann. Transl Med. 2020, 8 (13), 813.10.21037/atm.2020.04.07. PubMed DOI PMC
Chen C. F.; Lu C. C.; Chiang J. H.; Chiu H. Y.; Yang J. S.; Lee C. Y.; Way T. D.; Huang H. J. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol Lett. 2018, 16 (5), 6323–6330. 10.3892/ol.2018.9418. PubMed DOI PMC
Hsiao Y.-T.; Kuo C.-L.; Lin J.-J.; Huang W.-W.; Peng S.-F.; Chueh F.-S.; Bau D.-T.; Chung J.-G. Curcuminoids combined with gefitinib mediated apoptosis and autophagy of human oral cancer SAS cells in vitro and reduced tumor of SAS cell xenograft mice in vivo. Environmental Toxicology 2018, 33 (8), 821–832. 10.1002/tox.22568. PubMed DOI
Nair S.; Bonner J. A.; Bredel M. EGFR Mutations in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23 (7), 3818.10.3390/ijms23073818. PubMed DOI PMC
Kaur G.; Phogat D.; Manu V.; et al. Study of EGFR mutations in head and neck squamous cell carcinomas. Autops. Case Rep. 2021, 11, e2021251.10.4322/acr.2021.251. PubMed DOI PMC
Widyananda M.; Kharisma V.; Ansori A.; Rizky W.; Dings T.; Rebezov M.; Maksimiuk N.; Denisenko A.; Nugraha A. Investigating the Potential of Curcumin, Demethoxycurcumin and Bisdemetoxycurcumin as Wildtype and Mutant HER2 Inhibitors Againts Various Cancer type using Bioinformatic Analysis. Biochem. Cell. Arch. 2021, 21, 3335–3343.
Chen P.; Huang H.-P.; Wang Y.; Jin J.; Long W.-G.; Chen K.; Zhao X.-H.; Chen C.-G.; Li J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. Journal of Experimental & Clinical Cancer Research 2019, 38 (1), 254.10.1186/s13046-019-1234-8. PubMed DOI PMC
Naruse T.; Tokuhisa M.; Yanamoto S.; Sakamoto Y.; Okuyama K.; Tsuchihashi H.; Umeda M. Lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment: A case report. Oncol Lett. 2018, 15 (5), 7158–7162. 10.3892/ol.2018.8261. PubMed DOI PMC
Vatte C.; Al Amri A. M.; Cyrus C.; Chathoth S.; Acharya S.; Hashim T. M.; Al Ali Z.; Alshreadah S. T.; Alsayyah A.; Al-Ali A. K. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma. Oncol. Targets Ther. 2017, 10, 1527–1533. 10.2147/OTT.S132187. PubMed DOI PMC
Sung B.; Prasad S.; Yadav V. R.; Aggarwal B. B. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 2012, 64 (2), 173–197. 10.1080/01635581.2012.630551. PubMed DOI PMC
Lee J.-Y.; Lee Y.-M.; Chang G.-C.; Yu S.-L.; Hsieh W.-Y.; Chen J. J. W.; Chen H.-W.; Yang P.-C. Curcumin Induces EGFR Degradation in Lung Adenocarcinoma and Modulates p38 Activation in Intestine: The Versatile Adjuvant for Gefitinib Therapy. PLoS One 2011, 6 (8), e2375610.1371/journal.pone.0023756. PubMed DOI PMC
Aggarwal B. B.; Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006, 71 (10), 1397–1421. 10.1016/j.bcp.2006.02.009. PubMed DOI
Forouzanfar F.; Barreto G.; Majeed M.; Sahebkar A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors 2019, 45 (5), 631–640. 10.1002/biof.1522. PubMed DOI
Ye M.; Huang W.; Wu W. W.; Liu Y.; Ye S. N.; Xu J. H. FM807, a curcumin analogue, shows potent antitumor effects in nasopharyngeal carcinoma cells by heat shock protein 90 inhibition. Oncotarget 2017, 8 (9), 15364–15376. 10.18632/oncotarget.14970. PubMed DOI PMC
Peltanova B.; Raudenska M.; Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Molecular Cancer 2019, 18 (1), 63.10.1186/s12943-019-0983-5. PubMed DOI PMC
Bienkowska K. J.; Hanley C. J.; Thomas G. J. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. Front. Oral Health 2021, 10.3389/froh.2021.686337. PubMed DOI PMC
