Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19

. 2020 Oct 26 ; 21 (21) : . [epub] 20201026

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114676

Grantová podpora
"Centre for Tumour Ecology - Research of the Cancer Microenvironment Supporting Cancer Growth and Spread "(No. CZ.02.1.01/0.0/0.0/16_019/0000785) MŠMT ČR - supported by the Operational Programme Research, Development and Education, by the European Regional Development Fund (ERDF)
BIOCEV (No. CZ.1.05/1.1.00/02.0109) MŠMT ČR
), "The Equipment for Metabolomics and Cell Analyses" (No. CZ.1.05/2.1.00/19.0400) MŠMT ČR
PROGRES Q28 Charles University in Prague

Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.

Zobrazit více v PubMed

Tissue Expression of IL6—Summary—The Human Protein Atlas. [(accessed on 21 September 2020)]; Available online: https://www.proteinatlas.org/ENSG00000136244-IL6/tissue.

Zilberstein A., Ruggieri R., Korn J.H., Revel M. Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines. EMBO J. 1986;5:2529–2537. doi: 10.1002/j.1460-2075.1986.tb04531.x. PubMed DOI PMC

Haegeman G., Content J., Volckaert G., Derynck R., Tavernier J., Fiers W. Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblasts. Eur. J. Biochem. 1986;159:625–632. doi: 10.1111/j.1432-1033.1986.tb09931.x. PubMed DOI

Hirano T., Taga T., Nakano N., Yasukawa K., Kashiwamura S., Shimizu K., Nakajima K., Pyun K.H., Kishimoto T. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2) Proc. Natl. Acad. Sci. USA. 1985;82:5490–5494. doi: 10.1073/pnas.82.16.5490. PubMed DOI PMC

Brakenhoff J.P., de Groot E.R., Evers R.F., Pannekoek H., Aarden L.A. Molecular cloning and expression of hybridoma growth factor in Escherichia coli. J. Immunol. 1987;139:4116–4121. PubMed

Nordan R.P., Pumphrey J.G., Rudikoff S. Purification and NH2-terminal sequence of a plasmacytoma growth factor derived from the murine macrophage cell line P388D1. J. Immunol. 1987;139:813–817. PubMed

Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. USA. 1987;84:7251–7255. doi: 10.1073/pnas.84.20.7251. PubMed DOI PMC

Ikebuchi K., Wong G.G., Clark S.C., Ihle J.N., Hirai Y., Ogawa M. Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc. Natl. Acad. Sci. USA. 1987;84:9035–9039. doi: 10.1073/pnas.84.24.9035. PubMed DOI PMC

Takai Y., Wong G.G., Clark S.C., Burakoff S.J., Herrmann S.H. B cell stimulatory factor-2 is involved in the differentiation of cytotoxic T lymphocytes. J. Immunol. 1988;140:140. PubMed

Groeger S., Meyle J. Oral mucosal epithelial cells. Front. Immunol. 2019;10:208. doi: 10.3389/fimmu.2019.00208. PubMed DOI PMC

Pritts T., Hungness E., Wang Q., Robb B., Hershko D., Hasselgren P.O. Mucosal and enterocyte IL-6 production during sepsis and endotoxemia—Role of transcription factors and regulation by the stress response. Am. J. Surg. 2002;183:372–383. doi: 10.1016/S0002-9610(02)00812-7. PubMed DOI

Uehling D.T., Brooke Johnson D., Hopkins W.J. The urinary tract response to entry of pathogens. World J. Urol. 1999;17:351–358. doi: 10.1007/s003450050160. PubMed DOI

Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016;64:1403–1415. doi: 10.1016/j.jhep.2016.02.004. PubMed DOI

Cheung C.Y., Poon L.L.M., Ng I.H.Y., Luk W., Sia S.-F., Wu M.H.S., Chan K.-H., Yuen K.-Y., Gordon S., Guan Y., et al. Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis. J. Virol. 2005;79:7819–7826. doi: 10.1128/JVI.79.12.7819-7826.2005. PubMed DOI PMC

Kyotani Y., Takasawa S., Yoshizumi M. Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int. J. Mol. Sci. 2019;20:2706. doi: 10.3390/ijms20112706. PubMed DOI PMC

Barbalho S., Vieira Prado Neto E., de Alvares Goulart R., Bechara M., Federighi Baisi Chagas E., Audi M., Guissoni Campos L., Landgraf Guiger E., Leoni Buchain R., Buchain D., et al. Myokines: A descriptive review. J. Sports Med. Phys. Fit. 2020 doi: 10.23736/S0022-4707.20.10884-3. PubMed DOI

Kovács B., Vajda E., Nagy E.E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int. J. Mol. Sci. 2019;20:4653. doi: 10.3390/ijms20184653. PubMed DOI PMC

