Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
"Centre for Tumour Ecology - Research of the Cancer Microenvironment Supporting Cancer Growth and Spread "(No. CZ.02.1.01/0.0/0.0/16_019/0000785)
MŠMT ČR - supported by the Operational Programme Research, Development and Education, by the European Regional Development Fund (ERDF)
BIOCEV (No. CZ.1.05/1.1.00/02.0109)
MŠMT ČR
), "The Equipment for Metabolomics and Cell Analyses" (No. CZ.1.05/2.1.00/19.0400)
MŠMT ČR
PROGRES Q28
Charles University in Prague
PubMed
33114676
PubMed Central
PMC7662856
DOI
10.3390/ijms21217937
PII: ijms21217937
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, IL-6, ageing, cancer ecosystem, cancer-associated fibroblasts, cytokine, cytokine storm, tumour microenvironment,
- MeSH
- COVID-19 MeSH
- interleukin-6 genetika metabolismus MeSH
- koronavirové infekce metabolismus patologie MeSH
- lidé MeSH
- nádory metabolismus patologie MeSH
- pandemie MeSH
- signální transdukce MeSH
- stárnutí metabolismus patologie MeSH
- virová pneumonie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- interleukin-6 MeSH
Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
BIOCEV Faculty of Science Charles University 252 50 Vestec Czech Republic
Centre for Tumour Ecology 1st Faculty of Medicine Charles University 120 00 Prague 2 Czech Republic
Department of Cell Biology Faculty of Science Charles University 120 00 Prague 2 Czech Republic
Institute of Anatomy Fist Faculty of Medicine Charles University 120 00 Prague 2 Czech Republic
Zobrazit více v PubMed
Tissue Expression of IL6—Summary—The Human Protein Atlas. [(accessed on 21 September 2020)]; Available online: https://www.proteinatlas.org/ENSG00000136244-IL6/tissue.
Zilberstein A., Ruggieri R., Korn J.H., Revel M. Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines. EMBO J. 1986;5:2529–2537. doi: 10.1002/j.1460-2075.1986.tb04531.x. PubMed DOI PMC
Haegeman G., Content J., Volckaert G., Derynck R., Tavernier J., Fiers W. Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblasts. Eur. J. Biochem. 1986;159:625–632. doi: 10.1111/j.1432-1033.1986.tb09931.x. PubMed DOI
Hirano T., Taga T., Nakano N., Yasukawa K., Kashiwamura S., Shimizu K., Nakajima K., Pyun K.H., Kishimoto T. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2) Proc. Natl. Acad. Sci. USA. 1985;82:5490–5494. doi: 10.1073/pnas.82.16.5490. PubMed DOI PMC
Brakenhoff J.P., de Groot E.R., Evers R.F., Pannekoek H., Aarden L.A. Molecular cloning and expression of hybridoma growth factor in Escherichia coli. J. Immunol. 1987;139:4116–4121. PubMed
Nordan R.P., Pumphrey J.G., Rudikoff S. Purification and NH2-terminal sequence of a plasmacytoma growth factor derived from the murine macrophage cell line P388D1. J. Immunol. 1987;139:813–817. PubMed
Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. USA. 1987;84:7251–7255. doi: 10.1073/pnas.84.20.7251. PubMed DOI PMC
Ikebuchi K., Wong G.G., Clark S.C., Ihle J.N., Hirai Y., Ogawa M. Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc. Natl. Acad. Sci. USA. 1987;84:9035–9039. doi: 10.1073/pnas.84.24.9035. PubMed DOI PMC
Takai Y., Wong G.G., Clark S.C., Burakoff S.J., Herrmann S.H. B cell stimulatory factor-2 is involved in the differentiation of cytotoxic T lymphocytes. J. Immunol. 1988;140:140. PubMed
Groeger S., Meyle J. Oral mucosal epithelial cells. Front. Immunol. 2019;10:208. doi: 10.3389/fimmu.2019.00208. PubMed DOI PMC
Pritts T., Hungness E., Wang Q., Robb B., Hershko D., Hasselgren P.O. Mucosal and enterocyte IL-6 production during sepsis and endotoxemia—Role of transcription factors and regulation by the stress response. Am. J. Surg. 2002;183:372–383. doi: 10.1016/S0002-9610(02)00812-7. PubMed DOI
Uehling D.T., Brooke Johnson D., Hopkins W.J. The urinary tract response to entry of pathogens. World J. Urol. 1999;17:351–358. doi: 10.1007/s003450050160. PubMed DOI
Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016;64:1403–1415. doi: 10.1016/j.jhep.2016.02.004. PubMed DOI
Cheung C.Y., Poon L.L.M., Ng I.H.Y., Luk W., Sia S.-F., Wu M.H.S., Chan K.-H., Yuen K.-Y., Gordon S., Guan Y., et al. Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis. J. Virol. 2005;79:7819–7826. doi: 10.1128/JVI.79.12.7819-7826.2005. PubMed DOI PMC
Kyotani Y., Takasawa S., Yoshizumi M. Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int. J. Mol. Sci. 2019;20:2706. doi: 10.3390/ijms20112706. PubMed DOI PMC
Barbalho S., Vieira Prado Neto E., de Alvares Goulart R., Bechara M., Federighi Baisi Chagas E., Audi M., Guissoni Campos L., Landgraf Guiger E., Leoni Buchain R., Buchain D., et al. Myokines: A descriptive review. J. Sports Med. Phys. Fit. 2020 doi: 10.23736/S0022-4707.20.10884-3. PubMed DOI
Kovács B., Vajda E., Nagy E.E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int. J. Mol. Sci. 2019;20:4653. doi: 10.3390/ijms20184653. PubMed DOI PMC
Xie C., Chen Q. Adipokines: New Therapeutic Target for Osteoarthritis? Curr. Rheumatol. Rep. 2019;21:71. doi: 10.1007/s11926-019-0868-z. PubMed DOI PMC
Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429. PubMed DOI
Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34:125–136. PubMed
Unver N., McAllister F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev. 2018;41:10–17. doi: 10.1016/j.cytogfr.2018.04.004. PubMed DOI PMC
Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018;10:a028415. doi: 10.1101/cshperspect.a028415. PubMed DOI PMC
Kopf M., Baumann H., Freer G., Freudenberg M., Lamers M., Kishimoto T., Zinkernagel R., Bluethmann H., Köhler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994;368:339–342. doi: 10.1038/368339a0. PubMed DOI
Ramsay A.J., Kopf M. IL-6 Gene Knockout Mice. In: Durum S.K., Muegge K., editors. Cytokine Knockouts. Contemporary Immunology. Humana Press; Totowa, NJ, USA: 1998. pp. 227–236. DOI
Tanaka T., Narazaki M., Kishimoto T. Il-6 in inflammation, Immunity, And disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295. PubMed DOI PMC
Takatsuki F., Okano A., Suzuki C., Chieda R., Takahara Y., Hirano T., Kishimoto T., Hamuro J., Akiyama Y. Human recombinant IL-6/B cell stimulatory factor 2 augments murine antigen-specific antibody responses in vitro and in vivo. J. Immunol. 1988;141:3072–3077. PubMed
Luger T.A., Krutmann J., Kirnbauer R., Urbanski A., Schwarz T., Klappacher G., Köck A., Micksche M., Malejczyk J., Schauer E. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J. Immunol. 1989;143:1206–1209. PubMed
Mendel I., Katz A., Kozak N., Ben-Nun A., Revel M. Interleukin-6 functions in autoimmune encephalomyelitis: A study in gene-targeted mice. Eur. J. Immunol. 1998;28:1727–1737. doi: 10.1002/(SICI)1521-4141(199805)28:05<1727::AID-IMMU1727>3.0.CO;2-#. PubMed DOI
Rodríguez A., Becerril S., Ezquerro S., Méndez-Giménez L., Frühbeck G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol. 2017;219:362–381. doi: 10.1111/apha.12686. PubMed DOI
Wallenius V., Wallenius K., Ahrén B., Rudling M., Carlsten H., Dickson S.L., Ohlsson C., Jansson J.O. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002;8:75–79. doi: 10.1038/nm0102-75. PubMed DOI
Tamura T., Udagawa N., Takahashi N., Miyaura C., Tanaka S., Yamada Y., Koishihara Y., Ohsugi Y., Kumaki K., Taga T., et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA. 1993;90:11924–11928. doi: 10.1073/pnas.90.24.11924. PubMed DOI PMC
Poli V., Balena R., Fattori E., Markatos A., Yamamoto M., Tanaka H., Ciliberto G., Rodan G.A., Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13:1189–1196. doi: 10.1002/j.1460-2075.1994.tb06368.x. PubMed DOI PMC
Ahmad S.I. Aging: Exploring a Complex Phenomenon. CRC Press; Boca Raton, FL, USA: 2017.
World Health Organization . World Report on Ageing And Health. World Health Organization; Geneva, Switzerland: 2015.
