IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785
European Structural and Investment Funds; Operational Program Research, Development and Education
PROGRES Q28
Charles University in Prague
PubMed
34681685
PubMed Central
PMC8540903
DOI
10.3390/ijms222011027
PII: ijms222011027
Knihovny.cz E-zdroje
- Klíčová slova
- IL-6, cancer microenvironment, head and neck cancer, targeted therapy,
- MeSH
- interleukin-6 imunologie metabolismus MeSH
- lidé MeSH
- nádorové mikroprostředí * MeSH
- nádory hlavy a krku imunologie terapie MeSH
- signální transdukce MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- interleukin-6 MeSH
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Zobrazit více v PubMed
Warnakulasuriya S. Global Epidemiology of Oral and Oropharyngeal Cancer. Oral Oncol. 2009;45:309–316. doi: 10.1016/j.oraloncology.2008.06.002. PubMed DOI
Vokes E.E., Weichselbaum R.R., Lippman S.M., Hong W.K. Head and Neck Cancer. N. Engl. J. Med. 1993;328 doi: 10.1056/NEJM199301213280306. PubMed DOI
Novák Š., Bandurová V., Mifková A., Kalfeřt D., Fík Z., Lukeš P., Szabo P., Plzák J., Smetana K., Jr. Tumor Microenvironment. Otorinolaryng. A Foniat. 2019;68:41–51.
Smetana K., Lacina L., Szabo P., Dvořánková B., Brož P., Šedo A. Ageing as an Important Risk Factor for Cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI
Saussez S., Duray A., Demoulin S., Hubert P., Delvenne P. Immune Suppression in Head and Neck Cancers: A Review. Clin. Dev. Immunol. 2010;2010:15. doi: 10.1155/2010/701657. PubMed DOI PMC
Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A Molecule with Complex Biological Impact in Cancer. Histol. Histopathol. 2019;34:125–136. doi: 10.14670/HH-18-033. PubMed DOI
Hamburger A.W., Salmon S.E. Primary Bioassay of Human Tumor Stem Cells. Science. 1977;197:461–463. doi: 10.1126/science.560061. PubMed DOI
Metwaly H., Maruyama S., Yamazaki M., Tsuneki M., Abé T., Jen K.Y., Cheng J., Saku T. Parenchymal-Stromal Switching for Extracellular Matrix Production on Invasion of Oral Squamous Cell Carcinoma. Hum. Pathol. 2012;43:1973–1981. doi: 10.1016/j.humpath.2012.02.006. PubMed DOI
Polyak K., Haviv I., Campbell I.G. Co-Evolution of Tumor Cells and Their Microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI
Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC
Li H., Fan X., Houghton J.M. Tumor Microenvironment: The Role of the Tumor Stroma in Cancer. J. Cell. Biochem. 2007;101:805–815. doi: 10.1002/jcb.21159. PubMed DOI
Lorusso G., Rüegg C. The Tumor Microenvironment and Its Contribution to Tumor Evolution toward Metastasis. Histochem. Cell Biol. 2008;130:1091–1103. doi: 10.1007/s00418-008-0530-8. PubMed DOI
Plzák J., Lacina L., Chovanec M., Dvořánková B., Szabo P., Čada Z., Smetana K. Epithelial–Stromal Interaction in Squamous Cell Epithelium-Derived Tumors: An Important New Player in the Control of Tumor Biological Properties. Anticancer Res. 2010;30 PubMed
Fisher D.T., Appenheimer M.M., Evans S.S. The Two Faces of IL-6 in the Tumor Microenvironment. Semin. Immunol. 2014;26:38–47. doi: 10.1016/j.smim.2014.01.008. PubMed DOI PMC
Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.J., Strnad H., Šáchová J., Vlček Č., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 Production in Dermal Fibroblasts by Normal/Malignant Epithelial Cells in Vitro: Immunohistochemical and Transcriptomic Analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Rossi J.F., Lu Z.Y., Jourdan M., Klein B. Interleukin-6 as a Therapeutic Target. Clin. Cancer Res. 2015;21:1248–1257. doi: 10.1158/1078-0432.CCR-14-2291. PubMed DOI
Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and Expression of the Human Interleukin-6 (BSF-2/IFNβ 2) Receptor. Science. 1988;241:825–828. doi: 10.1126/science.3136546. PubMed DOI
Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S.I., Nakajima K., Koyama K., Iwamatsu A., et al. Complementary DNA for a Novel Human Interleukin (BSF-2) That Induces B Lymphocytes to Produce Immunoglobulin. Nature. 1986;324:73–76. doi: 10.1038/324073a0. PubMed DOI
Scheller J., Rose-John S. Interleukin-6 and Its Receptor: From Bench to Bedside. Med. Microbiol. Immunol. 2006;195:173–183. doi: 10.1007/s00430-006-0019-9. PubMed DOI
Rose-John S. Interleukin-6 Biology Is Coordinated by Membrane-Bound and Soluble Receptors: Role in Inflammation and Cancer. J. Leukoc. Biol. 2006;80:227–236. doi: 10.1189/jlb.1105674. PubMed DOI
Wolf J., Rose-John S., Garbers C. Interleukin-6 and Its Receptors: A Highly Regulated and Dynamic System. Cytokine. 2014;70:11–20. doi: 10.1016/j.cyto.2014.05.024. PubMed DOI
Schaper F., Rose-John S. Interleukin-6: Biology, Signaling and Strategies of Blockade. Cytokine Growth Factor Rev. 2015;26:475–487. doi: 10.1016/j.cytogfr.2015.07.004. PubMed DOI
Dimitrov S., Lange T., Benedict C., Nowell M.A., Jones S.A., Scheller J., Rose-John S., Born J., Dimitrov S., Lange T., et al. Sleep Enhances IL-6 Trans-signaling in Humans. FASEB J. 2006;20:2174–2176. doi: 10.1096/fj.06-5754fje. PubMed DOI
Scheller J., Garbers C., Rose-John S. Interleukin-6: From Basic Biology to Selective Blockade of pro-Inflammatory Activities. Semin. Immunol. 2014;26:2–12. doi: 10.1016/j.smim.2013.11.002. PubMed DOI
Jostock T., Müllberg J., Özbek S., Atreya R., Blinn G., Voltz N., Fischer M., Neurath M.F., Rose-John S. Soluble Gp130 Is the Natural Inhibitor of Soluble Interleukin-6 Receptor Transsignaling Responses. Eur. J. Biochem. 2001;268:160–167. doi: 10.1046/j.1432-1327.2001.01867.x. PubMed DOI
Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Müller-Newen G., Schaper F. Principles of Interleukin (IL)-6-Type Cytokine Signalling and Its Regulation. Biochem. J. 2003;374:1–20. doi: 10.1042/bj20030407. PubMed DOI PMC
Eulenfeld R., Dittrich A., Khouri C., Müller P.J., Mütze B., Wolf A., Schaper F. Interleukin-6 Signalling: More than Jaks and STATs. Eur. J. Cell Biol. 2012;91:486–495. doi: 10.1016/j.ejcb.2011.09.010. PubMed DOI
Kretzschmar A.K., Dinger M.C., Henze C., Brocke-Heidrich K., Horn F. Analysis of Stat3 (Signal Transducer and Activator of Transcription 3) Dimerization by Fluorescence Resonance Energy Transfer in Living Cells. Biochem. J. 2004;377:289–297. doi: 10.1042/bj20030708. PubMed DOI PMC
Braunstein J., Brutsaert S., Olson R., Schindler C. STATs Dimerize in the Absence of Phosphorylation. J. Biol. Chem. 2003;278:34133–34140. doi: 10.1074/jbc.M304531200. PubMed DOI
Haan S., Knotholes M., Behrmann I., Müller-Esterl W., Heinrich P.C., Schaper F. Cytoplasmic STAT Proteins Associate Prior to Activation. Biochem. J. 2000;345:417–421. doi: 10.1042/bj3450417. PubMed DOI PMC
Novak U., Ji H., Kanagasundaram V., Simpson R., Paradiso L. STAT3 Forms Stable Homodimers in the Presence of Divalent Cations Prior to Activation. Biochem. Biophys. Res. Commun. 1998;247:558–563. doi: 10.1006/bbrc.1998.8829. PubMed DOI
Vogt M., Domoszlai T., Kleshchanok D., Lehmann S., Schmitt A., Poli V., Richtering W., Müller-Newen G. The Role of the N-Terminal Domain in Dimerization and Nucleocytoplasmic Shuttling of Latent STAT3. J. Cell Sci. 2011;124:900–909. doi: 10.1242/jcs.072520. PubMed DOI
Pranada A.L., Metz S., Herrmann A., Heinrich P.C., Müller-Newen G. Real Time Analysis of STAT3 Nucleocytoplasmic Shuttling. J. Biol. Chem. 2004;279:15114–15123. doi: 10.1074/jbc.M312530200. PubMed DOI
Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., Nakatani Y. The Transcriptional Coactivators P300 and CBP Are Histone Acetyltransferases. Cell. 1996;87:953–959. doi: 10.1016/S0092-8674(00)82001-2. PubMed DOI
Ray S., Boldogh I., Brasier A.R. STAT3 NH2-Terminal Acetylation Is Activated by the Hepatic Acute-Phase Response and Required for IL-6 Induction of Angiotensinogen. Gastroenterology. 2005;129:1616–1632. doi: 10.1053/j.gastro.2005.07.055. PubMed DOI
Yuan Z.L., Guan Y.J., Chatterjee D., Chin Y.E. Stat3 Dimerization Regulated by Reversible Acetylation of a Single Lysine Residue. Science. 2005;307:269–273. doi: 10.1126/science.1105166. PubMed DOI