Xie C., Chen Q. Adipokines: New Therapeutic Target for Osteoarthritis? Curr. Rheumatol. Rep. 2019;21:71. doi: 10.1007/s11926-019-0868-z. PubMed DOI PMC

Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429. PubMed DOI

Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34:125–136. PubMed

Unver N., McAllister F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev. 2018;41:10–17. doi: 10.1016/j.cytogfr.2018.04.004. PubMed DOI PMC

Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018;10:a028415. doi: 10.1101/cshperspect.a028415. PubMed DOI PMC

Kopf M., Baumann H., Freer G., Freudenberg M., Lamers M., Kishimoto T., Zinkernagel R., Bluethmann H., Köhler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994;368:339–342. doi: 10.1038/368339a0. PubMed DOI

Ramsay A.J., Kopf M. IL-6 Gene Knockout Mice. In: Durum S.K., Muegge K., editors. Cytokine Knockouts. Contemporary Immunology. Humana Press; Totowa, NJ, USA: 1998. pp. 227–236. DOI

Tanaka T., Narazaki M., Kishimoto T. Il-6 in inflammation, Immunity, And disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295. PubMed DOI PMC

Takatsuki F., Okano A., Suzuki C., Chieda R., Takahara Y., Hirano T., Kishimoto T., Hamuro J., Akiyama Y. Human recombinant IL-6/B cell stimulatory factor 2 augments murine antigen-specific antibody responses in vitro and in vivo. J. Immunol. 1988;141:3072–3077. PubMed

Luger T.A., Krutmann J., Kirnbauer R., Urbanski A., Schwarz T., Klappacher G., Köck A., Micksche M., Malejczyk J., Schauer E. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J. Immunol. 1989;143:1206–1209. PubMed

Mendel I., Katz A., Kozak N., Ben-Nun A., Revel M. Interleukin-6 functions in autoimmune encephalomyelitis: A study in gene-targeted mice. Eur. J. Immunol. 1998;28:1727–1737. doi: 10.1002/(SICI)1521-4141(199805)28:05<1727::AID-IMMU1727>3.0.CO;2-#. PubMed DOI

Rodríguez A., Becerril S., Ezquerro S., Méndez-Giménez L., Frühbeck G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol. 2017;219:362–381. doi: 10.1111/apha.12686. PubMed DOI

Wallenius V., Wallenius K., Ahrén B., Rudling M., Carlsten H., Dickson S.L., Ohlsson C., Jansson J.O. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002;8:75–79. doi: 10.1038/nm0102-75. PubMed DOI

Tamura T., Udagawa N., Takahashi N., Miyaura C., Tanaka S., Yamada Y., Koishihara Y., Ohsugi Y., Kumaki K., Taga T., et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA. 1993;90:11924–11928. doi: 10.1073/pnas.90.24.11924. PubMed DOI PMC

Poli V., Balena R., Fattori E., Markatos A., Yamamoto M., Tanaka H., Ciliberto G., Rodan G.A., Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13:1189–1196. doi: 10.1002/j.1460-2075.1994.tb06368.x. PubMed DOI PMC

Ahmad S.I. Aging: Exploring a Complex Phenomenon. CRC Press; Boca Raton, FL, USA: 2017.

World Health Organization . World Report on Ageing And Health. World Health Organization; Geneva, Switzerland: 2015.

Feltes B.C., De Faria Poloni J., Bonatto D. The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology. 2011;12:293–308. doi: 10.1007/s10522-011-9325-8. PubMed DOI

Valiathan R., Ashman M., Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. Scand. J. Immunol. 2016;83:255–266. doi: 10.1111/sji.12413. PubMed DOI

Puzianowska-Kuźnicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., Skalska A., Jonas M., Franek E., Mossakowska M. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior study. Immun. Ageing. 2016;13:1–12. doi: 10.1186/s12979-016-0076-x. PubMed DOI PMC

Torres K.C.L., de Rezende V.B., Lima-Silva M.L., de Santos L.J.S., Costa C.G., de Mambrini J.V.M., Peixoto S.V., Tarazona-Santos E., Martins Filho O.A., Lima-Costa M.F., et al. Immune senescence and biomarkers profile of Bambuí aged population-based cohort. Exp. Gerontol. 2018;103:47–56. doi: 10.1016/j.exger.2017.12.006. PubMed DOI

Adriaensen W., Matheï C., Van Pottelbergh G., Vaes B., Legrand D., Wallemacq P., Degryse J.M. Significance of serum immune markers in identification of global functional impairment in the oldest old: Cross-sectional results from the BELFRAIL study. Age (Omaha) 2014;36:457–467. doi: 10.1007/s11357-013-9558-3. PubMed DOI PMC