Hu C.; Zhang Y.; Wu C.; Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discovery 2023, 9 (1), 124.10.1038/s41420-023-01428-8. PubMed DOI PMC
Jung D. W.; Che Z. M.; Kim J.; Kim K.; Kim K. Y.; Williams D.; Kim J. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. International journal of cancer 2010, 127 (2), 332–344. 10.1002/ijc.25060. PubMed DOI
Bello I. O.; Vered M.; Dayan D.; Dobriyan A.; Yahalom R.; Alanen K.; Nieminen P.; Kantola S.; Läärä E.; Salo T. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral oncology 2011, 47 (1), 33–38. 10.1016/j.oraloncology.2010.10.013. PubMed DOI
Rad H. S.; Shiravand Y.; Radfar P.; Ladwa R.; Perry C.; Han X.; Warkiani M. E.; Adams M. N.; Hughes B. G.; O’Byrne K.; et al. Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clin Transl Immunology 2022, 11 (6), e139710.1002/cti2.1397. PubMed DOI PMC
Nisar S.; Yousuf P.; Masoodi T.; Wani N. A.; Hashem S.; Singh M.; Sageena G.; Mishra D.; Kumar R.; Haris M. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4584.10.3390/ijms22094584. PubMed DOI PMC
Utispan K.; Koontongkaew S. Fibroblasts and macrophages: Key players in the head and neck cancer microenvironment. Journal of Oral Biosciences 2017, 59 (1), 23–30. 10.1016/j.job.2016.11.002. DOI
Sahai E.; Astsaturov I.; Cukierman E.; DeNardo D. G.; Egeblad M.; Evans R. M.; Fearon D.; Greten F. R.; Hingorani S. R.; Hunter T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer 2020, 20 (3), 174–186. 10.1038/s41568-019-0238-1. PubMed DOI PMC
Custódio M.; Biddle A.; Tavassoli M. Portrait of a CAF: The story of cancer-associated fibroblasts in head and neck cancer. Oral Oncology 2020, 110, 10497210.1016/j.oraloncology.2020.104972. PubMed DOI
Ba P.; Xu M.; Yu M.; Li L.; Duan X.; Lv S.; Fu G.; Yang J.; Yang P.; Yang C.; et al. Curcumin suppresses the proliferation and tumorigenicity of Cal27 by modulating cancer-associated fibroblasts of TSCC. Oral Diseases 2020, 26 (7), 1375–1383. 10.1111/odi.13306. PubMed DOI
Ding L.; Zhang Z.; Shang D.; Cheng J.; Yuan H.; Wu Y.; Song X.; Jiang H. α-Smooth muscle actin-positive myofibroblasts, in association with epithelial–mesenchymal transition and lymphogenesis, is a critical prognostic parameter in patients with oral tongue squamous cell carcinoma. Journal of Oral Pathology & Medicine 2014, 43 (5), 335–343. 10.1111/jop.12143. PubMed DOI
Knops A. M.; South A.; Rodeck U.; Martinez-Outschoorn U.; Harshyne L. A.; Johnson J.; Luginbuhl A. J.; Curry J. M. Cancer-Associated Fibroblast Density, Prognostic Characteristics, and Recurrence in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Front Oncol 2020, 10, 56530610.3389/fonc.2020.565306. PubMed DOI PMC
Khodarev N. N.; Roach P.; Pitroda S. P.; Golden D. W.; Bhayani M.; Shao M. Y.; Darga T. E.; Beveridge M. G.; Sood R. F.; Sutton H. G.; et al. STAT1 Pathway Mediates Amplification of Metastatic Potential and Resistance to Therapy. PLoS One 2009, 4 (6), e582110.1371/journal.pone.0005821. PubMed DOI PMC
Pisani P.; Airoldi M.; Allais A.; Aluffi Valletti P.; Battista M.; Benazzo M.; Briatore R.; Cacciola S.; Cocuzza S.; Colombo A.; et al. Metastatic disease in head & neck oncology. Acta Otorhinolaryngol. Ital. 2020, 40 (Suppl. 1), S1–s86. 10.14639/0392-100X-suppl.1-40-2020. PubMed DOI PMC
Suwarna D. K.Local Metastasis in Head and Neck Cancer - an Overview. In Contemporary Issues in Head and Neck Cancer Management; Loredana G. M., Ed.; IntechOpen, 2015; Ch. 6.