Hou T., Ray S., Lee C., Brasier A.R. The STAT3 NH2-Terminal Domain Stabilizes Enhanceosome Assembly by Interacting with the P300 Bromodomain. J. Biol. Chem. 2008;283:30725–30734. doi: 10.1074/jbc.M805941200. PubMed DOI PMC
Fukada T., Hibi M., Yamanaka Y., Takahashi-Tezuka M., Fujitani Y., Yamaguchi T., Nakajima K., Hirano T. Two Signals Are Necessary for Cell Proliferation Induced by a Cytokine Receptor Gp130: Involvement of STAT3 in Anti-Apoptosis. Immunity. 1996;5:449–460. doi: 10.1016/S1074-7613(00)80501-4. PubMed DOI
Fukada T., Ohtani T., Yoshida Y., Shirogane T., Nishida K., Nakajima K., Hibi M., Hirano T. STAT3 Orchestrates Contradictory Signals in Cytokine-Induced G1 to S Cell-Cycle Transition. EMBO J. 1998;17:6670–6677. doi: 10.1093/emboj/17.22.6670. PubMed DOI PMC
Judd L.M., Alderman B.M., Howlett M., Shulkes A., Dow C., Moverley J., Grail D., Jenkins B.J., Ernst M., Giraud A.S. Gastric Cancer Development in Mice Lacking the SHP2 Binding Site on the IL-6 Family Co-Receptor Gp130. Gastroenterology. 2004;126:196–207. doi: 10.1053/j.gastro.2003.10.066. PubMed DOI
Tebbutt N.C., Giraud A.S., Inglese M., Jenkins B., Waring P., Clay F.J., Malki S., Alderman B.M., Grail D., Hollande F., et al. Reciprocal Regulation of Gastrointestinal Homeostasis by SHP2 and STAT-Mediated Trefoil Gene Activation in Gp130 Mutant Mice. Nat. Med. 2002;8:1089–1097. doi: 10.1038/nm763. PubMed DOI
Schaper F., Gendo C., Eck M., Schmitz J., Grimm C., Anhuf D., Kerr I.M., Heinrich P.C. Activation of the Protein Tyrosine Phosphatase SHP2 via the Interleukin-6 Signal Transducing Receptor Protein Gp130 Requires Tyrosine Kinase Jak1 and Limits Acute-Phase Protein Expression. Biochem. J. 1998;335:557–565. doi: 10.1042/bj3350557. PubMed DOI PMC
Symes A., Stahl N., Reeves S.A., Farruggella T., Servidei T., Gearan T., Yancopoulos G., Stephen Fink J. The Protein Tyrosine Phosphatase SHP-2 Negatively Regulates Ciliary Neurotrophic Factor Induction of Gene Expression. Curr. Biol. 1997;7:697–700. doi: 10.1016/S0960-9822(06)00298-3. PubMed DOI
Schiemann W.P., Bartoe J.L., Nathanson N.M. Box 3-Independent Signaling Mechanisms Are Involved in Leukemia Inhibitory Factor Receptor α- and Gp130-Mediated Stimulation of Mitogen-Activated Protein Kinase. Evidence for Participation of Multiple Signaling Pathways Which Converge at Ras. J. Biol. Chem. 1997;272:16631–16636. doi: 10.1074/jbc.272.26.16631. PubMed DOI
Lai C.F., Ripperger J., Wang Y., Kim H., Hawley R.B., Baumann H. The STAT3-Independent Signaling Pathway by Glycoprotein 130 in Hepatic Cells. J. Biol. Chem. 1999;274:7793–7802. doi: 10.1074/jbc.274.12.7793. PubMed DOI
Ernst M., Jenkins B.J. Acquiring Signalling Specificity from the Cytokine Receptor Gp130. Trends Genet. 2004;20:23–32. doi: 10.1016/j.tig.2003.11.003. PubMed DOI
Lehmann U., Schmitz J., Weissenbach M., Sobota R.M., Hörtner M., Friederichs K., Behrmann I., Tsiaris W., Sasaki A., Schneider-Mergener J., et al. SHP2 and SOCS3 Contribute to Tyr-759-Dependent Attenuation of Interleukin-6 Signaling through Gp130. J. Biol. Chem. 2003;278:661–671. doi: 10.1074/jbc.M210552200. PubMed DOI
Kim H., Baumann H. Dual Signaling Role of the Protein Tyrosine Phosphatase SHP-2 in Regulating Expression of Acute-Phase Plasma Proteins by Interleukin-6 Cytokine Receptors in Hepatic Cells. Mol. Cell. Biol. 1999;19:5326–5338. doi: 10.1128/MCB.19.8.5326. PubMed DOI PMC
De Souza D., Fabri L.J., Nash A., Hilton D.J., Nicola N.A., Baca M. SH2 Domains from Suppressor of Cytokine Signaling-3 and Protein Tyrosine Phosphatase SHP-2 Have Similar Binding Specificities. Biochemistry. 2002;41:9229–9236. doi: 10.1021/bi0259507. PubMed DOI
Eulenfeld R., Schaper F. A New Mechanism for the Regulation of Gab1 Recruitment to the Plasma Membrane. J. Cell Sci. 2009;122:55–64. doi: 10.1242/jcs.037226. PubMed DOI
Takahashi-Tezuka M., Yoshida Y., Fukada T., Ohtani T., Yamanaka Y., Nishida K., Nakajima K., Hibi M., Hirano T. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor Gp130 to ERK Mitogen-Activated Protein Kinase. Mol. Cell. Biol. 1998;18:4109–4117. doi: 10.1128/MCB.18.7.4109. PubMed DOI PMC
Wang Y., Fuller G.M. Phosphorylation and Internalization of Gp130 Occur after IL-6 Activation of Jak2 Kinase in Hepatocytes. Mol. Biol. Cell. 1994;5:819–828. doi: 10.1091/mbc.5.7.819. PubMed DOI PMC
Zohlnhöfer D., Graeve L., Rose-John S., Schooltink H., Dittrich E., Heinrich P.C. The Hepatic Interleukin-6 Receptor Down-Regulation of the Interleukin-6 Binding Subunit (Gp80) by Its Ligand. FEBS Lett. 1992;306:219–222. doi: 10.1016/0014-5793(92)81004-6. PubMed DOI
Radtke S., Wüller S., Yang X.P., Lippok B.E., Mütze B., Mais C., Schmitz-Van De Leur H., Bode J.G., Gaestel M., Heinrich P.C., et al. Cross-Regulation of Cytokine Signalling: Pro-Inflammatory Cytokines Restrict IL-6 Signalling through Receptor Internalisation and Degradation. J. Cell Sci. 2010;123:947–959. doi: 10.1242/jcs.065326. PubMed DOI
Chung C.D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai K. Specific Inhibition of Stat3 Signal Transduction by PIAS3. Science. 1997;278:1803–1805. doi: 10.1126/science.278.5344.1803. PubMed DOI
Scatena R., Bottoni P., Pontoglio A., Giardina B. Cancer Stem Cells: The Development of New Cancer Therapeutics. Expert Opin. Biol. Ther. 2011;11:875–892. doi: 10.1517/14712598.2011.573780. PubMed DOI
Korkaya H., Liu S., Wicha M.S. Breast Cancer Stem Cells, Cytokine Networks, and the Tumor Microenvironment. J. Clin. Investig. 2011;121:3804–3809. doi: 10.1172/JCI57099. PubMed DOI PMC
Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC
Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC
Östman A., Augsten M. Cancer-Associated Fibroblasts and Tumor Growth - Bystanders Turning into Key Players. Curr. Opin. Genet. Dev. 2009;19:67–73. doi: 10.1016/j.gde.2009.01.003. PubMed DOI
Lamertz L., Rummel F., Polz R., Baran P., Hansen S., Waetzig G.H., Moll J.M., Floss D.M., Scheller J. Soluble Gp130 Prevents Interleukin-6 and Interleukin-11 Cluster Signaling but Not Intracellular Autocrine Responses. Sci. Signal. 2018;11 doi: 10.1126/scisignal.aar7388. PubMed DOI
Heink S., Yogev N., Garbers C., Herwerth M., Aly L., Gasperi C., Husterer V., Croxford A.L., Möller-Hackbarth K., Bartsch H.S., et al. Trans-Presentation of Interleukin-6 by Dendritic Cells Is Required for Priming Pathogenic TH17 Cells. Nat. Immunol. 2017;18:74. doi: 10.1038/ni.3632. PubMed DOI PMC
Yu C.C., Tsai L.L., Wang M.L., Yu C.H., Lo W.L., Chang Y.C., Chiou G.Y., Chou M.Y., Chiou S.H. MiR145 Targets the SOX9/ADAM17 Axis to Inhibit Tumor-Initiating Cells and IL-6-Mediated Paracrine Effects in Head and Neck Cancer. Cancer Res. 2013;73:3425–3440. doi: 10.1158/0008-5472.CAN-12-3840. PubMed DOI
Szabo P., Valach J., Smetana K., Jr., Dvorankova B. Comparative Analysis of IL-8 and CXCL-1 Production by Normal and Cancer Stromal Fibroblasts. Folia Biol. 2013;59:134–137. PubMed
Bremnes R.M., Dønnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI
Novotný J., Strnadová K., Dvořánková B., Kocourková Š., Jakša R., Dundr P., Pačes V., Smetana K., Kolář M., Lacina L. Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC
Erez N., Truitt M., Olson P., Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-ΚB-Dependent Manner. Cancer Cell. 2010;17:135–147. doi: 10.1016/j.ccr.2009.12.041. PubMed DOI
Ganguly D., Chandra R., Karalis J., Teke M., Aguilera T., Maddipati R., Wachsmann M.B., Ghersi D., Siravegna G., Zeh H.J., et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers. 2020;12:2652. doi: 10.3390/cancers12092652. PubMed DOI PMC
Lacina L., Smetana K., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.J., André S. Stromal Fibroblasts from Basal Cell Carcinoma Affect Phenotype of Normal Keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI
Lacina L., Dvořánkova B., Smetana K., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker Profiling of Normal Keratinocytes Identifies the Stroma from Squamous Cell Carcinoma of the Oral Cavity as a Modulatory Microenvironment in Co-Culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Strnad H., Lacina L., Kolář M., Čada Z., Vlček Č., Dvořánková B., Betka J., Plzák J., Chovanec M., Šáchova J., et al. Head and Neck Squamous Cancer Stromal Fibroblasts Produce Growth Factors Influencing Phenotype of Normal Human Keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K. Mouse 3T3 Fibroblasts under the Influence of Fibroblasts Isolated from Stroma of Human Basal Cell Carcinoma Acquire Properties of Multipotent Stem Cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI
Flier J.S., Underhill L.H., Dvorak H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI
Dvoánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Čada Z., Szabo P., Šáchová J., Hroudová M., Urbanová M., et al. Smooth Muscle Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell Carcinoma: Increased Expression of Galectin-1 and Induction of Poor Prognosis Factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Hinz B. Formation and Function of the Myofibroblast during Tissue Repair. J. Investig. Dermatol. 2007;127:526–537. doi: 10.1038/sj.jid.5700613. PubMed DOI
Clark R.A.F., Ghosh K., Tonnesen M.G. Tissue Engineering for Cutaneous Wounds. J. Investig. Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715. PubMed DOI
Deonarine K., Panelli M.C., Stashower M.E., Jin P., Smith K., Slade H.B., Norwood C., Wang E., Marincola F.M., Stroncek D.F. Gene Expression Profiling of Cutaneous Wound Healing. J. Transl. Med. 2007;5:11. doi: 10.1186/1479-5876-5-11. PubMed DOI PMC
Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging Role of Tissue Lectins as Microenvironmental Effectors in Tumors and Wounds. Histol. Histopathol. 2015;30:293–309. doi: 10.14670/HH-30.293. PubMed DOI
Werner S., Krieg T., Smola H. Keratinocyte-Fibroblast Interactions in Wound Healing. J. Investig. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI
Slaughter D.P., Southwick H.W., Smejkal W. “Field Cancerization” in Oral Stratified Squamous Epithelium. Clinical Implications of Multicentric Origin. Cancer. 1953;6:963–968. doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q. PubMed DOI
Ishii T., Suzuki A., Kuwata T., Hisamitsu S., Hashimoto H., Ohara Y., Yanagihara K., Mitsunaga S., Yoshino T., Kinoshita T., et al. Drug-Exposed Cancer-Associated Fibroblasts Facilitate Gastric Cancer Cell Progression Following Chemotherapy. Gastric Cancer. 2021;24 doi: 10.1007/s10120-021-01174-9. PubMed DOI
Bharti R., Dey G., Mandal M. Cancer Development, Chemoresistance, Epithelial to Mesenchymal Transition and Stem Cells: A Snapshot of IL-6 Mediated Involvement. Cancer Lett. 2016;375:51–61. doi: 10.1016/j.canlet.2016.02.048. PubMed DOI
Krishnamurthy S., Warner K.A., Dong Z., Imai A., Nör C., Ward B.B., Helman J.I., Taichman R.S., Bellile E.L., McCauley L.K., et al. Endothelial Interleukin-6 Defines the Tumorigenic Potential of Primary Human Cancer Stem Cells. Stem Cells. 2014;32:2845–2857. doi: 10.1002/stem.1793. PubMed DOI PMC
Kim H.S., Chen Y.-C., Nör F., Warner K.A., Andrews A., Wagner V.P., Zhang Z., Zhang Z., Martins M.D., Pearson A.T., et al. Endothelial-Derived Interleukin-6 Induces Cancer Stem Cell Motility by Generating a Chemotactic Gradient towards Blood Vessels. Oncotarget. 2017;8:100339–100352. doi: 10.18632/oncotarget.22225. PubMed DOI PMC
Jinno T., Kawano S., Maruse Y., Matsubara R., Goto Y., Sakamoto T., Hashiguchi Y., Kaneko N., Tanaka H., Kitamura R., et al. Increased Expression of Interleukin-6 Predicts Poor Response to Chemoradiotherapy and Unfavorable Prognosis in Oral Squamous Cell Carcinoma. Oncol. Rep. 2015;33:2161–2168. doi: 10.3892/or.2015.3838. PubMed DOI PMC
Gao J., Zhao S., Halstensen T.S. Increased Interleukin-6 Expression Is Associated with Poor Prognosis and Acquired Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. Oncol. Rep. 2016;35:3265–3274. doi: 10.3892/or.2016.4765. PubMed DOI PMC
Matsuoka Y., Nakayama H., Yoshida R., Hirosue A., Nagata M., Tanaka T., Kawahara K., Sakata J., Arita H., Nakashima H., et al. IL-6 Controls Resistance to Radiation by Suppressing Oxidative Stress via the Nrf2-Antioxidant Pathway in Oral Squamous Cell Carcinoma. Br. J. Cancer. 2016;115:1234–1244. doi: 10.1038/bjc.2016.327. PubMed DOI PMC
De Schutter H., Landuyt W., Verbeken E., Goethals L., Hermans R., Nuyts S. The Prognostic Value of the Hypoxia Markers CA IX and GLUT I and the Cytokines VEGF and IL 6 in Head and Neck Squamous Cell Carcinoma Treated by Radiotherapy ± Chemotherapy. BMC Cancer. 2005;5:42. doi: 10.1186/1471-2407-5-42. PubMed DOI PMC
Ara T., DeClerck Y.A. Interleukin-6 in Bone Metastasis and Cancer Progression. Eur. J. Cancer. 2010;46:1223–1231. doi: 10.1016/j.ejca.2010.02.026. PubMed DOI PMC
Duffy S.A., Taylor J.M.G., Terrell J.E., Islam M., Li Y., Fowler K.E., Wolf G.T., Teknos T.N. Interleukin-6 Predicts Recurrence and Survival among Head and Neck Cancer Patients. Cancer. 2008;113:750–757. doi: 10.1002/cncr.23615. PubMed DOI
Brailo V., Vucicevic-Boras V., Lukac J., Biocina-Lukenda D., Zilic-Alajbeg I., Milenovic A., Balija M. Salivary and Serum Interleukin 1 Beta, Interleukin 6 and Tumor Necrosis Factor Alpha in Patients with Leukoplakia and Oral Cancer. Med. Oral Patol. Oral Cir. Bucal. 2012;17:e10. doi: 10.4317/medoral.17323. PubMed DOI PMC
Zhang S., Zhang X., Yin K.E., Li T., Bao Y., Chen Z. Variation and Significance of Secretory Immunoglobulin A, Interleukin 6 and Dendritic Cells in Oral Cancer. Oncol. Lett. 2017;13:2297–2303. doi: 10.3892/ol.2017.5703. PubMed DOI PMC
Lotfi A., Shahidi N., Bayazian G., Abdollahi Fakhim S., Estakhri R., Esfahani A., Notash R. Serum Level of Interleukin-6 in Patients with Oral Tongue Squamous Cell Carcinoma. Iran. J. Otorhinolaryngol. 2015;27:207–211. doi: 10.22038/ijorl.2015.4250. PubMed DOI PMC
Garbers C., Hermanns H.M., Schaper F., Müller-Newen G., Grötzinger J., Rose-John S., Scheller J. Plasticity and Cross-Talk of Interleukin 6-Type Cytokines. Cytokine Growth Factor Rev. 2012;23:85–97. doi: 10.1016/j.cytogfr.2012.04.001. PubMed DOI
Riedel F., Zaiss I., Herzog D., Götte K., Naim R., Hörmann K. Serum Levels of Interleukin-6 in Patients with Primary Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2005;25:2761–2765. PubMed
Andersson B.-Å., Lewin F., Lundgren J., Nilsson M., Rutqvist L.-E., Löfgren S., Laytragoon-Lewin N. Plasma Tumor Necrosis Factor-α and C-Reactive Protein as Biomarker for Survival in Head and Neck Squamous Cell Carcinoma. J. Cancer Res. Clin. Oncol. 2014;140:515–519. doi: 10.1007/s00432-014-1592-8. PubMed DOI
Chang K.P., Kao H.K., Wu C.C., Fang K.H., Chang Y.L., Huang Y.C., Liu S.C., Cheng M.H. Pretreatment Interleukin-6 Serum Levels Are Associated with Patient Survival for Oral Cavity Squamous Cell Carcinoma. Otolaryngol.-Head Neck Surg. 2013;148:786–791. doi: 10.1177/0194599813478573. PubMed DOI
Chen C.C., Chen W.C., Lu C.H., Wang W.H., Lin P.Y., der Lee K., Chen M.F. Significance of Interleukin-6 Signaling in the Resistance of Pharyngeal Cancer to Irradiation and the Epidermal Growth Factor Receptor Inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:1214–1224. doi: 10.1016/j.ijrobp.2009.09.059. PubMed DOI
Shinagawa K., Yanamoto S., Naruse T., Kawakita A., Morishita K., Sakamoto Y., Rokutanda S., Umeda M. Clinical Roles of Interleukin-6 and STAT3 in Oral Squamous Cell Carcinoma. Pathol. Oncol. Res. 2017;23:425–431. doi: 10.1007/s12253-016-0134-x. PubMed DOI
Chen Z., Yan B., van Waes C. Role of the NF-ΚB Transcriptome and Proteome as Biomarkers Human Head and Neck Squamous Cell Carcinomas. Biomark. Med. 2008;2:409–429. doi: 10.2217/17520363.2.4.409. PubMed DOI PMC
Hao W., Zhu Y., Zhou H. Prognostic Value of Interleukin-6 and Interleukin-8 in Laryngeal Squamous Cell Cancer. Med. Oncol. 2013;30:333. doi: 10.1007/s12032-012-0333-6. PubMed DOI