Adriaensen W., Matheï C., Vaes B., van Pottelbergh G., Wallemacq P., Degryse J.M. Interleukin-6 as a first-rated serum inflammatory marker to predict mortality and hospitalization in the oldest old: A regression and CART approach in the BELFRAIL study. Exp. Gerontol. 2015;69:53–61. doi: 10.1016/j.exger.2015.06.005. PubMed DOI

Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016. PubMed DOI

Rattan S.I.S. Aging is not a disease: Implications for intervention. Aging Dis. 2014;5:196–202. doi: 10.14336/AD.2014.0500196. PubMed DOI PMC

Strnadova K., Sandera V., Dvorankova B., Kodet O., Duskova M., Smetana K., Lacina L. Skin aging: The dermal perspective. Clin. Dermatol. 2019;37:326–335. doi: 10.1016/j.clindermatol.2019.04.005. PubMed DOI

Schrell U.M.H., Koch U., Marschalek R., Schrauzer T., Anders M., Adams E., Fahlbusch R. Formation of autocrine loops in human cerebral meningioma tissue by leukemia inhibitor factor, interleukin-6, and oncostatin M: Inhibition of meningioma cell growth in vitro by recombinant oncostatin M. Neurosurg. Focus. 2008;2:E9. doi: 10.3171/foc.1997.2.4.10. PubMed DOI

Chambers E.S., Akbar A.N. Can blocking inflammation enhance immunity during aging? J. Allergy Clin. Immunol. 2020;145:1323–1331. doi: 10.1016/j.jaci.2020.03.016. PubMed DOI

Win T.T., Aye S.N., Fern J.L.C., Fei C.O. Aspirin and reducing risk of gastric cancer: Systematic review and meta-analysis of the observational studies. J. Gastrointest. Liver Dis. 2020;29:191–198. doi: 10.15403/jgld-818. PubMed DOI

Wang Y., Zhao J., Chen X., Zhang F., Li X. Aspirin use and endometrial cancer risk: A meta-analysis and systematic review. Ann. Transl. Med. 2020;8:461. doi: 10.21037/atm.2020.03.125. PubMed DOI PMC

Fiala C., Pasic M.D. Aspirin: Bitter pill or miracle drug? Clin. Biochem. 2020;85:1–4. doi: 10.1016/j.clinbiochem.2020.07.003. PubMed DOI

Zhang Y., Kong W., Jiang J. Prevention and treatment of cancer targeting chronic inflammation: Research progress, potential agents, clinical studies and mechanisms. Sci. China Life Sci. 2017;60:601–616. doi: 10.1007/s11427-017-9047-4. PubMed DOI

Kast R.E. Melanoma inhibition by cyclooxygenase inhibitors: Role of interleukin-6 suppression, a putative mechanism of action, and clinical implications. Med. Oncol. 2007;24:1–6. doi: 10.1007/BF02685897. PubMed DOI

Hsieh C.C., Chiu H.H., Wang C.H., Kuo C.H. Aspirin modifies inflammatory mediators and metabolomic profiles and contributes to the suppression of obesity-associated breast cancer cell growth. Int. J. Mol. Sci. 2020;21:4652. doi: 10.3390/ijms21134652. PubMed DOI PMC

Tian Y., Ye Y., Gao W., Chen H., Song T., Wang D., Mao X., Ren C. Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int. J. Colorectal. Dis. 2011;26:13–22. doi: 10.1007/s00384-010-1060-0. PubMed DOI

Patrignani P., Patrono C. Aspirin and Cancer. J. Am. Coll. Cardiol. 2016;68:967–976. doi: 10.1016/j.jacc.2016.05.083. PubMed DOI

Bibbins-Domingo K., Grossman D.C., Curry S.J., Davidson K.W., Epling J.W., García F.A.R., Gillman M., Harper D.M., Kemper A.R., Krist A.H., et al. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 2016;164:836–845. doi: 10.7326/M16-0577. PubMed DOI

Coppé J.-P., Patil C.K., Rodier F., Sun Y., Muñoz D.P., Goldstein J., Nelson P.S., Desprez P.-Y., Campisi J. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biol. 2008;6:e301. doi: 10.1371/journal.pbio.0060301. PubMed DOI PMC

Hubbard R.E., O’Mahony M.S., Calver B.L., Woodhouse K.W. Nutrition, inflammation, and leptin levels in aging and frailty. J. Am. Geriatr. Soc. 2008;56:279–284. doi: 10.1111/j.1532-5415.2007.01548.x. PubMed DOI

Rothwell P.M., Cook N.R., Gaziano J.M., Price J.F., Belch J.F.F., Roncaglioni M.C., Morimoto T., Mehta Z. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: Analysis of individual patient data from randomised trials. Lancet. 2018;392:387–399. doi: 10.1016/S0140-6736(18)31133-4. PubMed DOI PMC