Langley R. R.; Fidler I. J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocrine reviews 2007, 28 (3), 297–321. 10.1210/er.2006-0027. PubMed DOI
Dunn G. P.; Bruce A. T.; Ikeda H.; Old L. J.; Schreiber R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology 2002, 3 (11), 991–998. 10.1038/ni1102-991. PubMed DOI
Ikeda H.; Old L. J.; Schreiber R. D. The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine & growth factor reviews 2002, 13 (2), 95–109. 10.1016/S1359-6101(01)00038-7. PubMed DOI
Levy D. E.; Darnell J. Jr Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 2002, 3 (9), 651–662. 10.1038/nrm909. PubMed DOI
Khodarev N. N.; Beckett M.; Labay E.; Darga T.; Roizman B.; Weichselbaum R. R. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (6), 1714–1719. 10.1073/pnas.0308102100. PubMed DOI PMC
Khodarev N. N.; Minn A. J.; Efimova E. V.; Darga T. E.; Labay E.; Beckett M.; Mauceri H. J.; Roizman B.; Weichselbaum R. R. Signal Transducer and Activator of Transcription 1 Regulates Both Cytotoxic and Prosurvival Functions in Tumor Cells. Cancer Res. 2007, 67 (19), 9214–9220. 10.1158/0008-5472.CAN-07-1019. PubMed DOI
Kim H. Y.; Park E. J.; Joe E.-h.; Jou I. Curcumin Suppresses Janus Kinase-STAT Inflammatory Signaling through Activation of Src Homology 2 Domain-Containing Tyrosine Phosphatase 2 in Brain Microglia 1. J. Immunol. 2003, 171 (11), 6072–6079. 10.4049/jimmunol.171.11.6072. PubMed DOI
Jeong Y. I.; Kim S. W.; Jung I. D.; Lee J. S.; Chang J. H.; Lee C. M.; Chun S. H.; Yoon M. S.; Kim G. T.; Ryu S. W.; et al. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferon-gamma-stimulated murine dendritic cells. J. Biol. Chem. 2009, 284 (6), 3700–3708. 10.1074/jbc.M807328200. PubMed DOI
Amin A. R.; Anisuzzaman A.; Siddique A. B.; Fuchs J. R. Abstract 680: FLLL12 is a small molecule JAK2 inhibitor that inhibits JAK-STAT3 pathway in head and neck cancer. Cancer Res. 2018, 78 (13_Supplement), 680–680. 10.1158/1538-7445.AM2018-680. DOI
Concha-Benavente F.; Srivastava R. M.; Trivedi S.; Lei Y.; Chandran U.; Seethala R. R.; Freeman G. J.; Ferris R. L. Identification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNγ That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Res. 2016, 76 (5), 1031–1043. 10.1158/0008-5472.CAN-15-2001. PubMed DOI PMC
Liu L.; Lim M. A.; Jung S. N.; Oh C.; Won H. R.; Jin Y. L.; Piao Y.; Kim H. J.; Chang J. W.; Koo B. S. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine 2021, 92, 15375810.1016/j.phymed.2021.153758. PubMed DOI
Smith A.; Teknos T. N.; Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol 2013, 49 (4), 287–292. 10.1016/j.oraloncology.2012.10.009. PubMed DOI PMC
Kudinov A. E.; Beck T. N.. Transforming Growth Factor Beta (TGF-β) Signaling in Head and Neck Squamous Cell Carcinoma (HNSCC). In Molecular Determinants of Head and Neck Cancer; Burtness B., Golemis E. A., Eds.; Springer International Publishing, 2018; pp 89–115.