Chen C.J., Sung W.W., Lin Y.M., Chen M.K., Lee C.H., Lee H., Yeh K.T., Ko J.L. Gender Difference in the Prognostic Role of Interleukin 6 in Oral Squamous Cell Carcinoma. PLoS ONE. 2012;7:e50104. doi: 10.1371/journal.pone.0050104. PubMed DOI PMC
Schiegnitz E., Kämmerer P.W., Schön H., Blatt S., Berres M., Sagheb K., Al-Nawas B. Proinflammatory Cytokines as Serum Biomarker in Oral Carcinoma—A Prospective Multi-Biomarker Approach. J. Oral Pathol. Med. 2018;47:268–274. doi: 10.1111/jop.12670. PubMed DOI
Li C., Zhao Y., Zhang W., Zhang W. Increased Prevalence of TH17 Cells in the Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011;112:81–89. doi: 10.1016/j.tripleo.2010.11.032. PubMed DOI
Sparano A., Lathers D.M., Achille N., Petruzzelli G.J., Young M.R. Modulation of Th1 and Th2 Cytokine Profiles and Their Association with Advanced Head and Neck Squamous Cell Carcinoma. Otolaryngol.-Head Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg. 2004;131:573–576. doi: 10.1016/j.otohns.2004.03.016. PubMed DOI
Kumar B., Brown N.V., Swanson B.J., Schmitt A.C., Old M., Ozer E., Agrawal A., Schuller D.E., Teknos T.N., Kumar P. High Expression of Myoferlin Is Associated with Poor Outcome in Oropharyngeal Squamous Cell Carcinoma Patients and Is Inversely Associated with HPV-Status. Oncotarget. 2016;7:18665. doi: 10.18632/oncotarget.7625. PubMed DOI PMC
Kumar B., Yadav A., Brown N.V., Zhao S., Cipolla M.J., Wakely P.E., Schmitt A.C., Baiocchi R.A., Teknos T.N., Old M., et al. Nuclear PRMT5, Cyclin D1 and IL-6 Are Associated with Poor Outcome in Oropharyngeal Squamous Cell Carcinoma Patients and Is Inversely Associated with P16-Status. Oncotarget. 2017;8:14847. doi: 10.18632/oncotarget.14682. PubMed DOI PMC
St. John M.A.R., Li Y., Zhou X., Denny P., Ho C.M., Montemagno C., Shi W., Qi F., Wu B., Sinha U., et al. Interleukin 6 and Interleukin 8 as Potential Biomarkers for Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Arch. Otolaryngol.-Head Neck Surg. 2004;130:929–935. doi: 10.1001/archotol.130.8.929. PubMed DOI
Duffy S.A., Teknos T., Taylor J.M.G., Fowler K.E., Islam M., Wolf G.T., McLean S., Ghanem T.A., Terrell J.E. Health Behaviors Predict Higher Interleukin-6 Levels Among Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2013;22:374. doi: 10.1158/1055-9965.EPI-12-0987. PubMed DOI PMC
Meleti M., Cassi D., Vescovi P., Setti G., Pertinhez T.A., Pezzi M.E. Salivary Biomarkers for Diagnosis of Systemic Diseases and Malignant Tumors. A Systematic Review. Med. Oral Patol. Oral Cir. Bucal. 2020;25:e299. doi: 10.4317/medoral.23355. PubMed DOI PMC
Setti G., Pezzi M.E., Viani M.V., Pertinhez T.A., Cassi D., Magnoni C., Bellini P., Musolino A., Vescovi P., Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020;21:907. doi: 10.3390/ijms21030907. PubMed DOI PMC
Meleti M., Quartieri E., Antonelli R., Pezzi M.E., Ghezzi B., Viani M.V., Setti G., Casali E., Ferrari E., Ciociola T., et al. Metabolic Profiles of Whole, Parotid and Submandibular/Sublingual Saliva. Metabolites. 2020;10:318. doi: 10.3390/metabo10080318. PubMed DOI PMC
Ferrari E., Pezzi M.E., Cassi D., Pertinhez T.A., Spisni A., Meleti M. Salivary Cytokines as Biomarkers for Oral Squamous Cell Carcinoma: A Systematic Review. Int. J. Mol. Sci. 2021;22:6795. doi: 10.3390/ijms22136795. PubMed DOI PMC
Cristaldi M., Mauceri R., di Fede O., Giuliana G., Campisi G., Panzarella V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front. Physiol. 2019;10:1476. doi: 10.3389/fphys.2019.01476. PubMed DOI PMC
Dineshkumar T., Ashwini B.K., Rameshkumar A., Rajashree P., Ramya R., Rajkumar K. Salivary and Serum Interleukin-6 Levels in Oral Premalignant Disorders and Squamous Cell Carcinoma: Diagnostic Value and Clinicopathologic Correlations. Asian Pac. J. Cancer Prev. APJCP. 2016;17:4899. doi: 10.22034/APJCP.2016.17.11.4899. PubMed DOI PMC
Katakura A., Kamiyama I., Takano N., Shibahara T., Muramatsu T., Ishihara K., Takagi R., Shouno T. Comparison of Salivary Cytokine Levels in Oral Cancer Patients and Healthy Subjects. Bull. Tokyo Dent. Coll. 2007;48:199–203. doi: 10.2209/tdcpublication.48.199. PubMed DOI
Rhodus N.L., Ho V., Miller C.S., Myers S., Ondrey F. NF-ΚB Dependent Cytokine Levels in Saliva of Patients with Oral Preneoplastic Lesions and Oral Squamous Cell Carcinoma. Cancer Detect. Prev. 2005;29:42–45. doi: 10.1016/j.cdp.2004.10.003. PubMed DOI
Juretić M., Cerović R., Belušić-Gobić M., Brekalo Pršo I., Kqiku L., Špalj S., Pezelj-Ribarić S. Salivary Levels of TNF-α and IL-6 in Patients with Oral Premalignant and Malignant Lesions. Folia Biol. 2014;59:99–102. PubMed
Korostoff A., Reder L., Masood R., Sinha U.K. The Role of Salivary Cytokine Biomarkers in Tongue Cancer Invasion and Mortality. Oral Oncol. 2011;47:282–287. doi: 10.1016/j.oraloncology.2011.02.006. PubMed DOI
Hamad A., Gaphor S., Shawagfeh M.T., Al-Talabani N. Study of Serum and Salivary Levels of Proinflammatory Cytokines, Potential Biomarkers in the Diagnosis of Oral Squamous Cell Carcinoma. Acad. J. Cancer Res. 2011;4:47–55.
Sahebjamee M., Eslami M., Atarbashimoghadam F., Sarafnejad A. Salivary Concentration of TNFα, IL1α, IL6, and IL8 in Oral Squamous Cell Carcinoma. Med. Oral Patol. Oral Cir. Bucal. 2008;13:E292–E295. PubMed
Cheng Y.-S.L., Jordan L., Gorugantula L.M., Schneiderman E., Chen H.-S., Rees T. Salivary Interleukin-6 and -8 in Patients With Oral Cancer and Patients With Chronic Oral Inflammatory Diseases. J. Periodontol. 2014;85:956–965. doi: 10.1902/jop.2013.130320. PubMed DOI
Selvam N.P., Sadaksharam J. Salivary Interleukin-6 in the Detection of Oral Cancer and Precancer. Asia-Pac. J. Clin. Oncol. 2015;11:236–241. doi: 10.1111/ajco.12330. PubMed DOI
Dikova V., Jantus-Lewintre E., Bagan J. Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J. Clin. Med. 2021;10:1658. doi: 10.3390/jcm10081658. PubMed DOI PMC
Van der Waal I. Potentially Malignant Disorders of the Oral and Oropharyngeal Mucosa; Terminology, Classification and Present Concepts of Management. Oral Oncol. 2009;45:317–323. doi: 10.1016/j.oraloncology.2008.05.016. PubMed DOI
Sato J., Goto J., Murata T., Kitamori S., Yamazaki Y., Satoh A., Kitagawa Y. Changes in Saliva Interleukin-6 Levels in Patients with Oral Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;110:330–336. doi: 10.1016/j.tripleo.2010.03.040. PubMed DOI
Sato J., Ohuchi M., Abe K., Satoh T., Abe T., Yamazaki Y., Satoh A., Notani K., Kitagawa Y. Correlation between Salivary Interleukin-6 Levels and Early Locoregional Recurrence in Patients with Oral Squamous Cell Carcinoma: Preliminary Study. Head Neck. 2013;35:889–894. doi: 10.1002/hed.23056. PubMed DOI
Sato J., Ohuchi M., Wada M., Ohga N., Asaka T., Yoshikawa K., Miyakoshi M., Hata H., Satoh A., Kitagawa Y. Differences in Sequential Posttreatment Salivary IL-6 Levels between Patients with and Patients without Locoregional Recurrences of Oral Squamous Cell Carcinoma: Part III of a Cohort Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015;120:751–760.e2. doi: 10.1016/j.oooo.2015.08.016. PubMed DOI
Fan N., Luo Y., Ou Y., He H. Altered Serum Levels of TNF-α, IL-6, and IL-18 in Depressive Disorder Patients. Hum. Psychopharmacol. 2017;32:e2588. doi: 10.1002/hup.2588. PubMed DOI
Patel H.J., Patel B.M. TNF-α and Cancer Cachexia: Molecular Insights and Clinical Implications. Life Sci. 2017;170:56–63. doi: 10.1016/j.lfs.2016.11.033. PubMed DOI
Smetana K., Jr., Dvořánková B., Lacina L., Strnad H., Kolář M., Chovanec M., Plzák J., Čada Z., Vlček Č., Szabo P., et al. Combination of Antibodies or Fab Fragments Thereof for Use as Medicament, and Pharmaceutical Composition Containing Said Antibodies or Fab Fragments Thereof. No. B6 303227. Czech Patent. 2012 June 6; (In Czech)
Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 Paracrine Signalling Pathway Infers a Strategy to Inhibit Tumour Cell Migration. Nat. Commun. 2017;8:1–12. doi: 10.1038/ncomms15584. PubMed DOI PMC