Straub R.H., Schradin C. Chronic inflammatory systemic diseases—An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health. 2016;2016:37–51. doi: 10.1093/emph/eow001. PubMed DOI PMC

Sacco A., Bruno A., Contursi A., Dovizio M., Tacconelli S., Ricciotti E., Guillem-Llobat P., Salvatore T., Di Francesco L., Fullone R., et al. Platelet-Specific Deletion of Cyclooxygenase-1 Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice s. J. Pharmacol. Exp. Ther. J. Pharmacol. Exp. Ther. 2019;370:416–426. doi: 10.1124/jpet.119.259382. PubMed DOI

Pandolfi F., Franza L., Carusi V., Altamura S., Andriollo G., Nucera E. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 2020;21:1–12. doi: 10.3390/ijms21155238. PubMed DOI PMC

Smetana K., Lacina L., Szabo P., Dvořánková B., Broẑ P., Ŝedo A. Ageing as an important risk factor for cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI

Moraes M.C.S. DNA repair mechanisms protect our genome from carcinogenesis. Front. Biosci. 2012;17:1362. doi: 10.2741/3992. PubMed DOI

Edifizi D., Schumacher B. Genome instability in development and aging: Insights from nucleotide excision repair in humans, mice, and worms. Biomolecules. 2015;5:1855–1869. doi: 10.3390/biom5031855. PubMed DOI PMC

Kareva I. What can ecology teach us about cancer? Transl. Oncol. 2011;4:266–270. doi: 10.1593/tlo.11154. PubMed DOI PMC

Birbrair A. Advances in Experimental Medicine and Biology. Volume 1041. Springer New York LLC; New York, NY, USA: 2017. Stem cell microenvironments and beyond; pp. 1–3. PubMed

Flier J.S., Underhill L.H., Dvorak H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI

Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed

Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of melanoma cell. Histol. Histopathol. 2018;33:247–254. PubMed

Lacina L., Smetana K., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.J., André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI

Lacina L., Dvořánkova B., Smetana Jr. K., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI

Sahai E., Astsaturov I., Cukierman E., DeNardo D.G., Egeblad M., Evans R.M., Fearon D., Greten F.R., Hingorani S.R., Hunter T., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20:174–186. doi: 10.1038/s41568-019-0238-1. PubMed DOI PMC

Kanzaki R., Pietras K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 2020;111:2708–2717. doi: 10.1111/cas.14537. PubMed DOI PMC

Dvořánková B., Smetana K., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Hill B.S., Pelagalli A., Passaro N., Zannetti A. Tumor-Educated mesenchymal stem cells promote Pro-Metastatic phenotype. Oncotarget. 2017;8:73296–73311. doi: 10.18632/oncotarget.20265. PubMed DOI PMC

Barcellos-Hoff M.H., Ravani S.A. Irradiated Mammary Gland Stroma Promotes the Expression of Tumorigenic Potential by Unirradiated Epithelial Cells 1. Cancer Res. 2000;60:1254–1260. PubMed

Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.-J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013;15:978–990. doi: 10.1038/ncb2784. PubMed DOI PMC

Lewis D.A., Travers J.B., Machado C., Somani A.K., Spandau D.F. Reversing the aging stromal phenotype prevents carcinoma initiation. Aging (Albany. NY) 2011;3:407–416. doi: 10.18632/aging.100318. PubMed DOI PMC

Hernandez-Segura A., de Jong T.V., Melov S., Guryev V., Campisi J., Demaria M. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr. Biol. 2017;27:2652–2660. doi: 10.1016/j.cub.2017.07.033. PubMed DOI PMC

Dvořánková B., Szabo P., Lacina L., Kodet O., Matouškové E., Smetana K. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Trylcova J., Busek P., Smetana K., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumor Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI

Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Plzák J., Bouček J., Bandúrová V., Kolář M., Hradilová M., Szabo P., Lacina L., Chovanec M., Smetana K. The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers. 2019;11:440. doi: 10.3390/cancers11040440. PubMed DOI PMC

Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit. Rev. Oncol. Hematol. 2016;97:303–311. doi: 10.1016/j.critrevonc.2015.09.008. PubMed DOI

Li Y., Wang R., Xiong S., Wang X., Zhao Z., Bai S., Wang Y., Zhao Y., Cheng B. Cancer-associated fibroblasts promote the stemness of CD24 + liver cells via paracrine signaling. J. Mol. Med. 2019;97:243–255. doi: 10.1007/s00109-018-1731-9. PubMed DOI

Nagasaki T., Hara M., Nakanishi H., Takahashi H., Sato M., Takeyama H. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br. J. Cancer. 2014;110:469–478. doi: 10.1038/bjc.2013.748. PubMed DOI PMC

Wu X., Tao P., Zhou Q., Li J., Yu Z., Wang X., Li J., Li C., Yan M., Zhu Z., et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8:20741–20750. doi: 10.18632/oncotarget.15119. PubMed DOI PMC

Wang L., Cao L., Wang H., Liu B., Zhang Q., Meng Z., Wu X., Zhou Q., Xu K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 2017;8:76116–76128. doi: 10.18632/oncotarget.18814. PubMed DOI PMC

Omland S.H., Wettergren E.E., Mourier T., Hansen A.J., Asplund M., Mollerup S., Robert R. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer. 2017;17:675. doi: 10.1186/s12885-017-3663-0. PubMed DOI PMC

Depner S., Lederle W., Gutschalk C., Linde N., Zajonz A., Mueller M.M. Cell type specific interleukin-6 induced responses in tumor keratinocytes and stromal fibroblasts are essential for invasive growth. Int. J. Cancer. 2014;135:551–562. doi: 10.1002/ijc.27951. PubMed DOI

Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., et al. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI

Goulet C.R., Champagne A., Bernard G., Vandal D., Chabaud S., Pouliot F., Bolduc S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19:1–13. doi: 10.1186/s12885-019-5353-6. PubMed DOI PMC

Gyamfi J., Eom M., Koo J.S., Choi J. Multifaceted Roles of Interleukin-6 in Adipocyte—Breast Cancer Cell Interaction. Transl. Oncol. 2018;11:275–285. doi: 10.1016/j.tranon.2017.12.009. PubMed DOI PMC

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Von Ahrens D., Bhagat T.D., Nagrath D., Maitra A., Verma A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 2017;10:1–8. doi: 10.1186/s13045-017-0448-5. PubMed DOI PMC

Middleton K., Jones J., Lwin Z., Coward J.I.G. Interleukin-6: An angiogenic target in solid tumours. Crit. Rev. Oncol. Hematol. 2014;89:129–139. doi: 10.1016/j.critrevonc.2013.08.004. PubMed DOI

Kučera J., Strnadová K., Dvořánková B., Lacina L., Krajsová I., Štork J., Kovářová H., Skalníková H.K.H.K., Vodička P., Motlík J., et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol. Rep. 2019;42:1793–1804. doi: 10.3892/or.2019.7319. PubMed DOI PMC

Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-driven resistance to B-Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC

Kolb A.D., Shupp A.B., Mukhopadhyay D., Marini F.C., Bussard K.M. Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res. 2019;21:31. doi: 10.1186/s13058-019-1117-0. PubMed DOI PMC

Stoll J.R., Vaidya T.S., Mori S., Dusza S.W., Lacouture M.E., Markova A. Association of interleukin-6 and tumor necrosis factor-α with mortality in hospitalized patients with cancer. J. Am. Acad. Dermatol. 2020 doi: 10.1016/j.jaad.2020.03.010. PubMed DOI PMC

White J.P. IL-6, cancer and cachexia: Metabolic dysfunction creates the perfect storm. Transl. Cancer Res. 2017;6:S280–S285. doi: 10.21037/tcr.2017.03.52. PubMed DOI PMC

Shinsyu A., Bamba S., Kurihara M., Matsumoto H., Sonoda A., Inatomi O., Andoh A., Takebayashi K., Kojima M., Iida H., et al. Inflammatory cytokines, appetite-regulating hormones, and energy metabolism in patients with gastrointestinal cancer. Oncol. Lett. 2020;20:1469–1479. doi: 10.3892/ol.2020.11662. PubMed DOI PMC

Kays J.K., Koniaris L.G., Cooper C.A., Pili R., Jiang G., Liu Y., Zimmers T.A. The combination of low skeletal muscle mass and high tumor interleukin-6 associates with decreased survival in clear cell renal cell carcinoma. Cancers. 2020;12:1605. doi: 10.3390/cancers12061605. PubMed DOI PMC

Dwarkasing J.T., Witkamp R.F., Boekschoten M.V., Ter Laak M.C., Heins M.S., van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 2016;17:26. doi: 10.1186/s12868-016-0260-0. PubMed DOI PMC

Shimura Y., Kurosawa H., Tsuchiya M., Sawa M., Kaneko H., Liu L., Makino Y., Nojiri H., Iwase Y., Kaneko K., et al. Serum interleukin 6 levels are associated with depressive state of the patients with knee osteoarthritis irrespective of disease severity. Clin. Rheumatol. 2017;36:2781–2787. doi: 10.1007/s10067-017-3826-z. PubMed DOI

Keaton S.A., Madaj Z.B., Heilman P., Smart L.A., Grit J., Gibbons R., Postolache T.T., Roaten K., Achtyes E.D., Brundin L. An inflammatory profile linked to increased suicide risk. J. Affect. Disord. 2019;247:57–65. doi: 10.1016/j.jad.2018.12.100. PubMed DOI PMC

Pormohammad A., Ghorbani S., Baradaran B., Khatami A.J., Turner R., Mansournia M.A., Kyriacou D.N., Idrovo J.P., Bahr N.C. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microb. Pathog. 2020;147:104390. doi: 10.1016/j.micpath.2020.104390. PubMed DOI PMC

He J., Guo Y., Mao R., Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. J. Med. Virol. 2020 doi: 10.1002/jmv.26326. PubMed DOI PMC

Bonam S.R., Kaveri S.V., Sakuntabhai A., Gilardin L., Bayry J. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients. Cell Reports Med. 2020;1:100016. doi: 10.1016/j.xcrm.2020.100016. PubMed DOI PMC

Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the immune system. Physiol. Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC

Han H., Ma Q., Li C., Liu R., Zhao L., Wang W., Zhang P., Liu X., Gao G., Liu F., et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020;9:1123–1130. doi: 10.1080/22221751.2020.1770129. PubMed DOI PMC

Herold T., Jurinovic V., Arnreich C., Hellmuth J.C., Bergwelt-Baildon M., Klein M., Weinberger T. Level of IL-6 Predicts Respiratory Failure in Hospitalized Symptomatic COVID-19 Patients. Cold Spring Harbor Laboratory Press; Long Island, NY, USA: 2020.

Liu W.-J., Wang X.-D., Wu W., Huang X. Relationship between depression and blood cytokine levels in lung cancer patients. Médecine/Sciences. 2018;34:113–115. doi: 10.1051/medsci/201834f119. PubMed DOI

Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med. Mal. Infect. 2020;50:382–383. doi: 10.1016/j.medmal.2020.04.002. PubMed DOI PMC

Polidoro R.B., Hagan R.S., de Santis Santiago R., Schmidt N.W. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19. Front. Immunol. 2020;11:1626. doi: 10.3389/fimmu.2020.01626. PubMed DOI PMC

Channappanavar R., Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x. PubMed DOI PMC

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer Towards Metastasis? Trends Cancer. 2019;5:755–756. PubMed

Fulciniti M., Hideshima T., Vermot-Desroches C., Pozzi S., Nanjappa P., Shen Z., Patel N., Smith E.S., Wang W., Prabhala R., et al. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin. Cancer Res. 2009;15:7144–7152. doi: 10.1158/1078-0432.CCR-09-1483. PubMed DOI PMC

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Vaidya G., Czer L.S.C., Kobashigawa J., Kittleson M., Patel J., Chang D., Kransdorf E., Shikhare A., Tran H., Vo A., et al. Successful Treatment of Severe COVID-19 Pneumonia With Clazakizumab in a Heart Transplant Recipient: A Case Report. Transplant. Proc. 2020 doi: 10.1016/j.transproceed.2020.06.003. PubMed DOI PMC

Moreno-Pérez O., Andres M., Leon-Ramirez J.M., Sánchez-Payá J., Rodríguez J.C., Sánchez R., García-Sevila R., Boix V., Gil J., Merino E. Experience with tocilizumab in severe COVID-19 pneumonia after 80 days of follow-up: A retrospective cohort study. J. Autoimmun. 2020;114:102523. doi: 10.1016/j.jaut.2020.102523. PubMed DOI PMC

Palanques-Pastor T., López-Briz E., Poveda Andrés J.L. Involvement of interleukin 6 in SARS-CoV-2 infection: Siltuximab as a therapeutic option against COVID-19. Eur. J. Hosp. Pharm. 2020;27:297–298. doi: 10.1136/ejhpharm-2020-002322. PubMed DOI PMC

Tomasiewicz K., Piekarska A., Stempkowska-Rejek J., Serafińska S., Gawkowska A., Parczewski M., Niścigorska-Olsen J., Łapiński T.W., Zarębska-Michaluk D., Kowalska J.D., et al. Tocilizumab for patients with severe COVID-19: A retrospective, multi-centre study. Expert Rev. Anti Infect. Ther. 2020;1:1–8. doi: 10.1080/14787210.2020.1800453. PubMed DOI PMC

Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. [(accessed on 25 September 2020)]; Available online: https://www.covid19treatmentguidelines.nih.gov/

Gennari L., Merlotti D., De Paola V., Martini G., Nuti R. Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2008;4:1229–1242. doi: 10.2147/TCRM.S3476. PubMed DOI PMC

Quintanilla Rodriguez B.S., Correa R. Raloxifene. StatPearls Publishing; Treasure Island, FL, USA: 2020. PubMed

Xiao H., Bid H.K., Chen X., Wu X., Wei J., Bian Y., Zhao C., Li H., Li C., Lin J. Repositioning Bazedoxifene as a novel IL-6/GP130 signaling antagonist for human rhabdomyosarcoma therapy. PLoS ONE. 2017;12:e0180297. doi: 10.1371/journal.pone.0180297. PubMed DOI PMC