Pal A.; Barrett T. F.; Paolini R.; Parikh A.; Puram S. V. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 2021, 40 (32), 5049–5065. 10.1038/s41388-021-01868-5. PubMed DOI PMC
Rosenthal E. L.; Matrisian L. M. Matrix metalloproteases in head and neck cancer. Head Neck 2006, 28 (7), 639–648. 10.1002/hed.20365. PubMed DOI PMC
Lee A. Y.; Fan C. C.; Chen Y. A.; Cheng C. W.; Sung Y. J.; Hsu C. P.; Kao T. Y. Curcumin Inhibits Invasiveness and Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Through Reducing Matrix Metalloproteinase 2, 9 and Modulating p53-E-Cadherin Pathway. Integr Cancer Ther 2015, 14 (5), 484–490. 10.1177/1534735415588930. PubMed DOI
Senft C.; Polacin M.; Priester M.; Seifert V.; Kögel D.; Weissenberger J. The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 2010, 10, 491–491. 10.1186/1471-2407-10-491. PubMed DOI PMC
Deng Y. I.; Verron E.; Rohanizadeh R. Molecular Mechanisms of Anti-metastatic Activity of Curcumin. Anticancer Res. 2016, 36 (11), 5639.10.21873/anticanres.11147. PubMed DOI
Mohankumar K.; Francis A. P.; Pajaniradje S.; Rajagopalan R. Synthetic curcumin analog: inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway. Molecular Biology Reports 2021, 48 (8), 6065–6074. 10.1007/s11033-021-06610-8. PubMed DOI
Kanno Y.; Chen C. Y.; Lee H. L.; Chiou J. F.; Chen Y. J. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front Oncol 2021, 11, 64039210.3389/fonc.2021.640392. PubMed DOI PMC
Ortiz-Cuaran S.; Bouaoud J.; Karabajakian A.; Fayette J.; Saintigny P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front. Oncol. 2021, 10.3389/fonc.2021.614332. PubMed DOI PMC
Yan M.; Xu Q.; Zhang P.; Zhou X. J.; Zhang Z. Y.; Chen W. T. Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer 2010, 10, 437.10.1186/1471-2407-10-437. PubMed DOI PMC
Monisha J.; Roy N. K.; Bordoloi D.; Kumar A.; Golla R.; Kotoky J.; Padmavathi G.; Kunnumakkara A. B. Nuclear Factor Kappa B: A Potential Target to Persecute Head and Neck Cancer. Curr. Drug Targets 2016, 18 (2), 232–253. 10.2174/1389450117666160201112330. PubMed DOI
Sivanantham B.; Sethuraman S.; Krishnan U. M. Combinatorial Effects of Curcumin with an Anti-Neoplastic Agent on Head and Neck Squamous Cell Carcinoma Through the Regulation of EGFR-ERK1/2 and Apoptotic Signaling Pathways. ACS Comb. Sci. 2016, 18 (1), 22–35. 10.1021/acscombsci.5b00043. PubMed DOI
Baldi A.; De Luca A.; Maiorano P.; D’Angelo C.; Giordano A. Curcumin as an Anticancer Agent in Malignant Mesothelioma: A Review. Int. J. Mol. Sci. 2020, 21 (5), 1839.10.3390/ijms21051839. PubMed DOI PMC
Jäger R.; Lowery R. P.; Calvanese A. V.; Joy J. M.; Purpura M.; Wilson J. M. Comparative absorption of curcumin formulations. Nutr J. 2014, 13, 11–11. 10.1186/1475-2891-13-11. PubMed DOI PMC
Ma Z.; Wang N.; He H.; Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Controlled Release 2019, 316, 359–380. 10.1016/j.jconrel.2019.10.053. PubMed DOI
Pan M.-H.; Huang T.-M.; Lin J.-K. Biotransformation of Curcumin Through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 1999, 27 (4), 486–494. PubMed
Shoba G.; Joy D.; Joseph T.; Majeed M.; Rajendran R.; Srinivas P. S. S. R. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64 (04), 353–356. 10.1055/s-2006-957450. PubMed DOI
Patra D.; Ahmadieh D.; Aridi R. Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome. Colloids Surf., B 2013, 110, 296–304. 10.1016/j.colsurfb.2013.04.027. PubMed DOI
Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46 (3), 183–196. PubMed