Wirtz D.G. and Yatilaka H. Cancer Cell Migration Inhibitors and Their Use in Therapeutic Treatments. 2017/0165363 A1. U.S. Patent. 2017 June 15;
Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-Driven Resistance to B-Raf Inhibition in a Melanoma Patient Is Accompanied by Broad Changes of Gene Methylation and Expression in Distal Fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC
Loppnow H., Zhang L., Buerke M., Lautenschläger M., Chen L., Frister A., Schlitt A., Luther T., Song N., Hofmann B., et al. Statins Potently Reduce the Cytokine-Mediated IL-6 Release in SMC/MNC Cocultures. J. Cell. Mol. Med. 2011;15:994. doi: 10.1111/j.1582-4934.2010.01036.x. PubMed DOI PMC
Awasthi S., Wagner T., Venkatakrishnan A.J., Puranik A., Hurchik M., Agarwal V., Conrad I., Kirkup C., Arunachalam R., O’Horo J., et al. Plasma IL-6 Levels Following Corticosteroid Therapy as an Indicator of ICU Length of Stay in Critically Ill COVID-19 Patients. Cell Death Discov. 2021;7:1–15. doi: 10.1038/s41420-021-00429-9. PubMed DOI PMC
Jain M.K., Ridker P.M. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nat. Rev. Drug Discov. 2005;4:977–987. doi: 10.1038/nrd1901. PubMed DOI
Smetana K., Smetana K., Brábek J., Brábek J. Role of Interleukin-6 in Lung Complications in Patients with COVID-19: Therapeutic Implications. In Vivo. 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC
Atal S., Fatima Z. IL-6 Inhibitors in the Treatment of Serious COVID-19: A Promising Therapy? Pharm. Med. 2020;34:223–231. doi: 10.1007/s40290-020-00342-z. PubMed DOI PMC
Gould S., Norris S.L. Contested Effects and Chaotic Policies: The 2020 Story of (Hydroxy) Chloroquine for Treating COVID-19. Cochrane Database Syst. Rev. 2021;3:ED000151. doi: 10.1002/14651858.ED000151/EPDF/FULL. PubMed DOI PMC
Wozniacka A., Lesiak A., Narbutt J., McCauliffe D.P., Sysa-Jedrzejowska A. Chloroquine Treatment Influences Proinflammatory Cytokine Levels in Systemic Lupus Erythematosus Patients. Lupus. 2006;15:268–275. doi: 10.1191/0961203306lu2299oa. PubMed DOI
Van den Borne B.E., Dijkmans B.A., de Rooij H.H., le Cessie S., Verweij C.L. Chloroquine and Hydroxychloroquine Equally Affect Tumor Necrosis Factor-Alpha, Interleukin 6, and Interferon-Gamma Production by Peripheral Blood Mononuclear Cells. J. Rheumatol. 1997;24:55–60. PubMed
Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-Related Inflammation. Nature. 2008;454:436–444. doi: 10.1038/NATURE07205. PubMed DOI
Varisli L., Cen O., Vlahopoulos S. Dissecting Pharmacological Effects of Chloroquine in Cancer Treatment: Interference with Inflammatory Signaling Pathways. Immunology. 2020;159:257–278. doi: 10.1111/imm.13160. PubMed DOI PMC
Bryant J., Batis N., Franke A.C., Clancey G., Hartley M., Ryan G., Brooks J., Southam A.D., Barnes N., Parish J., et al. Repurposed Quinacrine Synergizes with Cisplatin, Reducing the Effective Dose Required for Treatment of Head and Neck Squamous Cell Carcinoma. Oncotarget. 2019;10:5229–5244. doi: 10.18632/oncotarget.27156. PubMed DOI PMC
Duarte D., Vale N. New Trends for Antimalarial Drugs: Synergism between Antineoplastics and Antimalarials on Breast Cancer Cells. Biomolecules. 2020;10:1623. doi: 10.3390/biom10121623. PubMed DOI PMC
Muñoz-Cánoves P., Scheele C., Pedersen B.K., Serrano A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-edged Sword? FEBS J. 2013;280:4131. doi: 10.1111/febs.12338. PubMed DOI PMC
Kawano M., Hirano T., Matsuda T., Taga T., Horii Y., Iwato K., Asaoku H., Tang B., Tanabe O., Tanaka H., et al. Autocrine Generation and Requirement of BSF-2/IL-6 for Human Multiple Myelomas. Nature. 1988;332:83–85. doi: 10.1038/332083a0. PubMed DOI
Beck J.T., Hsu S.-M., Wijdenes J., Bataille R., Klein B., Vesole D., Hayden K., Jagannath S., Barlogie B. Alleviation of Systemic Manifestations of Castleman’s Disease by Monoclonal Anti-Interleukin-6 Antibody. N. Engl. J. Med. 2010;330:602–605. doi: 10.1056/NEJM199403033300904. PubMed DOI
Van Rhee F., Fayad L., Voorhees P., Furman R., Lonial S., Borghaei H., Sokol L., Crawford J., Cornfeld M., Qi M., et al. Siltuximab, a Novel Anti-Interleukin-6 Monoclonal Antibody, for Castleman’s Disease. J. Clin. Oncol. 2010;28 doi: 10.1200/JCO.2009.27.2377. PubMed DOI
Choy E.H., de Benedetti F., Takeuchi T., Hashizume M., John M.R., Kishimoto T. Translating IL-6 Biology into Effective Treatments. Nat. Rev. Rheumatol. 2020;16:335–345. doi: 10.1038/s41584-020-0419-z. PubMed DOI PMC
Doberer K., Duerr M., Halloran P.F., Eskandary F., Budde K., Regele H., Reeve J., Borski A., Kozakowski N., Reindl-Schwaighofer R., et al. A Randomized Clinical Trial of Anti⇓IL-6 Antibody Clazakizumab in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2021;32:708–722. doi: 10.1681/ASN.2020071106. PubMed DOI PMC
Shaw S., Bourne T., Meier C., Carrington B., Gelinas R., Henry A., Popplewell A., Adams R., Baker T., Rapecki S., et al. Discovery and Characterization of Olokizumab: A Humanized Antibody Targeting Interleukin-6 and Neutralizing Gp130-Signaling. mAbs. 2014;6:773–781. doi: 10.4161/mabs.28612. PubMed DOI PMC
Burger R., Günther A., Klausz K., Staudinger M., Peipp M., Penas E.M.M., Rose-John S., Wijdenes J., Gramatzki M. Due to Interleukin-6 Type Cytokine Redundancy Only Glycoprotein 130 Receptor Blockade Efficiently Inhibits Myeloma Growth. Haematologica. 2017;102:381. doi: 10.3324/haematol.2016.145060. PubMed DOI PMC
Nishimoto N., Kishimoto T. Humanized Antihuman IL-6 Receptor Antibody, Tocilizumab. Handb. Exp. Pharmacol. 2008;181:151–160. doi: 10.1007/978-3-540-73259-4_7. PubMed DOI
Genovese M.C., McKay J.D., Nasonov E.L., Mysler E.F., da Silva N.A., Alecock E., Woodworth T., Gomez-Reino J.J. Interleukin-6 Receptor Inhibition with Tocilizumab Reduces Disease Activity in Rheumatoid Arthritis with Inadequate Response to Disease-Modifying Antirheumatic Drugs: The Tocilizumab in Combination with Traditional Disease-Modifying Antirheumatic Drug Therapy Study. Arthritis Rheum. 2008;58:2968–2980. doi: 10.1002/ART.23940. PubMed DOI
Kim N., Kim S., Kim D., Zhang D., Park J., Yi H., Kim J., Shin H. Anti-proliferative Action of IL-6R-Targeted Antibody Tocilizumab for Non-Small Cell Lung Cancer Cells. Oncol. Lett. 2015;9:2283–2288. doi: 10.3892/ol.2015.3019. PubMed DOI PMC
Alraouji N.N., Al-Mohanna F.H., Ghebeh H., Arafah M., Almeer R., Al-Tweigeri T., Aboussekhra A. Tocilizumab Potentiates Cisplatin Cytotoxicity and Targets Cancer Stem Cells in Triple-Negative Breast Cancer. Mol. Carcinog. 2020;59:1041–1051. doi: 10.1002/mc.23234. PubMed DOI
Varra V., Smile T.D., Geiger J.L., Koyfman S.A. Recent and Emerging Therapies for Cutaneous Squamous Cell Carcinomas of the Head and Neck. Curr. Treat. Options Oncol. 2020;21:1–12. doi: 10.1007/s11864-020-00739-7. PubMed DOI
Migden M.R., Rischin D., Schmults C.D., Guminski A., Hauschild A., Lewis K.D., Chung C.H., Hernandez-Aya L., Lim A.M., Chang A.L.S., et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018;379:341–351. doi: 10.1056/NEJMoa1805131. PubMed DOI
Tsukamoto H., Fujieda K., Miyashita A., Fukushima S., Ikeda T., Kubo Y., Senju S., Ihn H., Nishimura Y., Oshiumi H. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment. Cancer Res. 2018;78:5011–5022. doi: 10.1158/0008-5472.CAN-18-0118. PubMed DOI
Boyce E.G., Rogan E.L., Vyas D., Prasad N., Mai Y. Sarilumab: Review of a Second IL-6 Receptor Antagonist Indicated for the Treatment of Rheumatoid Arthritis. Ann. Pharmacother. 2018;52:780–791. doi: 10.1177/1060028018761599. PubMed DOI
Heo Y.A. Satralizumab: First Approval. Drugs. 2020;80:1477–1482. doi: 10.1007/s40265-020-01380-2. PubMed DOI PMC
Glicklich A., Grayson P., Blanchetot C., Zhou Q., Kretz-Rommel A. Arthritis & Rheumatology. Volume 68 Wiley; Hoboken, NJ, USA: 2016. The Development of a New Anti–Interleukin 6 Blocker for Rheumatoid Arthritis Patients-ACR Meeting Abstracts.