Feltes B.C., De Faria Poloni J., Bonatto D. The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology. 2011;12:293–308. doi: 10.1007/s10522-011-9325-8. PubMed DOI
Valiathan R., Ashman M., Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. Scand. J. Immunol. 2016;83:255–266. doi: 10.1111/sji.12413. PubMed DOI
Puzianowska-Kuźnicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., Skalska A., Jonas M., Franek E., Mossakowska M. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior study. Immun. Ageing. 2016;13:1–12. doi: 10.1186/s12979-016-0076-x. PubMed DOI PMC
Torres K.C.L., de Rezende V.B., Lima-Silva M.L., de Santos L.J.S., Costa C.G., de Mambrini J.V.M., Peixoto S.V., Tarazona-Santos E., Martins Filho O.A., Lima-Costa M.F., et al. Immune senescence and biomarkers profile of Bambuí aged population-based cohort. Exp. Gerontol. 2018;103:47–56. doi: 10.1016/j.exger.2017.12.006. PubMed DOI
Adriaensen W., Matheï C., Van Pottelbergh G., Vaes B., Legrand D., Wallemacq P., Degryse J.M. Significance of serum immune markers in identification of global functional impairment in the oldest old: Cross-sectional results from the BELFRAIL study. Age (Omaha) 2014;36:457–467. doi: 10.1007/s11357-013-9558-3. PubMed DOI PMC
Adriaensen W., Matheï C., Vaes B., van Pottelbergh G., Wallemacq P., Degryse J.M. Interleukin-6 as a first-rated serum inflammatory marker to predict mortality and hospitalization in the oldest old: A regression and CART approach in the BELFRAIL study. Exp. Gerontol. 2015;69:53–61. doi: 10.1016/j.exger.2015.06.005. PubMed DOI
Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016. PubMed DOI
Rattan S.I.S. Aging is not a disease: Implications for intervention. Aging Dis. 2014;5:196–202. doi: 10.14336/AD.2014.0500196. PubMed DOI PMC
Strnadova K., Sandera V., Dvorankova B., Kodet O., Duskova M., Smetana K., Lacina L. Skin aging: The dermal perspective. Clin. Dermatol. 2019;37:326–335. doi: 10.1016/j.clindermatol.2019.04.005. PubMed DOI
Schrell U.M.H., Koch U., Marschalek R., Schrauzer T., Anders M., Adams E., Fahlbusch R. Formation of autocrine loops in human cerebral meningioma tissue by leukemia inhibitor factor, interleukin-6, and oncostatin M: Inhibition of meningioma cell growth in vitro by recombinant oncostatin M. Neurosurg. Focus. 2008;2:E9. doi: 10.3171/foc.1997.2.4.10. PubMed DOI
Chambers E.S., Akbar A.N. Can blocking inflammation enhance immunity during aging? J. Allergy Clin. Immunol. 2020;145:1323–1331. doi: 10.1016/j.jaci.2020.03.016. PubMed DOI
Win T.T., Aye S.N., Fern J.L.C., Fei C.O. Aspirin and reducing risk of gastric cancer: Systematic review and meta-analysis of the observational studies. J. Gastrointest. Liver Dis. 2020;29:191–198. doi: 10.15403/jgld-818. PubMed DOI
Wang Y., Zhao J., Chen X., Zhang F., Li X. Aspirin use and endometrial cancer risk: A meta-analysis and systematic review. Ann. Transl. Med. 2020;8:461. doi: 10.21037/atm.2020.03.125. PubMed DOI PMC
Fiala C., Pasic M.D. Aspirin: Bitter pill or miracle drug? Clin. Biochem. 2020;85:1–4. doi: 10.1016/j.clinbiochem.2020.07.003. PubMed DOI
Zhang Y., Kong W., Jiang J. Prevention and treatment of cancer targeting chronic inflammation: Research progress, potential agents, clinical studies and mechanisms. Sci. China Life Sci. 2017;60:601–616. doi: 10.1007/s11427-017-9047-4. PubMed DOI
Kast R.E. Melanoma inhibition by cyclooxygenase inhibitors: Role of interleukin-6 suppression, a putative mechanism of action, and clinical implications. Med. Oncol. 2007;24:1–6. doi: 10.1007/BF02685897. PubMed DOI
Hsieh C.C., Chiu H.H., Wang C.H., Kuo C.H. Aspirin modifies inflammatory mediators and metabolomic profiles and contributes to the suppression of obesity-associated breast cancer cell growth. Int. J. Mol. Sci. 2020;21:4652. doi: 10.3390/ijms21134652. PubMed DOI PMC
Tian Y., Ye Y., Gao W., Chen H., Song T., Wang D., Mao X., Ren C. Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int. J. Colorectal. Dis. 2011;26:13–22. doi: 10.1007/s00384-010-1060-0. PubMed DOI
Patrignani P., Patrono C. Aspirin and Cancer. J. Am. Coll. Cardiol. 2016;68:967–976. doi: 10.1016/j.jacc.2016.05.083. PubMed DOI
Bibbins-Domingo K., Grossman D.C., Curry S.J., Davidson K.W., Epling J.W., García F.A.R., Gillman M., Harper D.M., Kemper A.R., Krist A.H., et al. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 2016;164:836–845. doi: 10.7326/M16-0577. PubMed DOI
Coppé J.-P., Patil C.K., Rodier F., Sun Y., Muñoz D.P., Goldstein J., Nelson P.S., Desprez P.-Y., Campisi J. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biol. 2008;6:e301. doi: 10.1371/journal.pbio.0060301. PubMed DOI PMC
Hubbard R.E., O’Mahony M.S., Calver B.L., Woodhouse K.W. Nutrition, inflammation, and leptin levels in aging and frailty. J. Am. Geriatr. Soc. 2008;56:279–284. doi: 10.1111/j.1532-5415.2007.01548.x. PubMed DOI
Rothwell P.M., Cook N.R., Gaziano J.M., Price J.F., Belch J.F.F., Roncaglioni M.C., Morimoto T., Mehta Z. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: Analysis of individual patient data from randomised trials. Lancet. 2018;392:387–399. doi: 10.1016/S0140-6736(18)31133-4. PubMed DOI PMC
Straub R.H., Schradin C. Chronic inflammatory systemic diseases—An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health. 2016;2016:37–51. doi: 10.1093/emph/eow001. PubMed DOI PMC
Sacco A., Bruno A., Contursi A., Dovizio M., Tacconelli S., Ricciotti E., Guillem-Llobat P., Salvatore T., Di Francesco L., Fullone R., et al. Platelet-Specific Deletion of Cyclooxygenase-1 Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice s. J. Pharmacol. Exp. Ther. J. Pharmacol. Exp. Ther. 2019;370:416–426. doi: 10.1124/jpet.119.259382. PubMed DOI
Pandolfi F., Franza L., Carusi V., Altamura S., Andriollo G., Nucera E. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 2020;21:1–12. doi: 10.3390/ijms21155238. PubMed DOI PMC
Smetana K., Lacina L., Szabo P., Dvořánková B., Broẑ P., Ŝedo A. Ageing as an important risk factor for cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI
Moraes M.C.S. DNA repair mechanisms protect our genome from carcinogenesis. Front. Biosci. 2012;17:1362. doi: 10.2741/3992. PubMed DOI
Edifizi D., Schumacher B. Genome instability in development and aging: Insights from nucleotide excision repair in humans, mice, and worms. Biomolecules. 2015;5:1855–1869. doi: 10.3390/biom5031855. PubMed DOI PMC
Kareva I. What can ecology teach us about cancer? Transl. Oncol. 2011;4:266–270. doi: 10.1593/tlo.11154. PubMed DOI PMC
Birbrair A. Advances in Experimental Medicine and Biology. Volume 1041. Springer New York LLC; New York, NY, USA: 2017. Stem cell microenvironments and beyond; pp. 1–3. PubMed
Flier J.S., Underhill L.H., Dvorak H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI
Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed
Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of melanoma cell. Histol. Histopathol. 2018;33:247–254. PubMed
Lacina L., Smetana K., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.J., André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI
Lacina L., Dvořánkova B., Smetana Jr. K., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Sahai E., Astsaturov I., Cukierman E., DeNardo D.G., Egeblad M., Evans R.M., Fearon D., Greten F.R., Hingorani S.R., Hunter T., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20:174–186. doi: 10.1038/s41568-019-0238-1. PubMed DOI PMC
Kanzaki R., Pietras K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 2020;111:2708–2717. doi: 10.1111/cas.14537. PubMed DOI PMC
Dvořánková B., Smetana K., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI
Hill B.S., Pelagalli A., Passaro N., Zannetti A. Tumor-Educated mesenchymal stem cells promote Pro-Metastatic phenotype. Oncotarget. 2017;8:73296–73311. doi: 10.18632/oncotarget.20265. PubMed DOI PMC
Barcellos-Hoff M.H., Ravani S.A. Irradiated Mammary Gland Stroma Promotes the Expression of Tumorigenic Potential by Unirradiated Epithelial Cells 1. Cancer Res. 2000;60:1254–1260. PubMed
Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.-J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013;15:978–990. doi: 10.1038/ncb2784. PubMed DOI PMC
Lewis D.A., Travers J.B., Machado C., Somani A.K., Spandau D.F. Reversing the aging stromal phenotype prevents carcinoma initiation. Aging (Albany. NY) 2011;3:407–416. doi: 10.18632/aging.100318. PubMed DOI PMC
Hernandez-Segura A., de Jong T.V., Melov S., Guryev V., Campisi J., Demaria M. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr. Biol. 2017;27:2652–2660. doi: 10.1016/j.cub.2017.07.033. PubMed DOI PMC
Dvořánková B., Szabo P., Lacina L., Kodet O., Matouškové E., Smetana K. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI
Trylcova J., Busek P., Smetana K., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumor Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI
Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI
Plzák J., Bouček J., Bandúrová V., Kolář M., Hradilová M., Szabo P., Lacina L., Chovanec M., Smetana K. The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers. 2019;11:440. doi: 10.3390/cancers11040440. PubMed DOI PMC
Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit. Rev. Oncol. Hematol. 2016;97:303–311. doi: 10.1016/j.critrevonc.2015.09.008. PubMed DOI
Li Y., Wang R., Xiong S., Wang X., Zhao Z., Bai S., Wang Y., Zhao Y., Cheng B. Cancer-associated fibroblasts promote the stemness of CD24 + liver cells via paracrine signaling. J. Mol. Med. 2019;97:243–255. doi: 10.1007/s00109-018-1731-9. PubMed DOI
Nagasaki T., Hara M., Nakanishi H., Takahashi H., Sato M., Takeyama H. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br. J. Cancer. 2014;110:469–478. doi: 10.1038/bjc.2013.748. PubMed DOI PMC
Wu X., Tao P., Zhou Q., Li J., Yu Z., Wang X., Li J., Li C., Yan M., Zhu Z., et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8:20741–20750. doi: 10.18632/oncotarget.15119. PubMed DOI PMC
Wang L., Cao L., Wang H., Liu B., Zhang Q., Meng Z., Wu X., Zhou Q., Xu K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 2017;8:76116–76128. doi: 10.18632/oncotarget.18814. PubMed DOI PMC
Omland S.H., Wettergren E.E., Mourier T., Hansen A.J., Asplund M., Mollerup S., Robert R. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer. 2017;17:675. doi: 10.1186/s12885-017-3663-0. PubMed DOI PMC
Depner S., Lederle W., Gutschalk C., Linde N., Zajonz A., Mueller M.M. Cell type specific interleukin-6 induced responses in tumor keratinocytes and stromal fibroblasts are essential for invasive growth. Int. J. Cancer. 2014;135:551–562. doi: 10.1002/ijc.27951. PubMed DOI
Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., et al. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI
Goulet C.R., Champagne A., Bernard G., Vandal D., Chabaud S., Pouliot F., Bolduc S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19:1–13. doi: 10.1186/s12885-019-5353-6. PubMed DOI PMC
Gyamfi J., Eom M., Koo J.S., Choi J. Multifaceted Roles of Interleukin-6 in Adipocyte—Breast Cancer Cell Interaction. Transl. Oncol. 2018;11:275–285. doi: 10.1016/j.tranon.2017.12.009. PubMed DOI PMC
Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC
Von Ahrens D., Bhagat T.D., Nagrath D., Maitra A., Verma A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 2017;10:1–8. doi: 10.1186/s13045-017-0448-5. PubMed DOI PMC
Middleton K., Jones J., Lwin Z., Coward J.I.G. Interleukin-6: An angiogenic target in solid tumours. Crit. Rev. Oncol. Hematol. 2014;89:129–139. doi: 10.1016/j.critrevonc.2013.08.004. PubMed DOI
Kučera J., Strnadová K., Dvořánková B., Lacina L., Krajsová I., Štork J., Kovářová H., Skalníková H.K.H.K., Vodička P., Motlík J., et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol. Rep. 2019;42:1793–1804. doi: 10.3892/or.2019.7319. PubMed DOI PMC
Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-driven resistance to B-Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC
Kolb A.D., Shupp A.B., Mukhopadhyay D., Marini F.C., Bussard K.M. Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res. 2019;21:31. doi: 10.1186/s13058-019-1117-0. PubMed DOI PMC
Stoll J.R., Vaidya T.S., Mori S., Dusza S.W., Lacouture M.E., Markova A. Association of interleukin-6 and tumor necrosis factor-α with mortality in hospitalized patients with cancer. J. Am. Acad. Dermatol. 2020 doi: 10.1016/j.jaad.2020.03.010. PubMed DOI PMC
White J.P. IL-6, cancer and cachexia: Metabolic dysfunction creates the perfect storm. Transl. Cancer Res. 2017;6:S280–S285. doi: 10.21037/tcr.2017.03.52. PubMed DOI PMC
Shinsyu A., Bamba S., Kurihara M., Matsumoto H., Sonoda A., Inatomi O., Andoh A., Takebayashi K., Kojima M., Iida H., et al. Inflammatory cytokines, appetite-regulating hormones, and energy metabolism in patients with gastrointestinal cancer. Oncol. Lett. 2020;20:1469–1479. doi: 10.3892/ol.2020.11662. PubMed DOI PMC
Kays J.K., Koniaris L.G., Cooper C.A., Pili R., Jiang G., Liu Y., Zimmers T.A. The combination of low skeletal muscle mass and high tumor interleukin-6 associates with decreased survival in clear cell renal cell carcinoma. Cancers. 2020;12:1605. doi: 10.3390/cancers12061605. PubMed DOI PMC
Dwarkasing J.T., Witkamp R.F., Boekschoten M.V., Ter Laak M.C., Heins M.S., van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 2016;17:26. doi: 10.1186/s12868-016-0260-0. PubMed DOI PMC
Shimura Y., Kurosawa H., Tsuchiya M., Sawa M., Kaneko H., Liu L., Makino Y., Nojiri H., Iwase Y., Kaneko K., et al. Serum interleukin 6 levels are associated with depressive state of the patients with knee osteoarthritis irrespective of disease severity. Clin. Rheumatol. 2017;36:2781–2787. doi: 10.1007/s10067-017-3826-z. PubMed DOI
Keaton S.A., Madaj Z.B., Heilman P., Smart L.A., Grit J., Gibbons R., Postolache T.T., Roaten K., Achtyes E.D., Brundin L. An inflammatory profile linked to increased suicide risk. J. Affect. Disord. 2019;247:57–65. doi: 10.1016/j.jad.2018.12.100. PubMed DOI PMC
Pormohammad A., Ghorbani S., Baradaran B., Khatami A.J., Turner R., Mansournia M.A., Kyriacou D.N., Idrovo J.P., Bahr N.C. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microb. Pathog. 2020;147:104390. doi: 10.1016/j.micpath.2020.104390. PubMed DOI PMC
He J., Guo Y., Mao R., Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. J. Med. Virol. 2020 doi: 10.1002/jmv.26326. PubMed DOI PMC
Bonam S.R., Kaveri S.V., Sakuntabhai A., Gilardin L., Bayry J. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients. Cell Reports Med. 2020;1:100016. doi: 10.1016/j.xcrm.2020.100016. PubMed DOI PMC
Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the immune system. Physiol. Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC
Han H., Ma Q., Li C., Liu R., Zhao L., Wang W., Zhang P., Liu X., Gao G., Liu F., et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020;9:1123–1130. doi: 10.1080/22221751.2020.1770129. PubMed DOI PMC
Herold T., Jurinovic V., Arnreich C., Hellmuth J.C., Bergwelt-Baildon M., Klein M., Weinberger T. Level of IL-6 Predicts Respiratory Failure in Hospitalized Symptomatic COVID-19 Patients. Cold Spring Harbor Laboratory Press; Long Island, NY, USA: 2020.
Liu W.-J., Wang X.-D., Wu W., Huang X. Relationship between depression and blood cytokine levels in lung cancer patients. Médecine/Sciences. 2018;34:113–115. doi: 10.1051/medsci/201834f119. PubMed DOI
Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med. Mal. Infect. 2020;50:382–383. doi: 10.1016/j.medmal.2020.04.002. PubMed DOI PMC
Polidoro R.B., Hagan R.S., de Santis Santiago R., Schmidt N.W. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19. Front. Immunol. 2020;11:1626. doi: 10.3389/fimmu.2020.01626. PubMed DOI PMC
Channappanavar R., Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x. PubMed DOI PMC
Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC
Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer Towards Metastasis? Trends Cancer. 2019;5:755–756. PubMed
Fulciniti M., Hideshima T., Vermot-Desroches C., Pozzi S., Nanjappa P., Shen Z., Patel N., Smith E.S., Wang W., Prabhala R., et al. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin. Cancer Res. 2009;15:7144–7152. doi: 10.1158/1078-0432.CCR-09-1483. PubMed DOI PMC
Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC
Vaidya G., Czer L.S.C., Kobashigawa J., Kittleson M., Patel J., Chang D., Kransdorf E., Shikhare A., Tran H., Vo A., et al. Successful Treatment of Severe COVID-19 Pneumonia With Clazakizumab in a Heart Transplant Recipient: A Case Report. Transplant. Proc. 2020 doi: 10.1016/j.transproceed.2020.06.003. PubMed DOI PMC
Moreno-Pérez O., Andres M., Leon-Ramirez J.M., Sánchez-Payá J., Rodríguez J.C., Sánchez R., García-Sevila R., Boix V., Gil J., Merino E. Experience with tocilizumab in severe COVID-19 pneumonia after 80 days of follow-up: A retrospective cohort study. J. Autoimmun. 2020;114:102523. doi: 10.1016/j.jaut.2020.102523. PubMed DOI PMC
Palanques-Pastor T., López-Briz E., Poveda Andrés J.L. Involvement of interleukin 6 in SARS-CoV-2 infection: Siltuximab as a therapeutic option against COVID-19. Eur. J. Hosp. Pharm. 2020;27:297–298. doi: 10.1136/ejhpharm-2020-002322. PubMed DOI PMC
Tomasiewicz K., Piekarska A., Stempkowska-Rejek J., Serafińska S., Gawkowska A., Parczewski M., Niścigorska-Olsen J., Łapiński T.W., Zarębska-Michaluk D., Kowalska J.D., et al. Tocilizumab for patients with severe COVID-19: A retrospective, multi-centre study. Expert Rev. Anti Infect. Ther. 2020;1:1–8. doi: 10.1080/14787210.2020.1800453. PubMed DOI PMC
Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. [(accessed on 25 September 2020)]; Available online: https://www.covid19treatmentguidelines.nih.gov/
Gennari L., Merlotti D., De Paola V., Martini G., Nuti R. Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2008;4:1229–1242. doi: 10.2147/TCRM.S3476. PubMed DOI PMC
Quintanilla Rodriguez B.S., Correa R. Raloxifene. StatPearls Publishing; Treasure Island, FL, USA: 2020. PubMed
Xiao H., Bid H.K., Chen X., Wu X., Wei J., Bian Y., Zhao C., Li H., Li C., Lin J. Repositioning Bazedoxifene as a novel IL-6/GP130 signaling antagonist for human rhabdomyosarcoma therapy. PLoS ONE. 2017;12:e0180297. doi: 10.1371/journal.pone.0180297. PubMed DOI PMC
Song D., Yu W., Ren Y., Zhu J., Wan C., Cai G., Guo J., Zhang W., Kong L. Discovery of bazedoxifene analogues targeting glycoprotein 130. Eur. J. Med. Chem. 2020;199:112375. doi: 10.1016/j.ejmech.2020.112375. PubMed DOI
Yadav A., Kumar B., Teknos T.N., Kumar P. Bazedoxifene enhances the anti-tumor effects of cisplatin and radiation treatment by blocking IL-6 signaling in head and neck cancer. Oncotarget. 2017;8:66912–66924. doi: 10.18632/oncotarget.11464. PubMed DOI PMC
Wu X., Cao Y., Xiao H., Li C., Lin J. Bazedoxifene as a novel GP130 inhibitor for pancreatic cancer therapy. Mol. Cancer Ther. 2016;15:2609–2619. doi: 10.1158/1535-7163.MCT-15-0921. PubMed DOI PMC
Chen X., Tian J., Su G.H., Lin J. Blocking IL-6/GP130 Signaling Inhibits Cell Viability/Proliferation, Glycolysis, and Colony Forming Activity in Human Pancreatic Cancer Cells. Curr. Cancer Drug Targets. 2018;19:417–427. doi: 10.2174/1568009618666180430123939. PubMed DOI PMC
Wei J., Ma L., Lai Y.H., Zhang R., Li H., Li C., Lin J. Bazedoxifene as a novel GP130 inhibitor for Colon Cancer therapy. J. Exp. Clin. Cancer Res. 2019;38:1–13. doi: 10.1186/s13046-019-1072-8. PubMed DOI PMC
Ma H., Yan D., Wang Y., Shi W., Liu T., Zhao C., Huo S., Duan J., Tao J., Zhai M., et al. Bazedoxifene exhibits growth suppressive activity by targeting interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling in hepatocellular carcinoma. Cancer Sci. 2019;110:950–961. doi: 10.1111/cas.13940. PubMed DOI PMC
Existing Osteoporosis Drug Shows Potential for Treating COVID-19|News|CORDIS|European Commission. [(accessed on 20 September 2020)]; Available online: https://cordis.europa.eu/article/id/421499-existing-osteoporosis-drug-shows-potential-for-treating-covid-19.
Smetana K., Rosel D., BrÁbek J. Raloxifene and Bazedoxifene Could Be Promising Candidates for Preventing the COVID-19 Related Cytokine Storm, ARDS and Mortality. In Vivo. 2020;34:3027–3028. doi: 10.21873/invivo.12135. PubMed DOI PMC
Smetana K., Smetana K., Brábek J., Brábek J. Role of interleukin-6 in lung complications in patients with COVID-19: Therapeutic implications. In Vivo (Brooklyn) 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC
Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64:64. doi: 10.1128/AAC.00819-20. PubMed DOI PMC
Protein Scaffolds—BioProcess InternationalBioProcess International. [(accessed on 21 September 2020)]; Available online: https://bioprocessintl.com/upstream-processing/expression-platforms/protein-scaffolds-339588/
Hayashi M., Kim Y.P., Takamatsu S., Enomoto A., Shinose M., Takahashi Y., Tanaka H., Komiyama K., Omura S. Madindoline, a novel inhibitor of IL-6 activity from Streptomyces sp. K93-0711. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 1996;49:1091–1095. doi: 10.7164/antibiotics.49.1091. PubMed DOI
Hayashi M., Rho M.C., Enomoto A., Fukami A., Kim Y.P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of bone resorption by madindoline a, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728–14733. doi: 10.1073/pnas.232562799. PubMed DOI PMC
Enomoto A., Rho M.-C., Fukami A., Hiraku O., Komiyama K., Hayashi M. Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate—A novel nonpeptide IL-6 receptor antagonist. Biochem. Biophys. Res. Commun. 2004;323:1096–1102. doi: 10.1016/j.bbrc.2004.08.196. PubMed DOI
Saleh A.Z.M., Kevin L.G., Billings S., van Vranken D.L., Krolewski J.J. Binding of Madindoline A to the Extracellular Domain of gp130†. Biochemistry. 2005;44:10822–10827. doi: 10.1021/bi050439+. PubMed DOI
Kino T., Boos T.L., Sulima A., Siegel E.M., Gold P.W., Rice K.C., Chrousos G.P. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6–type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J. Allergy Clin. Immunol. 2007;120:437–444. doi: 10.1016/j.jaci.2007.03.018. PubMed DOI
Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, synthesis, and biological activities of madindoline analogues. Bioorganic Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI
Aqel S.I., Kraus E.E., Jena N., Kumari V., Granitto M.C., Mao L., Farinas M.F., Zhao E.Y., Perottino G., Pei W., et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes T reg development. Clin. Exp. Immunol. 2019;196:215–225. doi: 10.1111/cei.13258. PubMed DOI PMC
Hong S.-S., Choi J.H., Lee S.Y., Park Y.-H., Park K.-Y., Lee J.Y., Kim J., Gajulapati V., Goo J.-I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI
Wang J., Qiao C., Xiao H., Lin Z., Li Y., Zhang J., Shen B., Fu T., Feng J. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des. Dev. Ther. 2016;10:4091–4100. doi: 10.2147/DDDT.S118457. PubMed DOI PMC
Kamano Y., Nogawa T., Yamashita A., Hayashi M., Inoue M., Drašar P., Pettit G.R. Isolation and structure of a 20,21-epoxybufenolide series from “Ch’an Su. ” J. Nat. Prod. 2002;65:1001–1005. doi: 10.1021/np0200360. PubMed DOI
Kaur S., Bansal Y., Kumar R., Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic Med. Chem. 2020;28:115327. doi: 10.1016/j.bmc.2020.115327. PubMed DOI
Liston D.R., Davis M. Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies. Clin. Cancer Res. 2017;23:3489–3498. doi: 10.1158/1078-0432.CCR-16-3083. PubMed DOI PMC
Rodriguez C., Theillet C., Portier M., Bataille R., Klein B. Molecular analysis of the IL-6 receptor in human multiple myeloma, an IL-6-related disease. FEBS Lett. 1994;341:156–161. doi: 10.1016/0014-5793(94)80448-6. PubMed DOI
Stephens O.W., Zhang Q., Qu P., Zhou Y., Chavan S., Tian E., Williams D.R., Epstein J., Barlogie B., Shaughnessy J.D. An intermediate-risk multiple myeloma subgroup is defined by sIL-6r: Levels synergistically increase with incidence of SNP rs2228145 and 1q21 amplification. Blood. 2012;119:503–512. doi: 10.1182/blood-2011-07-367052. PubMed DOI PMC
Buchwald P., Bodor N. Brain-Targeting Chemical Delivery Systems and Their Cyclodextrin-Based Formulations in Light of the Contributions of Marcus E. Brewster. J. Pharm. Sci. 2016;105:2589–2600. doi: 10.1016/j.xphs.2016.04.007. PubMed DOI
Nigro A., Pellegrino M., Greco M., Comandè A., Sisci D., Pasqua L., Leggio A., Morelli C. Dealing with skin and blood-brain barriers: The unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics. 2018;10:250. doi: 10.3390/pharmaceutics10040250. PubMed DOI PMC
Lin E.Y., Chen Y.S., Li Y.S., Chen S.R., Lee C.H., Huang M.H., Chuang H.M., Harn H.J., Yang H.H., Lin S.Z., et al. Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. Int. J. Mol. Sci. 2020;21:4408. doi: 10.3390/ijms21124408. PubMed DOI PMC
Dvořáková P., Bušek P., Knedlík T., Schimer J., Etrych T., Kostka L., Stollinová Šromová L., Šubr V., Šácha P., Šedo A., et al. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017;60:8385–8393. doi: 10.1021/acs.jmedchem.7b00767. PubMed DOI
Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim. Biophys. Acta-Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI
Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer
Non-Genomic Hallmarks of Aging-The Review
The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives
Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences
Pediatric Inflammatory Multisystem Syndrome (PIMS) - Potential role for cytokines such Is IL-6