Dulbecco P.; Savarino V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol 2013, 19 (48), 9256–9270. 10.3748/wjg.v19.i48.9256. PubMed DOI PMC
Priyadarsini K. I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014, 19 (12), 20091–20112. 10.3390/molecules191220091. PubMed DOI PMC
Slika L.; Patra D. A short review on chemical properties, stability and nano-technological advances for curcumin delivery. Expert Opin Drug Deliv 2020, 17 (1), 61–75. 10.1080/17425247.2020.1702644. PubMed DOI
Wang Y. J.; Pan M. H.; Cheng A. L.; Lin L. I.; Ho Y. S.; Hsieh C. Y.; Lin J. K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed Anal 1997, 15 (12), 1867–1876. 10.1016/S0731-7085(96)02024-9. PubMed DOI
Naksuriya O.; van Steenbergen M. J.; Torano J. S.; Okonogi S.; Hennink W. E. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles. Aaps j 2016, 18 (3), 777–787. 10.1208/s12248-015-9863-0. PubMed DOI PMC
Lampiasi N.; Montana G. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw 264.7 cells. Immunobiology 2016, 221 (3), 486–493. 10.1016/j.imbio.2015.11.001. PubMed DOI
Han C.; Ding H.; Casto B.; Stoner G. D.; D’Ambrosio S. M. Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberries. Nutr Cancer 2005, 51 (2), 207–217. 10.1207/s15327914nc5102_11. PubMed DOI
Zhu J.; Sanidad K. Z.; Sukamtoh E.; Zhang G. Potential roles of chemical degradation in the biological activities of curcumin. Food & Function 2017, 8 (3), 907–914. 10.1039/C6FO01770C. PubMed DOI
Liang J.-A.; Wu S.-L.; Lo H.-Y.; Hsiang C.-Y.; Ho T.-Y. Vanillin Inhibits Matrix Metalloproteinase-9 Expression through Down-Regulation of Nuclear Factor-κB Signaling Pathway in Human Hepatocellular Carcinoma Cells. Mol. Pharmacol. 2009, 75 (1), 151–157. 10.1124/mol.108.049502. PubMed DOI
Ali P. I.; Saleem K.; Wesselinova D.; Haque A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res. 2013, 22, 1386.10.1007/s00044-012-0133-8. DOI
Yallapu M. M.; Nagesh P. K. B.; Jaggi M.; Chauhan S. C. Therapeutic Applications of Curcumin Nanoformulations. AAPS Journal 2015, 17 (6), 1341–1356. 10.1208/s12248-015-9811-z. PubMed DOI PMC
Yallapu M. M.; Jaggi M.; Chauhan S. C. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today 2012, 17 (1), 71–80. 10.1016/j.drudis.2011.09.009. PubMed DOI PMC
Hafez Ghoran S.; Calcaterra A.; Abbasi M.; Taktaz F.; Nieselt K.; Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022, 27 (16), 5236.10.3390/molecules27165236. PubMed DOI PMC
Gera M.; Sharma N.; Ghosh M.; Huynh D. L.; Lee S. J.; Min T.; Kwon T.; Jeong D. K. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 2017, 8 (39), 66680–66698. 10.18632/oncotarget.19164. PubMed DOI PMC
Naksuriya O.; Okonogi S.; Schiffelers R. M.; Hennink W. E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014, 35 (10), 3365–3383. 10.1016/j.biomaterials.2013.12.090. PubMed DOI
Beyene A. M.; Moniruzzaman M.; Karthikeyan A.; Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. Nanomaterials 2021, 11 (2), 460.10.3390/nano11020460. PubMed DOI PMC
Jacob S.; Kather F. S.; Morsy M. A.; Boddu S. H. S.; Attimarad M.; Shah J.; Shinu P.; Nair A. B. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. Nanomaterials 2024, 14 (8), 672.10.3390/nano14080672. PubMed DOI PMC
Chopra H.; Dey P. S.; Das D.; Bhattacharya T.; Shah M.; Mubin S.; Maishu S. P.; Akter R.; Rahman M. H.; Karthika C. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021, 26 (16), 4998.10.3390/molecules26164998. PubMed DOI PMC
Das A.; Adhikari S.; Deka D.; Baildya N.; Sahare P.; Banerjee A.; Paul S.; Bisgin A.; Pathak S. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. Medicina 2023, 59 (4), 685.10.3390/medicina59040685. PubMed DOI PMC