Rinaldi M., van Bogaert T., van Roy M., Bontinck L., Hohlbaum A., Snoeck V., Dombrecht E., van Beneden K., Schoen P., Ulrichts H. Assessment of Dose Dependent Effects of Vobarilizumab, an Anti-IL6 Receptor (IL-6R) Nanobody®, on Systemic Biomarkers in Patients with Moderate-to-Severe Rheumatoid Arthritis (RA): Results of Two Phase 2b Studies-ACR Meeting Abstracts. Arthritis Rheumatol. 2017;69:2476.
Chevalier S., Fourcin M., Robledo O., Wijdenes J., Pouplard-Barthelaix A., Gascan H. Interleukin-6 Family of Cytokines Induced Activation of Different Functional Sites Expressed by Gp130 Transducing Protein. J. Biol. Chem. 1996;271 doi: 10.1074/jbc.271.25.14764. PubMed DOI
Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, Synthesis, and Biological Activities of Madindoline Analogues. Bioorg. Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI
Xu S., Grande F., Garofalo A., Neamati N. Discovery of a Novel Orally Active Small-Molecule Gp130 Inhibitor for the Treatment of Ovarian Cancer. Mol. Cancer Ther. 2013;12:937–949. doi: 10.1158/1535-7163.MCT-12-1082. PubMed DOI
Hong S.-S., Choi J.H., Lee S.Y., Park Y.-H., Park K.-Y., Lee J.Y., Kim J., Gajulapati V., Goo J.-I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI
Li H., Xiao H., Lin L., Jou D., Kumari V., Lin J., Li C. Drug Design Targeting Protein-Protein Interactions (PPIs) Using Multiple Ligand Simultaneous Docking (MLSD) and Drug Repositioning: Discovery of Raloxifene and Bazedoxifene as Novel Inhibitors of IL-6/GP130 Interface. J. Med. Chem. 2014;57:632–641. doi: 10.1021/jm401144z. PubMed DOI
Thilakasiri P., Huynh J., Poh A.R., Tan C.W., Nero T.L., Tran K., Parslow A.C., Afshar-Sterle S., Baloyan D., Hannan N.J., et al. Repurposing the Selective Estrogen Receptor Modulator Bazedoxifene to Suppress Gastrointestinal Cancer Growth. EMBO Mol. Med. 2019;11:e9539. doi: 10.15252/emmm.201809539. PubMed DOI PMC
Heise D., Derrac Soria A., Hansen S., Dambietz C., Akbarzadeh M., Berg A.F., Waetzig G.H., Jones S.A., Dvorsky R., Ahmadian M.R., et al. Selective Inhibition of IL-6 Trans-Signaling by a Miniaturized, Optimized Chimeric Soluble Gp130 Inhibits T H 17 Cell Expansion. Sci. Signal. 2021;14:eabc3480. doi: 10.1126/scisignal.abc3480. PubMed DOI
Schreiber S., Aden K., Bernardes J.P., Conrad C., Tran F., Höper H., Volk V., Mishra N., Blase J.I., Nikolaus S., et al. Therapeutic Interleukin-6 Trans-Signaling Inhibition by Olamkicept (Sgp130Fc) in Patients With Active Inflammatory Bowel Disease. Gastroenterology. 2021;160:2354–2366.e11. doi: 10.1053/j.gastro.2021.02.062. PubMed DOI
Uz U., Eskiizmir G. Association between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin. Exp. Otorhinolaryngol. 2021;14:50–60. doi: 10.21053/ceo.2019.00906. PubMed DOI PMC
Cui N., Nomura T., Noma H., Yokoo K., Takagi R., Hashimoto S., Okamoto M., Sato M., Yu G., Guo C., et al. Effect of YM529 on a Model of Mandibular Invasion by Oral Squamous Cell Carcinoma in Mice. Clin. Cancer Res. 2005;11:2713–2719. doi: 10.1158/1078-0432.CCR-04-1767. PubMed DOI
Wichmann G., Cedra S., Schlegel D., Kolb M., Wiegand S., Boehm A., Hofer M., Dietz A. Cilengitide and Cetuximab Reduce Cytokine Production and Colony Formation of Head and Neck Squamous Cell Carcinoma Cells Ex Vivo. Anticancer Res. 2017;37:521–527. doi: 10.21873/anticanres.11344. PubMed DOI
Wolf J.S., Li G., Varadhachary A., Petrak K., Schneyer M., Li D., Ongkasuwan J., Zhang X., Taylor R.J., Strome S.E., et al. Oral Lactoferrin Results in T Cell-Dependent Tumor Inhibition of Head and Neck Squamous Cell Carcinoma in Vivo. Clin. Cancer Res. 2007;13:1601–1610. doi: 10.1158/1078-0432.CCR-06-2008. PubMed DOI PMC
Tu D.G., Lin W.T., Yu C.C., Lee S.S., Peng C.Y., Lin T., Yu C.H. Chemotherapeutic Effects of Luteolin on Radio-Sensitivity Enhancement and Interleukin-6/Signal Transducer and Activator of Transcription 3 Signaling Repression of Oral Cancer Stem Cells. J. Formos. Med. Assoc. 2016;115:1032–1038. doi: 10.1016/j.jfma.2016.08.009. PubMed DOI
Tamatani T., Azuma M., Motegi K., Takamaru N., Kawashima Y., Bando T. Cepharanthin-Enhanced Radiosensitivity through the Inhibition of Radiation-Induced Nuclear Factor-ΚB Activity in Human Oral Squamous Cell Carcinoma Cells. Int. J. Oncol. 2007;31:761–768. doi: 10.3892/ijo.31.4.761. PubMed DOI
Macha M.A., Matta A., Chauhan S.S., Michael Siu K.W., Ralhan R. Guggulsterone (GS) Inhibits Smokeless Tobacco and Nicotine-Induced NF-ΚB and STAT3 Pathways in Head and Neck Cancer Cells. Carcinogenesis. 2011;32:368–380. doi: 10.1093/carcin/bgq278. PubMed DOI
Lin H.Y., Hou S.C., Chen S.C., Kao M.C., Yu C.C., Funayama S., Ho C.T., der Way T. (-)-Epigallocatechin Gallate Induces Fas/CD95-Mediated Apoptosis through Inhibiting Constitutive and IL-6-Induced JAK/STAT3 Signaling in Head and Neck Squamous Cell Carcinoma Cells. J. Agric. Food Chem. 2012;60:2480–2489. doi: 10.1021/jf204362n. PubMed DOI
Cohen A.N., Veena M.S., Srivatsan E.S., Wang M.B. Suppression of Interleukin 6 and 8 Production in Head and Neck Cancer Cells with Curcumin via Inhibition of Iκβ Kinase. Arch. Otolaryngol.-Head Neck Surg. 2009;135:190–197. doi: 10.1001/archotol.135.2.190. PubMed DOI
Chakravarti N., Myers J.N., Aggarwal B.B. Targeting Constitutive and Interleukin-6-Inducible Signal Transducers and Activators of Transcription 3 Pathway in Head and Neck Squamous Cell Carcinoma Cells by Curcumin (Diferuloylmethane) Int. J. Cancer. 2006;119:1268–1275. doi: 10.1002/ijc.21967. PubMed DOI
DiNatale B.C., Schroeder J.C., Perdew G.H. Ah Receptor Antagonism Inhibits Constitutive and Cytokine Inducible IL6 Production in Head and Neck Tumor Cell Lines. Mol. Carcinog. 2011;50:173–183. doi: 10.1002/mc.20702. PubMed DOI PMC
DiNatale B.C., Smith K., John K., Krishnegowda G., Amin S.G., Perdew G.H. Ah Receptor Antagonism Represses Head and Neck Tumor Cell Aggressive Phenotype. Mol. Cancer Res. 2012;10:1369–1379. doi: 10.1158/1541-7786.MCR-12-0216. PubMed DOI PMC
Tang C.H., Chuang J.Y., Fong Y.C., Maa M.C., der Way T., Hung C.H. Bone-Derived SDF-1 Stimulates IL-6 Release via CXCR4, ERK and NF-ΚB Pathways and Promotes Osteoclastogenesis in Human Oral Cancer Cells. Carcinogenesis. 2008;29:1483–1492. doi: 10.1093/carcin/bgn045. PubMed DOI PMC
Siavash H., Nikitakis N.G., Sauk J.J. Abrogation of IL-6-Mediated JAK Signalling by the Cyclopentenone Prostaglandin 15d-PGJ2 in Oral Squamous Carcinoma Cells. Br. J. Cancer. 2004;91:1074–1080. doi: 10.1038/sj.bjc.6602055. PubMed DOI PMC
Poth K.J., Guminski A.D., Thomas G.P., Leo P.J., Jabbar I.A., Saunders N.A. Cisplatin Treatment Induces a Transient Increase in Tumorigenic Potential Associated with High Interleukin-6 Expression in Head and Neck Squamous Cell Carcinoma. Mol. Cancer Ther. 2010;9:2430–2439. doi: 10.1158/1535-7163.MCT-10-0258. PubMed DOI
Stanam A., Love-Homan L., Joseph T.S., Espinosa-Cotton M., Simons A.L. Upregulated Interleukin-6 Expression Contributes to Erlotinib Resistance in Head and Neck Squamous Cell Carcinoma. Mol. Oncol. 2015;9:1371–1383. doi: 10.1016/j.molonc.2015.03.008. PubMed DOI PMC