Song D., Yu W., Ren Y., Zhu J., Wan C., Cai G., Guo J., Zhang W., Kong L. Discovery of bazedoxifene analogues targeting glycoprotein 130. Eur. J. Med. Chem. 2020;199:112375. doi: 10.1016/j.ejmech.2020.112375. PubMed DOI

Yadav A., Kumar B., Teknos T.N., Kumar P. Bazedoxifene enhances the anti-tumor effects of cisplatin and radiation treatment by blocking IL-6 signaling in head and neck cancer. Oncotarget. 2017;8:66912–66924. doi: 10.18632/oncotarget.11464. PubMed DOI PMC

Wu X., Cao Y., Xiao H., Li C., Lin J. Bazedoxifene as a novel GP130 inhibitor for pancreatic cancer therapy. Mol. Cancer Ther. 2016;15:2609–2619. doi: 10.1158/1535-7163.MCT-15-0921. PubMed DOI PMC

Chen X., Tian J., Su G.H., Lin J. Blocking IL-6/GP130 Signaling Inhibits Cell Viability/Proliferation, Glycolysis, and Colony Forming Activity in Human Pancreatic Cancer Cells. Curr. Cancer Drug Targets. 2018;19:417–427. doi: 10.2174/1568009618666180430123939. PubMed DOI PMC

Wei J., Ma L., Lai Y.H., Zhang R., Li H., Li C., Lin J. Bazedoxifene as a novel GP130 inhibitor for Colon Cancer therapy. J. Exp. Clin. Cancer Res. 2019;38:1–13. doi: 10.1186/s13046-019-1072-8. PubMed DOI PMC

Ma H., Yan D., Wang Y., Shi W., Liu T., Zhao C., Huo S., Duan J., Tao J., Zhai M., et al. Bazedoxifene exhibits growth suppressive activity by targeting interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling in hepatocellular carcinoma. Cancer Sci. 2019;110:950–961. doi: 10.1111/cas.13940. PubMed DOI PMC

Existing Osteoporosis Drug Shows Potential for Treating COVID-19|News|CORDIS|European Commission. [(accessed on 20 September 2020)]; Available online: https://cordis.europa.eu/article/id/421499-existing-osteoporosis-drug-shows-potential-for-treating-covid-19.

Smetana K., Rosel D., BrÁbek J. Raloxifene and Bazedoxifene Could Be Promising Candidates for Preventing the COVID-19 Related Cytokine Storm, ARDS and Mortality. In Vivo. 2020;34:3027–3028. doi: 10.21873/invivo.12135. PubMed DOI PMC

Smetana K., Smetana K., Brábek J., Brábek J. Role of interleukin-6 in lung complications in patients with COVID-19: Therapeutic implications. In Vivo (Brooklyn) 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC

Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64:64. doi: 10.1128/AAC.00819-20. PubMed DOI PMC

Protein Scaffolds—BioProcess InternationalBioProcess International. [(accessed on 21 September 2020)]; Available online: https://bioprocessintl.com/upstream-processing/expression-platforms/protein-scaffolds-339588/

Hayashi M., Kim Y.P., Takamatsu S., Enomoto A., Shinose M., Takahashi Y., Tanaka H., Komiyama K., Omura S. Madindoline, a novel inhibitor of IL-6 activity from Streptomyces sp. K93-0711. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 1996;49:1091–1095. doi: 10.7164/antibiotics.49.1091. PubMed DOI

Hayashi M., Rho M.C., Enomoto A., Fukami A., Kim Y.P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of bone resorption by madindoline a, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728–14733. doi: 10.1073/pnas.232562799. PubMed DOI PMC

Enomoto A., Rho M.-C., Fukami A., Hiraku O., Komiyama K., Hayashi M. Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate—A novel nonpeptide IL-6 receptor antagonist. Biochem. Biophys. Res. Commun. 2004;323:1096–1102. doi: 10.1016/j.bbrc.2004.08.196. PubMed DOI

Saleh A.Z.M., Kevin L.G., Billings S., van Vranken D.L., Krolewski J.J. Binding of Madindoline A to the Extracellular Domain of gp130†. Biochemistry. 2005;44:10822–10827. doi: 10.1021/bi050439+. PubMed DOI

Kino T., Boos T.L., Sulima A., Siegel E.M., Gold P.W., Rice K.C., Chrousos G.P. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6–type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J. Allergy Clin. Immunol. 2007;120:437–444. doi: 10.1016/j.jaci.2007.03.018. PubMed DOI

Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, synthesis, and biological activities of madindoline analogues. Bioorganic Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI

Aqel S.I., Kraus E.E., Jena N., Kumari V., Granitto M.C., Mao L., Farinas M.F., Zhao E.Y., Perottino G., Pei W., et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes T reg development. Clin. Exp. Immunol. 2019;196:215–225. doi: 10.1111/cei.13258. PubMed DOI PMC

Hong S.-S., Choi J.H., Lee S.Y., Park Y.-H., Park K.-Y., Lee J.Y., Kim J., Gajulapati V., Goo J.-I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI

Wang J., Qiao C., Xiao H., Lin Z., Li Y., Zhang J., Shen B., Fu T., Feng J. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des. Dev. Ther. 2016;10:4091–4100. doi: 10.2147/DDDT.S118457. PubMed DOI PMC

Kamano Y., Nogawa T., Yamashita A., Hayashi M., Inoue M., Drašar P., Pettit G.R. Isolation and structure of a 20,21-epoxybufenolide series from “Ch’an Su. ” J. Nat. Prod. 2002;65:1001–1005. doi: 10.1021/np0200360. PubMed DOI

Kaur S., Bansal Y., Kumar R., Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic Med. Chem. 2020;28:115327. doi: 10.1016/j.bmc.2020.115327. PubMed DOI

Liston D.R., Davis M. Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies. Clin. Cancer Res. 2017;23:3489–3498. doi: 10.1158/1078-0432.CCR-16-3083. PubMed DOI PMC

Rodriguez C., Theillet C., Portier M., Bataille R., Klein B. Molecular analysis of the IL-6 receptor in human multiple myeloma, an IL-6-related disease. FEBS Lett. 1994;341:156–161. doi: 10.1016/0014-5793(94)80448-6. PubMed DOI

Stephens O.W., Zhang Q., Qu P., Zhou Y., Chavan S., Tian E., Williams D.R., Epstein J., Barlogie B., Shaughnessy J.D. An intermediate-risk multiple myeloma subgroup is defined by sIL-6r: Levels synergistically increase with incidence of SNP rs2228145 and 1q21 amplification. Blood. 2012;119:503–512. doi: 10.1182/blood-2011-07-367052. PubMed DOI PMC

Buchwald P., Bodor N. Brain-Targeting Chemical Delivery Systems and Their Cyclodextrin-Based Formulations in Light of the Contributions of Marcus E. Brewster. J. Pharm. Sci. 2016;105:2589–2600. doi: 10.1016/j.xphs.2016.04.007. PubMed DOI

Nigro A., Pellegrino M., Greco M., Comandè A., Sisci D., Pasqua L., Leggio A., Morelli C. Dealing with skin and blood-brain barriers: The unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics. 2018;10:250. doi: 10.3390/pharmaceutics10040250. PubMed DOI PMC

Lin E.Y., Chen Y.S., Li Y.S., Chen S.R., Lee C.H., Huang M.H., Chuang H.M., Harn H.J., Yang H.H., Lin S.Z., et al. Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. Int. J. Mol. Sci. 2020;21:4408. doi: 10.3390/ijms21124408. PubMed DOI PMC

Dvořáková P., Bušek P., Knedlík T., Schimer J., Etrych T., Kostka L., Stollinová Šromová L., Šubr V., Šácha P., Šedo A., et al. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017;60:8385–8393. doi: 10.1021/acs.jmedchem.7b00767. PubMed DOI

Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim. Biophys. Acta-Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation

. 2024 ; 15 () : 1403570. [epub] 20241129

Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer

. 2024 Nov 08 ; 7 (11) : 3394-3418. [epub] 20241014

Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules

. 2024 Feb 06 ; 14 (1) : 3043. [epub] 20240206

Serum concentrations of proinflammatory biomarker interleukin-6 (IL-6) as a predictor of postoperative complications after elective colorectal surgery

. 2023 Dec 14 ; 21 (1) : 384. [epub] 20231214

Non-Genomic Hallmarks of Aging-The Review

. 2023 Oct 23 ; 24 (20) : . [epub] 20231023

Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities

. 2022 Nov 21 ; 11 (22) : . [epub] 20221121

Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation

. 2022 Nov ; 158 (5) : 415-434. [epub] 20220722

New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity

. 2022 Aug 17 ; 14 (8) : . [epub] 20220817

Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts

. 2022 Feb ; 157 (2) : 153-172. [epub] 20211127

Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design

. 2021 Nov 05 ; 13 (11) : . [epub] 20211105

IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives

. 2021 Oct 13 ; 22 (20) : . [epub] 20211013

Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences

. 2021 Jun 18 ; 22 (12) : . [epub] 20210618

Pediatric Inflammatory Multisystem Syndrome (PIMS) - Potential role for cytokines such Is IL-6

. 2021 Apr 30 ; 70 (2) : 153-159.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...