Cuomo J.; Appendino G.; Dern A. S.; Schneider E.; McKinnon T. P.; Brown M. J.; Togni S.; Dixon B. M. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod 2011, 74 (4), 664–669. 10.1021/np1007262. PubMed DOI
Yallapu M. M.; Jaggi M.; Chauhan S. C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf., B 2010, 79 (1), 113–125. 10.1016/j.colsurfb.2010.03.039. PubMed DOI
Yallapu M. M.; Gupta B. K.; Jaggi M.; Chauhan S. C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci. 2010, 351 (1), 19–29. 10.1016/j.jcis.2010.05.022. PubMed DOI
Mohanty C.; Sahoo S. K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010, 31 (25), 6597–6611. 10.1016/j.biomaterials.2010.04.062. PubMed DOI
Yang X.; Li Z.; Wang N.; Li L.; Song L.; He T.; Sun L.; Wang Z.; Wu Q.; Luo N.; et al. Curcumin-Encapsulated Polymeric Micelles Suppress the Development of Colon Cancer In Vitro and In Vivo. Sci. Rep. 2015, 5 (1), 1032210.1038/srep10322. PubMed DOI PMC
Lin Y.-L.; Liu Y.-K.; Tsai N.-M.; Hsieh J.-H.; Chen C.-H.; Lin C.-M.; Liao K.-W. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (3), 318–327. 10.1016/j.nano.2011.06.011. PubMed DOI
Elbassiouni F. E.; El-Kholy W. M.; Elhabibi E. M.; Albogami S.; Fayad E. Comparative Study between Curcumin and Nanocurcumin Loaded PLGA on Colon Carcinogenesis Induced Mice. Nanomaterials 2022, 12 (3), 324.10.3390/nano12030324. PubMed DOI PMC
Gosangari S. L.; Watkin K. L. Effect of preparation techniques on the properties of curcumin liposomes: Characterization of size, release and cytotoxicity on a squamous oral carcinoma cell line. Pharm. Dev. Technol. 2012, 17 (1), 103–109. 10.3109/10837450.2010.522583. PubMed DOI
Ortega A.; da Silva A. B.; da Costa L. M.; Zatta K. C.; Onzi G. R.; da Fonseca F. N.; Guterres S. S.; Paese K. Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma. Drug Delivery and Translational Research 2023, 13 (2), 642–657. 10.1007/s13346-022-01227-1. PubMed DOI
Vishwakarma V.; New J.; Kumar D.; Snyder V.; Arnold L.; Nissen E.; Hu Q.; Cheng N.; Miller D.; Thomas A. R.; et al. Potent Antitumor Effects of a Combination of Three Nutraceutical Compounds. Sci. Rep 2018, 8 (1), 12163.10.1038/s41598-018-29683-1. PubMed DOI PMC
LATIMER B.; EKSHYYAN O.; NATHAN N.; MOORE-MEDLIN T.; RONG X.; MA X.; KHANDELWAL A.; CHRISTY H. T.; ABREO F.; MCCLURE G.; et al. Enhanced Systemic Bioavailability of Curcumin Through Transmucosal Administration of a Novel Microgranular Formulation. Anticancer Res. 2015, 35 (12), 6411–6418. PubMed
Boven L.; Holmes S. P.; Latimer B.; McMartin K.; Ma X.; Moore-Medlin T.; Khandelwal A. R.; McLarty J.; Nathan C.-A. O. Curcumin gum formulation for prevention of oral cavity head and neck squamous cell carcinoma. Laryngoscope 2019, 129 (7), 1597–1603. 10.1002/lary.27542. PubMed DOI
Khafif A.; Schantz S. P.; Chou T. C.; Edelstein D.; Sacks P. G. Quantitation of chemopreventive synergism between (−)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 1998, 19 (3), 419–424. 10.1093/carcin/19.3.419. PubMed DOI
Masuelli L.; Di Stefano E.; Fantini M.; Mattera R.; Benvenuto M.; Marzocchella L.; Sacchetti P.; Focaccetti C.; Bernardini R.; Tresoldi I.; et al. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas. Oncotarget 2014, 5 (21), 10745–10762. 10.18632/oncotarget.2534. PubMed DOI PMC
Basak S. K.; Bera A.; Yoon A. J.; Morselli M.; Jeong C.; Tosevska A.; Dong T. S.; Eklund M.; Russ E.; Nasser H.; et al. A randomized, phase 1, placebo-controlled trial of APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor-associated microbes. Cancer 2020, 126 (8), 1668–1682. 10.1002/cncr.32644. PubMed DOI
Purcell R. V.; Pearson J.; Aitchison A.; Dixon L.; Frizelle F. A.; Keenan J. I. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 2017, 12 (2), e017160210.1371/journal.pone.0171602. PubMed DOI PMC
Hooper S. J.; Crean S.-J.; Fardy M. J.; Lewis M. A. O.; Spratt D. A.; Wade W. G.; Wilson M. J. A molecular analysis of the bacteria present within oral squamous cell carcinoma. Journal of Medical Microbiology 2007, 56 (12), 1651–1659. 10.1099/jmm.0.46918-0. PubMed DOI
Delavarian Z.; Pakfetrat A.; Ghazi A.; Jaafari M. R.; Homaei Shandiz F.; Dalirsani Z.; Mohammadpour A. H.; Rahimi H. R. Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Special Care in Dentistry 2019, 39 (2), 166–172. 10.1111/scd.12358. PubMed DOI
Thambamroong T.; Seetalarom K.; Saichaemchan S.; Pumsutas Y.; Prasongsook N. Efficacy of Curcumin on Treating Cancer Anorexia-Cachexia Syndrome in Locally or Advanced Head and Neck Cancer: A Double-Blind, Placebo-Controlled Randomised Phase IIa Trial (CurChexia). J. Nutr. Metab. 2022, 2022, 542561910.1155/2022/5425619. PubMed DOI PMC
Basu P.; Dutta S.; Begum R.; Mittal S.; Dutta P. D.; Bharti A. C.; Panda C. K.; Biswas J.; Dey B.; Talwar G. P. Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pacific J. Cancer Prev. 2013, 14 (10), 5753–5759. 10.7314/APJCP.2013.14.10.5753. PubMed DOI
Kuriakose M. A.; Ramdas K.; Dey B.; Iyer S.; Rajan G.; Elango K. K.; Suresh A.; Ravindran D.; Kumar R. R.; R P.; et al. A Randomized Double-Blind Placebo-Controlled Phase IIB Trial of Curcumin in Oral Leukoplakia. Cancer Prevention Research 2016, 9 (8), 683–691. 10.1158/1940-6207.CAPR-15-0390. PubMed DOI
Panahi Y.; Saberi-Karimian M.; Valizadeh O.; Behnam B.; Saadat A.; Jamialahmadi T.; Majeed M.; Sahebkar A.. Effects of Curcuminoids on Systemic Inflammation and Quality of Life in Patients with Colorectal Cancer Undergoing Chemotherapy: A Randomized Controlled Trial. In Natural Products and Human Diseases: Pharmacology, Molecular Targets, and Therapeutic Benefits; Sahebkar A., Sathyapalan T., Eds.; Springer International Publishing, 2021; pp 1–9. PubMed
Dhillon N.; Aggarwal B. B.; Newman R. A.; Wolff R. A.; Kunnumakkara A. B.; Abbruzzese J. L.; Ng C. S.; Badmaev V.; Kurzrock R. Phase II Trial of Curcumin in Patients with Advanced Pancreatic Cancer. Clin. Cancer Res. 2008, 14 (14), 4491–4499. 10.1158/1078-0432.CCR-08-0024. PubMed DOI
He Z.-Y.; Shi C.-B.; Wen H.; Li F.-L.; Wang B.-L.; Wang J. Upregulation of p53 Expression in Patients with Colorectal Cancer by Administration of Curcumin. Cancer Investigation 2011, 29 (3), 208–213. 10.3109/07357907.2010.550592. PubMed DOI
Rahman M. A.; Amin A. R.; Shin D. M. Chemopreventive potential of natural compounds in head and neck cancer. Nutr Cancer 2010, 62 (7), 973–987. 10.1080/01635581.2010.509538. PubMed DOI PMC
Thangapazham R. L.; Sharma A.; Maheshwari R. K. Multiple molecular targets in cancer chemoprevention by curcumin. Aaps j 2006, 8 (3), E443–449. 10.1208/aapsj080352. PubMed DOI PMC
Li N.; Chen X.; Liao J.; Yang G.; Wang S.; Josephson Y.; Han C.; Chen J.; Huang M. T.; Yang C. S. Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 2002, 23 (8), 1307–1313. 10.1093/carcin/23.8.1307. PubMed DOI
Fanoudi S.; Alavi M. S.; Mehri S.; Hosseinzadeh H. The protective effects of curcumin against cigarette smoke-induced toxicity: A comprehensive review. Phytotherapy Research 2024, 38 (1), 98–116. 10.1002/ptr.8035. PubMed DOI
Tang X.; Li Z.; Yu Z.; Li J.; Zhang J.; Wan N.; Zhang J.; Cao J. Effect of curcumin on lung epithelial injury and ferroptosis induced by cigarette smoke. Hum. Exp. Toxicol. 2021, 40 (12_suppl), S753–s762. 10.1177/09603271211059497. PubMed DOI
Shishodia S.; Potdar P.; Gairola C. G.; Aggarwal B. B. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 2003, 24 (7), 1269–1279. 10.1093/carcin/bgg078. PubMed DOI
Gan L.; Li C.; Wang J.; Guo X. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model. Int. J. Chron Obstruct Pulmon Dis 2016, 11, 2765–2773. 10.2147/COPD.S113978. PubMed DOI PMC
Jaques J. A. d. S.; Rezer J. F. P.; Ruchel J. B.; Becker L. V.; Saydelles da Rosa C.; Souza V. d. C. G.; Luz S. C. A. d.; Gutierres J. M.; Gonçalves J. F.; Morsch V. M.; et al. Lung and blood lymphocytes NTPDase and acetylcholinesterase activity in cigarette smoke-exposed rats treated with curcumin. Biomedicine & Preventive Nutrition 2011, 1 (2), 109–115. 10.1016/j.bionut.2011.02.003. DOI
Xu B.; Zhou L.; Zhang Q. Curcumin Inhibits the Progression of Non-small Cell Lung Cancer by Regulating DMRT3/SLC7A11 Axis. Mol. Biotechnol 2024, 10.1007/s12033-024-01166-x. PubMed DOI
Jang B. Y.; Shin M. K.; Han D. H.; Sung J. S. Curcumin Disrupts a Positive Feedback Loop between ADMSCs and Cancer Cells in the Breast Tumor Microenvironment via the CXCL12/CXCR4 Axis. Pharmaceutics 2023, 15 (11), 2627.10.3390/pharmaceutics15112627. PubMed DOI PMC
Li W.; Wang F.; Wang X.; Xu W.; Liu F.; Hu R.; Li S. Curcumin inhibits prostate cancer by upregulating miR-483–3p and inhibiting UBE2C. J. Biochem Mol. Toxicol 2024, 38 (2), e2364510.1002/jbt.23645. PubMed DOI
Ming T.; Lei J.; Peng Y.; Wang M.; Liang Y.; Tang S.; Tao Q.; Wang M.; Tang X.; He Z.; et al. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res. 2024, 38, 3954.10.1002/ptr.8258. PubMed DOI
Koh Y. C.; Tsai Y. W.; Lee P. S.; Nagabhushanam K.; Ho C. T.; Pan M. H. Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. J. Agric. Food Chem. 2022, 70 (46), 14744–14754. 10.1021/acs.jafc.2c06645. PubMed DOI
Sarkar E.; Kotiya A.; Khan A.; Bhuyan R.; Raza S. T.; Misra A.; Mahdi A. A. The combination of Curcumin and Doxorubicin on targeting PI3K/AKT/mTOR signaling pathway: an in vitro and molecular docking study for inhibiting the survival of MDA-MB-231. In Silico Pharmacol 2024, 12 (2), 58.10.1007/s40203-024-00231-2. PubMed DOI PMC
Zhao H.; Ding R.; Han J. Curcumin Enhances the Anti-Cancer Efficacy of CDK4/6 Inhibitors in Prostate Cancer. Arch Esp Urol 2024, 77 (1), 57–66. 10.56434/j.arch.esp.urol.20247701.8. PubMed DOI
Banerjee S.; Chakravarty A. R. Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity. Acc. Chem. Res. 2015, 48 (7), 2075–2083. 10.1021/acs.accounts.5b00127. PubMed DOI
Mary C. P. V.; Vijayakumar S.; Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes – A DFT approach. Journal of Molecular Graphics and Modelling 2018, 79, 1–14. 10.1016/j.jmgm.2017.10.022. PubMed DOI
Prasad S.; DuBourdieu D.; Srivastava A.; Kumar P.; Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int. J. Mol. Sci. 2021, 22 (13), 7094.10.3390/ijms22137094. PubMed DOI PMC
Lakshmi B. A.; Reddy A. S.; Sangubotla R.; Hong J. W.; Kim S. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids Surf. B Biointerfaces 2021, 204, 11177310.1016/j.colsurfb.2021.111773. PubMed DOI
Li S.; Xu G.; Zhu Y.; Zhao J.; Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Transactions 2020, 49 (27), 9454–9463. 10.1039/D0DT01040E. PubMed DOI