Shinriki S., Jono H., Ueda M., Ota K., Ota T., Sueyoshi T., Oike Y., Ibusuki M., Hiraki A., Nakayama H., et al. Interleukin-6 Signalling Regulates Vascular Endothelial Growth Factor-C Synthesis and Lymphangiogenesis in Human Oral Squamous Cell Carcinoma. J. Pathol. 2011;225:142–150. doi: 10.1002/path.2935. PubMed DOI
Shinriki S., Jono H., Ota K., Ueda M., Kudo M., Ota T., Oike Y., Endo M., Ibusuki M., Hiraki A., et al. Humanized Anti-Interleukin-6 Receptor Antibody Suppresses Tumor Angiogenesis and in Vivo Growth of Human Oral Squamous Cell Carcinoma. Clin. Cancer Res. 2009;15:5426–5434. doi: 10.1158/1078-0432.CCR-09-0287. PubMed DOI
Islam M., Sharma S., Teknos T.N. RhoC Regulates Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma by Overexpressing IL-6 and Phosphorylation of STAT3. PLoS ONE. 2014;9:88527. doi: 10.1371/journal.pone.0088527. PubMed DOI PMC
Hwang Y.S., Ahn S.Y., Moon S., Zheng Z., Cha I.H., Kim J., Zhang X. Insulin-like Growth Factor-II MRNA Binding Protein-3 and Podoplanin Expression Are Associated with Bone Invasion and Prognosis in Oral Squamous Cell Carcinoma. Arch. Oral Biol. 2016;69:25–32. doi: 10.1016/j.archoralbio.2016.05.008. PubMed DOI
Finkel K.A., Warner K.A., Kerk S., Bradford C.R., McLean S.A., Prince M.E., Zhong H., Hurt E.M., Hollingsworth R.E., Wicha M.S., et al. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence. Neoplasia. 2016;18:273–281. doi: 10.1016/j.neo.2016.03.004. PubMed DOI PMC
Ekshyyan O., Khandelwal A.R., Rong X., Moore-Medlin T., Ma X., Alexander J.S., Nathan C.A.O. Rapamycin Targets Interleukin 6 (IL-6) Expression and Suppresses Endothelial Cell Invasion Stimulated by Tumor Cells. Am. J. Transl. Res. 2016;8:4822–4830. PubMed PMC
Riebe C., Pries R., Kemkers A., Wollenberg B. Increased Cytokine Secretion in Head and Neck Cancer upon P38 Mitogen-Activated Protein Kinase Activation. Int. J. Mol. Med. 2007;20:883–887. doi: 10.3892/ijmm.20.6.883. PubMed DOI
Jing Z., Xu H., Chen X., Zhong Q., Huang J., Zhang Y., Guo W., Yang Z., Ding S., Chen P., et al. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS ONE. 2016;11:e0152789. doi: 10.1371/journal.pone.0152789. PubMed DOI PMC
Kross K.W., Heimdal J.H., Olsnes C., Olofson J., Aarstad H.J. Tumour-Associated Macrophages Secrete IL-6 and MCP-1 in Head and Neck Squamous Cell Carcinoma Tissue. Acta Oto-Laryngol. 2007;127:532–539. doi: 10.1080/00016480600951384. PubMed DOI
Mishra P.B., Lobo A.S., Joshi K.S., Rathos M.J., Kumar G.A., Padigaru M. Molecular Mechanisms of Anti-Tumor Properties of P276-00 in Head and Neck Squamous Cell Carcinoma. J. Transl. Med. 2013;11:1–11. doi: 10.1186/1479-5876-11-42. PubMed DOI PMC
Sen M., Johnston P.A., Pollock N.I., DeGrave K., Joyce S.C., Freilino M.L., Hua Y., Camarco D.P., Close D.A., Huryn D.M., et al. Mechanism of Action of Selective Inhibitors of IL-6 Induced STAT3 Pathway in Head and Neck Cancer Cell Lines. J. Chem. Biol. 2017;10:129–141. doi: 10.1007/s12154-017-0169-9. PubMed DOI PMC
Teknos T.N., Islam M., Arenberg D.A., Pan Q., Carskadon S.L., Abarbanell A.M., Marcus B., Paul S., Vandenberg C.D., Carron M., et al. The Effect of Tetrathiomolybdate on Cytokine Expression, Angiogenesis, and Tumor Growth in Squamous Cell Carcinoma of the Head and Neck. Arch. Otolaryngol.-Head Neck Surg. 2005;131:204–211. doi: 10.1001/archotol.131.3.204. PubMed DOI
Van Tubergen E., vander Broek R., Lee J., Wolf G., Carey T., Bradford C., Prince M., Kirkwood K.L., D’Silva N.J. Tristetraprolin Regulates Interleukin-6, Which Is Correlated with Tumor Progression in Patients with Head and Neck Squamous Cell Carcinoma. Cancer. 2011;117:2677–2689. doi: 10.1002/cncr.25859. PubMed DOI PMC
Van Tubergen E.A., Banerjee R., Liu M., vander Broek R., Light E., Kuo S., Feinberg S.E., Willis A.L., Wolf G., Carey T., et al. Inactivation or Loss of TTP Promotes Invasion in Head and Neck Cancer via Transcript Stabilization and Secretion of MMP9, MMP2, and IL-6. Clin. Cancer Res. 2013;19:1169–1179. doi: 10.1158/1078-0432.CCR-12-2927. PubMed DOI PMC
Zhou X., Ren Y., Liu A., Han L., Zhang K., Li S., Li P., Li P., Kang C., Wang X., et al. STAT3 Inhibitor WP1066 Attenuates MiRNA-21 to Suppress Human Oral Squamous Cell Carcinoma Growth in Vitro and in Vivo. Oncol. Rep. 2014;31:2173–2180. doi: 10.3892/or.2014.3114. PubMed DOI
Te Chang M., Lee S.P., Fang C.Y., Hsieh P.L., Liao Y.W., Lu M.Y., Tsai L.L., Yu C.C., Liu C.M. Chemosensitizing Effect of Honokiol in Oral Carcinoma Stem Cells via Regulation of IL-6/Stat3 Signaling. Environ. Toxicol. 2018;33:1105–1112. doi: 10.1002/tox.22587. PubMed DOI
Wang T.H., Fang J.Y., Wu S.J., Liu Y.W., Chan C.W., Chuang S.Y., Chen C.Y. 2-O-Methylmagnolol Induces Apoptosis and Inhibits IL-6/STAT3 Signaling in Oral Squamous Cell Carcinoma. Cell. Physiol. Biochem. 2018;50:883–892. doi: 10.1159/000494474. PubMed DOI
Gehrke T., Scherzad A., Hackenberg S., Ickrath P., Schendzielorz P., Hagen R., Kleinsasser N. Additive Antitumor Effects of Celecoxib and Simvastatin on Head and Neck Squamous Cell Carcinoma in Vitro. Int. J. Oncol. 2017;51:931–938. doi: 10.3892/ijo.2017.4071. PubMed DOI
Yadav A., Kumar B., Teknos T.N., Kumar P. Bazedoxifene Enhances the Anti-Tumor Effects of Cisplatin and Radiation Treatment by Blocking IL-6 Signaling in Head and Neck Cancer. Oncotarget. 2017;8:66912. doi: 10.18632/oncotarget.11464. PubMed DOI PMC
Meyer C., Pries R., Wollenberg B. Established and Novel NF-ΚB Inhibitors Lead to Downregulation of TLR3 and the Proliferation and Cytokine Secretion in HNSCC. Oral Oncol. 2011;47:818–826. doi: 10.1016/j.oraloncology.2011.06.010. PubMed DOI
Ruan M., Thorn K., Liu S., Li S., Yang W., Zhang C., Zhang C. The Secretion of IL-6 by CpG-ODN-Treated Cancer Cells Promotes T-Cell Immune Responses Partly through the TLR-9/AP-1 Pathway in Oral Squamous Cell Carcinoma. Int. J. Oncol. 2014;45:2103–2110. doi: 10.3892/ijo.2014.2356. PubMed DOI
A First-in-Humans Dose Finding Study for an Aryl Hydrocarbon Receptor Inhibitor (AhRi) in Patients With Advanced Cancer-Full Text View-ClinicalTrials.Gov. [(accessed on 12 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/study/NCT04069026?term=IL-6&cond=HNSCC&draw=2&rank=9.
Zafar E., Maqbool M.F., Iqbal A., Maryam A., Shakir H.A., Irfan M., Khan M., Li Y., Ma T. A Comprehensive Review on Anticancer Mechanism of Bazedoxifene. Biotechnol. Appl. Biochem. 2021 doi: 10.1002/bab.2150. PubMed DOI
Erbitux (Cetuximab)-Summary of Product Characteristics. [(accessed on 10 October 2021)]. Available online: https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf.
The Effect of Curcumin for Treatment of Cancer Anorexia-Cachexia Syndrome in Patients with Stage III-IV of Head and Neck Cancer-Full Text View-ClinicalTrials.Gov. [(accessed on 12 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04208334?cond=head+and+neck+cancer+curcumin&draw=2&rank=2.
Kotha R.R., Luthria D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930. PubMed DOI PMC
Celebrex (Celecoxib) Information | FDA. [(accessed on 12 September 2021)]; Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/celebrex-celecoxib-information.
Simvastatin Information | FDA. [(accessed on 12 September 2021)]; Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/simvastatin-information.
Du G.-J., Zhang Z., Wen X.-D., Yu C., Calway T., Yuan C.-S., Wang C.-Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients. 2012;4:1679. doi: 10.3390/nu4111679. PubMed DOI PMC
Leeman-Neill R.J., Wheeler S.E., Singh S.V., Thomas S.M., Seethala R.R., Neill D.B., Panahandeh M.C., Hahm E.-R., Joyce S.C., Sen M., et al. Guggulsterone Enhances Head and Neck Cancer Therapies via Inhibition of Signal Transducer and Activator of Transcription-3. Carcinogenesis. 2009;30:1848. doi: 10.1093/carcin/bgp211. PubMed DOI PMC
Rauf A., Olatunde A., Imran M., Alhumaydhi F.A., Aljohani A.S.M., Khan S.A., Uddin M.S., Mitra S., bin Emran T., Khayrullin M., et al. Honokiol: A Review of Its Pharmacological Potential and Therapeutic Insights. Phytomedicine. 2021;90:153647. doi: 10.1016/j.phymed.2021.153647. PubMed DOI
Lin Y., Shi R., Wang X., Shen H.-M. Luteolin, a Flavonoid with Potentials for Cancer Prevention and Therapy. Curr. Cancer Drug Targets. 2008;8:634. doi: 10.2174/156800908786241050. PubMed DOI PMC
Rapamune-SPC. [(accessed on 19 September 2021)]. Available online: https://www.ema.europa.eu/en/documents/product-information/rapamune-epar-product-information_en.pdf.
Angevin E., Tabernero J., Elez E., Cohen S.J., Bahleda R., van Laethem J.-L., Ottensmeier C., Lopez-Martin J.A., Clive S., Joly F., et al. A Phase I/II, Multiple-Dose, Dose-Escalation Study of Siltuximab, an Anti-Interleukin-6 Monoclonal Antibody, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014;20:2192–2204. doi: 10.1158/1078-0432.CCR-13-2200. PubMed DOI
A Safety, Efficacy and Pharmacokinetic Study of Siltuximab (CNTO 328) in Participants with Solid Tumors-Full Text View-ClinicalTrials.Gov. [(accessed on 13 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00841191.
Interleukin-6 Inhibitors | COVID-19 Treatment Guidelines. [(accessed on 12 September 2021)]; Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/interleukin-6-inhibitors/
Actemra-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125276s114lbl.pdf.
Kerschbaumer A., Sepriano A., Smolen J.S., van der Heijde D., Dougados M., van Vollenhoven R., McInnes I.B., Bijlsma J.W.J., Burmester G.R., de Wit M., et al. Efficacy of Pharmacological Treatment in Rheumatoid Arthritis: A Systematic Literature Research Informing the 2019 Update of the EULAR Recommendations for Management of Rheumatoid Arthritis. Ann. Rheum. Dis. 2020;79:744. doi: 10.1136/annrheumdis-2019-216656. PubMed DOI PMC
Fleischmann R., van Adelsberg J., Lin Y., da Castelar-Pinheiro G.R., Brzezicki J., Hrycaj P., Graham N.M.H., van Hoogstraten H., Bauer D., Burmester G.R. Sarilumab and Nonbiologic Disease-Modifying Antirheumatic Drugs in Patients With Active Rheumatoid Arthritis and Inadequate Response or Intolerance to Tumor Necrosis Factor Inhibitors. Arthritis Rheumatol. 2017;69:277–290. doi: 10.1002/art.39944. PubMed DOI PMC
Kevzara-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761037s000lbl.pdf.
Roche-Enspryng (Satralizumab) [(accessed on 16 September 2021)]. Available online: https://www.roche.com/products/product-details.htm?productId=6f4b47a2-7ca9-4768-bf1a-6d813702f5b6.
Eskandary F., Dürr M., Budde K., Doberer K., Reindl-Schwaighofer R., Waiser J., Wahrmann M., Regele H., Spittler A., Lachmann N., et al. Clazakizumab in Late Antibody-Mediated Rejection: Study Protocol of a Randomized Controlled Pilot Trial. Trials. 2019;20:1–13. doi: 10.1186/s13063-018-3158-6. PubMed DOI PMC
Rovin B.H., van Vollenhoven R.F., Aranow C., Wagner C., Gordon R., Zhuang Y., Belkowski S., Hsu B. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Treatment With Sirukumab (CNTO 136) in Patients With Active Lupus Nephritis. Arthritis Rheumatol. 2016;68:2174–2183. doi: 10.1002/art.39722. PubMed DOI PMC
Reeh H., Rudolph N., Billing U., Christen H., Streif S., Bullinger E., Schliemann-Bullinger M., Findeisen R., Schaper F., Huber H.J., et al. Response to IL-6 Trans- and IL-6 Classic Signalling Is Determined by the Ratio of the IL-6 Receptor α to Gp130 Expression: Fusing Experimental Insights and Dynamic Modelling. Cell Commun. Signal. 2019;17:1–21. doi: 10.1186/s12964-019-0356-0. PubMed DOI PMC
Jakafi-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202192s017lbl.pdf.
Xeljanz-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf.
Goel P., Gerriets V. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Chloroquine; pp. 1–7.
Jang C.-H., Choi J.-H., Byun M.-S., Jue D.-M. Chloroquine Inhibits Production of TNF-α, IL-1β and IL-6 from Lipopolysaccharide-Stimulated Human Monocytes/Macrophages by Different Modes. Rheumatology. 2006;45:703–710. doi: 10.1093/rheumatology/kei282. PubMed DOI
Aralen. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/006002s044lbl.pdf.
Bansal P., Goyal A., Cusick A., IV, Lahan S., Dhaliwal H.S., Bhyan P., Bhattad P.B., Aslam F., Ranka S., Dalia T., et al. Hydroxychloroquine: A Comprehensive Review and Its Controversial Role in Coronavirus Disease 2019. Ann. Med. 2021;53:117. doi: 10.1080/07853890.2020.1839959. PubMed DOI PMC
Plaquenil. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf.
Wang Y., Huang Z., Wang L., Meng S., Fan Y., Chen T., Cao J., Jiang R., Wang C. The Anti-Malarial Artemisinin Inhibits pro-Inflammatory Cytokines via the NF-ΚB Canonical Signaling Pathway in PMA-Induced THP-1 Monocytes. Int. J. Mol. Med. 2011;27:233–241. doi: 10.3892/ijmm.2010.580. PubMed DOI
Artesunate-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213036s000lbl.pdf.
Lin L., Benson D.M., DeAngelis S., Bakan C.E., Li P.-K., Li C., Lin J. A Small Molecule, LLL12 Inhibits Constitutive STAT3 and IL-6-Induced STAT3 Signaling and Exhibits Potent Growth Suppressive Activity in Human Multiple Myeloma Cells. Int. J. Cancer. 2012;130:1459–1469. doi: 10.1002/ijc.26152. PubMed DOI PMC
Shi W., Yan D., Zhao C., Xiao M., Wang Y., Ma H., Liu T., Qin H., Zhang C., Li C., et al. Inhibition of IL-6/STAT3 Signaling in Human Cancer Cells Using Evista. Biochem. Biophys. Res. Commun. 2017;491:159–165. doi: 10.1016/j.bbrc.2017.07.067. PubMed DOI
Evista-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020815s018lbl.pdf.
Hayashi M., Rho M.-C., Enomoto A., Fukami A., Kim Y.-P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of Bone Resorption by Madindoline A, a Novel Nonpeptide Antagonist to Gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728. doi: 10.1073/pnas.232562799. PubMed DOI PMC
Singh S., Gajulapati V., Gajulapati K., Goo J., Park Y.H., Jung H.Y., Lee S.Y., Choi J.H., Kim Y.K., Lee K., et al. Structure–Activity Relationship Study of a Series of Novel Oxazolidinone Derivatives as IL-6 Signaling Blockers. Bioorganic Med. Chem. Lett. 2016;26:1282–1286. doi: 10.1016/j.bmcl.2016.01.016. PubMed DOI
Zhang Z., Zhou L., Xie N., Nice E.C., Zhang T., Cui Y., Huang C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020;5:1–25. doi: 10.1038/s41392-020-00213-8. PubMed DOI PMC
Gyebi G.A., Ogunyemi O.M., Ibrahim I.M., Afolabi S.O., Adebayo J.O. Dual Targeting of Cytokine Storm and Viral Replication in COVID-19 by Plant-Derived Steroidal Pregnanes: An in Silico Perspective. Comput. Biol. Med. 2021;134:104406. doi: 10.1016/j.compbiomed.2021.104406. PubMed DOI PMC
Results of a Phase IIb Study of Vobarilizumab, an Anti-Interleukin 6 Receptor Nanobody®, in Patients with Moderate-to-Severe Rheumatoid Arthritis Despite Treatment with Methotrexate. [(accessed on 3 October 2021)]. Available online: https://www.ablynx.com/uploads/data/files/cra2017_alx-0061_abstract%20210_poster_final.pdf.
Genovese M.C., Durez P., Fleischmann R., Tanaka Y., Furst D., Yamanaka H., Korneva E., Vasyutin I., Takeuchi T. Long-Term Safety and Efficacy of Olokizumab in Patients with Rheumatoid Arthritis and Inadequate Response to Tumor Necrosis Factor Inhibitor Therapy in Phase II Studies. Eur. J. Rheumatol. 2021;8:120–129. doi: 10.5152/eurjrheum.2021.19207. PubMed DOI PMC
Baricitinib Letter of Authorization Revised July 28 2021. [(accessed on 3 October 2021)]; Available online: https://www.fda.gov/media/143822/download.
FDA Briefing Document Pharmacy Compounding Advisory Committee (PCAC) Meeting. [(accessed on 3 October 2021)]; Available online: https://www.fda.gov/media/95976/download.
The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities