IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives

. 2021 Oct 13 ; 22 (20) : . [epub] 20211013

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34681685

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 European Structural and Investment Funds; Operational Program Research, Development and Education
PROGRES Q28 Charles University in Prague

Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.

Zobrazit více v PubMed

Warnakulasuriya S. Global Epidemiology of Oral and Oropharyngeal Cancer. Oral Oncol. 2009;45:309–316. doi: 10.1016/j.oraloncology.2008.06.002. PubMed DOI

Vokes E.E., Weichselbaum R.R., Lippman S.M., Hong W.K. Head and Neck Cancer. N. Engl. J. Med. 1993;328 doi: 10.1056/NEJM199301213280306. PubMed DOI

Novák Š., Bandurová V., Mifková A., Kalfeřt D., Fík Z., Lukeš P., Szabo P., Plzák J., Smetana K., Jr. Tumor Microenvironment. Otorinolaryng. A Foniat. 2019;68:41–51.

Smetana K., Lacina L., Szabo P., Dvořánková B., Brož P., Šedo A. Ageing as an Important Risk Factor for Cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI

Saussez S., Duray A., Demoulin S., Hubert P., Delvenne P. Immune Suppression in Head and Neck Cancers: A Review. Clin. Dev. Immunol. 2010;2010:15. doi: 10.1155/2010/701657. PubMed DOI PMC

Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A Molecule with Complex Biological Impact in Cancer. Histol. Histopathol. 2019;34:125–136. doi: 10.14670/HH-18-033. PubMed DOI

Hamburger A.W., Salmon S.E. Primary Bioassay of Human Tumor Stem Cells. Science. 1977;197:461–463. doi: 10.1126/science.560061. PubMed DOI

Metwaly H., Maruyama S., Yamazaki M., Tsuneki M., Abé T., Jen K.Y., Cheng J., Saku T. Parenchymal-Stromal Switching for Extracellular Matrix Production on Invasion of Oral Squamous Cell Carcinoma. Hum. Pathol. 2012;43:1973–1981. doi: 10.1016/j.humpath.2012.02.006. PubMed DOI

Polyak K., Haviv I., Campbell I.G. Co-Evolution of Tumor Cells and Their Microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Li H., Fan X., Houghton J.M. Tumor Microenvironment: The Role of the Tumor Stroma in Cancer. J. Cell. Biochem. 2007;101:805–815. doi: 10.1002/jcb.21159. PubMed DOI

Lorusso G., Rüegg C. The Tumor Microenvironment and Its Contribution to Tumor Evolution toward Metastasis. Histochem. Cell Biol. 2008;130:1091–1103. doi: 10.1007/s00418-008-0530-8. PubMed DOI

Plzák J., Lacina L., Chovanec M., Dvořánková B., Szabo P., Čada Z., Smetana K. Epithelial–Stromal Interaction in Squamous Cell Epithelium-Derived Tumors: An Important New Player in the Control of Tumor Biological Properties. Anticancer Res. 2010;30 PubMed

Fisher D.T., Appenheimer M.M., Evans S.S. The Two Faces of IL-6 in the Tumor Microenvironment. Semin. Immunol. 2014;26:38–47. doi: 10.1016/j.smim.2014.01.008. PubMed DOI PMC

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.J., Strnad H., Šáchová J., Vlček Č., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 Production in Dermal Fibroblasts by Normal/Malignant Epithelial Cells in Vitro: Immunohistochemical and Transcriptomic Analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Rossi J.F., Lu Z.Y., Jourdan M., Klein B. Interleukin-6 as a Therapeutic Target. Clin. Cancer Res. 2015;21:1248–1257. doi: 10.1158/1078-0432.CCR-14-2291. PubMed DOI

Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and Expression of the Human Interleukin-6 (BSF-2/IFNβ 2) Receptor. Science. 1988;241:825–828. doi: 10.1126/science.3136546. PubMed DOI

Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S.I., Nakajima K., Koyama K., Iwamatsu A., et al. Complementary DNA for a Novel Human Interleukin (BSF-2) That Induces B Lymphocytes to Produce Immunoglobulin. Nature. 1986;324:73–76. doi: 10.1038/324073a0. PubMed DOI

Scheller J., Rose-John S. Interleukin-6 and Its Receptor: From Bench to Bedside. Med. Microbiol. Immunol. 2006;195:173–183. doi: 10.1007/s00430-006-0019-9. PubMed DOI

Rose-John S. Interleukin-6 Biology Is Coordinated by Membrane-Bound and Soluble Receptors: Role in Inflammation and Cancer. J. Leukoc. Biol. 2006;80:227–236. doi: 10.1189/jlb.1105674. PubMed DOI

Wolf J., Rose-John S., Garbers C. Interleukin-6 and Its Receptors: A Highly Regulated and Dynamic System. Cytokine. 2014;70:11–20. doi: 10.1016/j.cyto.2014.05.024. PubMed DOI

Schaper F., Rose-John S. Interleukin-6: Biology, Signaling and Strategies of Blockade. Cytokine Growth Factor Rev. 2015;26:475–487. doi: 10.1016/j.cytogfr.2015.07.004. PubMed DOI

Dimitrov S., Lange T., Benedict C., Nowell M.A., Jones S.A., Scheller J., Rose-John S., Born J., Dimitrov S., Lange T., et al. Sleep Enhances IL-6 Trans-signaling in Humans. FASEB J. 2006;20:2174–2176. doi: 10.1096/fj.06-5754fje. PubMed DOI

Scheller J., Garbers C., Rose-John S. Interleukin-6: From Basic Biology to Selective Blockade of pro-Inflammatory Activities. Semin. Immunol. 2014;26:2–12. doi: 10.1016/j.smim.2013.11.002. PubMed DOI

Jostock T., Müllberg J., Özbek S., Atreya R., Blinn G., Voltz N., Fischer M., Neurath M.F., Rose-John S. Soluble Gp130 Is the Natural Inhibitor of Soluble Interleukin-6 Receptor Transsignaling Responses. Eur. J. Biochem. 2001;268:160–167. doi: 10.1046/j.1432-1327.2001.01867.x. PubMed DOI

Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Müller-Newen G., Schaper F. Principles of Interleukin (IL)-6-Type Cytokine Signalling and Its Regulation. Biochem. J. 2003;374:1–20. doi: 10.1042/bj20030407. PubMed DOI PMC

Eulenfeld R., Dittrich A., Khouri C., Müller P.J., Mütze B., Wolf A., Schaper F. Interleukin-6 Signalling: More than Jaks and STATs. Eur. J. Cell Biol. 2012;91:486–495. doi: 10.1016/j.ejcb.2011.09.010. PubMed DOI

Kretzschmar A.K., Dinger M.C., Henze C., Brocke-Heidrich K., Horn F. Analysis of Stat3 (Signal Transducer and Activator of Transcription 3) Dimerization by Fluorescence Resonance Energy Transfer in Living Cells. Biochem. J. 2004;377:289–297. doi: 10.1042/bj20030708. PubMed DOI PMC

Braunstein J., Brutsaert S., Olson R., Schindler C. STATs Dimerize in the Absence of Phosphorylation. J. Biol. Chem. 2003;278:34133–34140. doi: 10.1074/jbc.M304531200. PubMed DOI

Haan S., Knotholes M., Behrmann I., Müller-Esterl W., Heinrich P.C., Schaper F. Cytoplasmic STAT Proteins Associate Prior to Activation. Biochem. J. 2000;345:417–421. doi: 10.1042/bj3450417. PubMed DOI PMC

Novak U., Ji H., Kanagasundaram V., Simpson R., Paradiso L. STAT3 Forms Stable Homodimers in the Presence of Divalent Cations Prior to Activation. Biochem. Biophys. Res. Commun. 1998;247:558–563. doi: 10.1006/bbrc.1998.8829. PubMed DOI

Vogt M., Domoszlai T., Kleshchanok D., Lehmann S., Schmitt A., Poli V., Richtering W., Müller-Newen G. The Role of the N-Terminal Domain in Dimerization and Nucleocytoplasmic Shuttling of Latent STAT3. J. Cell Sci. 2011;124:900–909. doi: 10.1242/jcs.072520. PubMed DOI

Pranada A.L., Metz S., Herrmann A., Heinrich P.C., Müller-Newen G. Real Time Analysis of STAT3 Nucleocytoplasmic Shuttling. J. Biol. Chem. 2004;279:15114–15123. doi: 10.1074/jbc.M312530200. PubMed DOI

Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., Nakatani Y. The Transcriptional Coactivators P300 and CBP Are Histone Acetyltransferases. Cell. 1996;87:953–959. doi: 10.1016/S0092-8674(00)82001-2. PubMed DOI

Ray S., Boldogh I., Brasier A.R. STAT3 NH2-Terminal Acetylation Is Activated by the Hepatic Acute-Phase Response and Required for IL-6 Induction of Angiotensinogen. Gastroenterology. 2005;129:1616–1632. doi: 10.1053/j.gastro.2005.07.055. PubMed DOI

Yuan Z.L., Guan Y.J., Chatterjee D., Chin Y.E. Stat3 Dimerization Regulated by Reversible Acetylation of a Single Lysine Residue. Science. 2005;307:269–273. doi: 10.1126/science.1105166. PubMed DOI

Hou T., Ray S., Lee C., Brasier A.R. The STAT3 NH2-Terminal Domain Stabilizes Enhanceosome Assembly by Interacting with the P300 Bromodomain. J. Biol. Chem. 2008;283:30725–30734. doi: 10.1074/jbc.M805941200. PubMed DOI PMC

Fukada T., Hibi M., Yamanaka Y., Takahashi-Tezuka M., Fujitani Y., Yamaguchi T., Nakajima K., Hirano T. Two Signals Are Necessary for Cell Proliferation Induced by a Cytokine Receptor Gp130: Involvement of STAT3 in Anti-Apoptosis. Immunity. 1996;5:449–460. doi: 10.1016/S1074-7613(00)80501-4. PubMed DOI

Fukada T., Ohtani T., Yoshida Y., Shirogane T., Nishida K., Nakajima K., Hibi M., Hirano T. STAT3 Orchestrates Contradictory Signals in Cytokine-Induced G1 to S Cell-Cycle Transition. EMBO J. 1998;17:6670–6677. doi: 10.1093/emboj/17.22.6670. PubMed DOI PMC

Judd L.M., Alderman B.M., Howlett M., Shulkes A., Dow C., Moverley J., Grail D., Jenkins B.J., Ernst M., Giraud A.S. Gastric Cancer Development in Mice Lacking the SHP2 Binding Site on the IL-6 Family Co-Receptor Gp130. Gastroenterology. 2004;126:196–207. doi: 10.1053/j.gastro.2003.10.066. PubMed DOI

Tebbutt N.C., Giraud A.S., Inglese M., Jenkins B., Waring P., Clay F.J., Malki S., Alderman B.M., Grail D., Hollande F., et al. Reciprocal Regulation of Gastrointestinal Homeostasis by SHP2 and STAT-Mediated Trefoil Gene Activation in Gp130 Mutant Mice. Nat. Med. 2002;8:1089–1097. doi: 10.1038/nm763. PubMed DOI

Schaper F., Gendo C., Eck M., Schmitz J., Grimm C., Anhuf D., Kerr I.M., Heinrich P.C. Activation of the Protein Tyrosine Phosphatase SHP2 via the Interleukin-6 Signal Transducing Receptor Protein Gp130 Requires Tyrosine Kinase Jak1 and Limits Acute-Phase Protein Expression. Biochem. J. 1998;335:557–565. doi: 10.1042/bj3350557. PubMed DOI PMC

Symes A., Stahl N., Reeves S.A., Farruggella T., Servidei T., Gearan T., Yancopoulos G., Stephen Fink J. The Protein Tyrosine Phosphatase SHP-2 Negatively Regulates Ciliary Neurotrophic Factor Induction of Gene Expression. Curr. Biol. 1997;7:697–700. doi: 10.1016/S0960-9822(06)00298-3. PubMed DOI

Schiemann W.P., Bartoe J.L., Nathanson N.M. Box 3-Independent Signaling Mechanisms Are Involved in Leukemia Inhibitory Factor Receptor α- and Gp130-Mediated Stimulation of Mitogen-Activated Protein Kinase. Evidence for Participation of Multiple Signaling Pathways Which Converge at Ras. J. Biol. Chem. 1997;272:16631–16636. doi: 10.1074/jbc.272.26.16631. PubMed DOI

Lai C.F., Ripperger J., Wang Y., Kim H., Hawley R.B., Baumann H. The STAT3-Independent Signaling Pathway by Glycoprotein 130 in Hepatic Cells. J. Biol. Chem. 1999;274:7793–7802. doi: 10.1074/jbc.274.12.7793. PubMed DOI

Ernst M., Jenkins B.J. Acquiring Signalling Specificity from the Cytokine Receptor Gp130. Trends Genet. 2004;20:23–32. doi: 10.1016/j.tig.2003.11.003. PubMed DOI

Lehmann U., Schmitz J., Weissenbach M., Sobota R.M., Hörtner M., Friederichs K., Behrmann I., Tsiaris W., Sasaki A., Schneider-Mergener J., et al. SHP2 and SOCS3 Contribute to Tyr-759-Dependent Attenuation of Interleukin-6 Signaling through Gp130. J. Biol. Chem. 2003;278:661–671. doi: 10.1074/jbc.M210552200. PubMed DOI

Kim H., Baumann H. Dual Signaling Role of the Protein Tyrosine Phosphatase SHP-2 in Regulating Expression of Acute-Phase Plasma Proteins by Interleukin-6 Cytokine Receptors in Hepatic Cells. Mol. Cell. Biol. 1999;19:5326–5338. doi: 10.1128/MCB.19.8.5326. PubMed DOI PMC

De Souza D., Fabri L.J., Nash A., Hilton D.J., Nicola N.A., Baca M. SH2 Domains from Suppressor of Cytokine Signaling-3 and Protein Tyrosine Phosphatase SHP-2 Have Similar Binding Specificities. Biochemistry. 2002;41:9229–9236. doi: 10.1021/bi0259507. PubMed DOI

Eulenfeld R., Schaper F. A New Mechanism for the Regulation of Gab1 Recruitment to the Plasma Membrane. J. Cell Sci. 2009;122:55–64. doi: 10.1242/jcs.037226. PubMed DOI

Takahashi-Tezuka M., Yoshida Y., Fukada T., Ohtani T., Yamanaka Y., Nishida K., Nakajima K., Hibi M., Hirano T. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor Gp130 to ERK Mitogen-Activated Protein Kinase. Mol. Cell. Biol. 1998;18:4109–4117. doi: 10.1128/MCB.18.7.4109. PubMed DOI PMC

Wang Y., Fuller G.M. Phosphorylation and Internalization of Gp130 Occur after IL-6 Activation of Jak2 Kinase in Hepatocytes. Mol. Biol. Cell. 1994;5:819–828. doi: 10.1091/mbc.5.7.819. PubMed DOI PMC

Zohlnhöfer D., Graeve L., Rose-John S., Schooltink H., Dittrich E., Heinrich P.C. The Hepatic Interleukin-6 Receptor Down-Regulation of the Interleukin-6 Binding Subunit (Gp80) by Its Ligand. FEBS Lett. 1992;306:219–222. doi: 10.1016/0014-5793(92)81004-6. PubMed DOI

Radtke S., Wüller S., Yang X.P., Lippok B.E., Mütze B., Mais C., Schmitz-Van De Leur H., Bode J.G., Gaestel M., Heinrich P.C., et al. Cross-Regulation of Cytokine Signalling: Pro-Inflammatory Cytokines Restrict IL-6 Signalling through Receptor Internalisation and Degradation. J. Cell Sci. 2010;123:947–959. doi: 10.1242/jcs.065326. PubMed DOI

Chung C.D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai K. Specific Inhibition of Stat3 Signal Transduction by PIAS3. Science. 1997;278:1803–1805. doi: 10.1126/science.278.5344.1803. PubMed DOI

Scatena R., Bottoni P., Pontoglio A., Giardina B. Cancer Stem Cells: The Development of New Cancer Therapeutics. Expert Opin. Biol. Ther. 2011;11:875–892. doi: 10.1517/14712598.2011.573780. PubMed DOI

Korkaya H., Liu S., Wicha M.S. Breast Cancer Stem Cells, Cytokine Networks, and the Tumor Microenvironment. J. Clin. Investig. 2011;121:3804–3809. doi: 10.1172/JCI57099. PubMed DOI PMC

Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Östman A., Augsten M. Cancer-Associated Fibroblasts and Tumor Growth - Bystanders Turning into Key Players. Curr. Opin. Genet. Dev. 2009;19:67–73. doi: 10.1016/j.gde.2009.01.003. PubMed DOI

Lamertz L., Rummel F., Polz R., Baran P., Hansen S., Waetzig G.H., Moll J.M., Floss D.M., Scheller J. Soluble Gp130 Prevents Interleukin-6 and Interleukin-11 Cluster Signaling but Not Intracellular Autocrine Responses. Sci. Signal. 2018;11 doi: 10.1126/scisignal.aar7388. PubMed DOI

Heink S., Yogev N., Garbers C., Herwerth M., Aly L., Gasperi C., Husterer V., Croxford A.L., Möller-Hackbarth K., Bartsch H.S., et al. Trans-Presentation of Interleukin-6 by Dendritic Cells Is Required for Priming Pathogenic TH17 Cells. Nat. Immunol. 2017;18:74. doi: 10.1038/ni.3632. PubMed DOI PMC

Yu C.C., Tsai L.L., Wang M.L., Yu C.H., Lo W.L., Chang Y.C., Chiou G.Y., Chou M.Y., Chiou S.H. MiR145 Targets the SOX9/ADAM17 Axis to Inhibit Tumor-Initiating Cells and IL-6-Mediated Paracrine Effects in Head and Neck Cancer. Cancer Res. 2013;73:3425–3440. doi: 10.1158/0008-5472.CAN-12-3840. PubMed DOI

Szabo P., Valach J., Smetana K., Jr., Dvorankova B. Comparative Analysis of IL-8 and CXCL-1 Production by Normal and Cancer Stromal Fibroblasts. Folia Biol. 2013;59:134–137. PubMed

Bremnes R.M., Dønnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI

Novotný J., Strnadová K., Dvořánková B., Kocourková Š., Jakša R., Dundr P., Pačes V., Smetana K., Kolář M., Lacina L. Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC

Erez N., Truitt M., Olson P., Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-ΚB-Dependent Manner. Cancer Cell. 2010;17:135–147. doi: 10.1016/j.ccr.2009.12.041. PubMed DOI

Ganguly D., Chandra R., Karalis J., Teke M., Aguilera T., Maddipati R., Wachsmann M.B., Ghersi D., Siravegna G., Zeh H.J., et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers. 2020;12:2652. doi: 10.3390/cancers12092652. PubMed DOI PMC

Lacina L., Smetana K., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.J., André S. Stromal Fibroblasts from Basal Cell Carcinoma Affect Phenotype of Normal Keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI

Lacina L., Dvořánkova B., Smetana K., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker Profiling of Normal Keratinocytes Identifies the Stroma from Squamous Cell Carcinoma of the Oral Cavity as a Modulatory Microenvironment in Co-Culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI

Strnad H., Lacina L., Kolář M., Čada Z., Vlček Č., Dvořánková B., Betka J., Plzák J., Chovanec M., Šáchova J., et al. Head and Neck Squamous Cancer Stromal Fibroblasts Produce Growth Factors Influencing Phenotype of Normal Human Keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI

Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K. Mouse 3T3 Fibroblasts under the Influence of Fibroblasts Isolated from Stroma of Human Basal Cell Carcinoma Acquire Properties of Multipotent Stem Cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Flier J.S., Underhill L.H., Dvorak H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI

Dvoánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Čada Z., Szabo P., Šáchová J., Hroudová M., Urbanová M., et al. Smooth Muscle Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell Carcinoma: Increased Expression of Galectin-1 and Induction of Poor Prognosis Factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Hinz B. Formation and Function of the Myofibroblast during Tissue Repair. J. Investig. Dermatol. 2007;127:526–537. doi: 10.1038/sj.jid.5700613. PubMed DOI

Clark R.A.F., Ghosh K., Tonnesen M.G. Tissue Engineering for Cutaneous Wounds. J. Investig. Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715. PubMed DOI

Deonarine K., Panelli M.C., Stashower M.E., Jin P., Smith K., Slade H.B., Norwood C., Wang E., Marincola F.M., Stroncek D.F. Gene Expression Profiling of Cutaneous Wound Healing. J. Transl. Med. 2007;5:11. doi: 10.1186/1479-5876-5-11. PubMed DOI PMC

Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging Role of Tissue Lectins as Microenvironmental Effectors in Tumors and Wounds. Histol. Histopathol. 2015;30:293–309. doi: 10.14670/HH-30.293. PubMed DOI

Werner S., Krieg T., Smola H. Keratinocyte-Fibroblast Interactions in Wound Healing. J. Investig. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI

Slaughter D.P., Southwick H.W., Smejkal W. “Field Cancerization” in Oral Stratified Squamous Epithelium. Clinical Implications of Multicentric Origin. Cancer. 1953;6:963–968. doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q. PubMed DOI

Ishii T., Suzuki A., Kuwata T., Hisamitsu S., Hashimoto H., Ohara Y., Yanagihara K., Mitsunaga S., Yoshino T., Kinoshita T., et al. Drug-Exposed Cancer-Associated Fibroblasts Facilitate Gastric Cancer Cell Progression Following Chemotherapy. Gastric Cancer. 2021;24 doi: 10.1007/s10120-021-01174-9. PubMed DOI

Bharti R., Dey G., Mandal M. Cancer Development, Chemoresistance, Epithelial to Mesenchymal Transition and Stem Cells: A Snapshot of IL-6 Mediated Involvement. Cancer Lett. 2016;375:51–61. doi: 10.1016/j.canlet.2016.02.048. PubMed DOI

Krishnamurthy S., Warner K.A., Dong Z., Imai A., Nör C., Ward B.B., Helman J.I., Taichman R.S., Bellile E.L., McCauley L.K., et al. Endothelial Interleukin-6 Defines the Tumorigenic Potential of Primary Human Cancer Stem Cells. Stem Cells. 2014;32:2845–2857. doi: 10.1002/stem.1793. PubMed DOI PMC

Kim H.S., Chen Y.-C., Nör F., Warner K.A., Andrews A., Wagner V.P., Zhang Z., Zhang Z., Martins M.D., Pearson A.T., et al. Endothelial-Derived Interleukin-6 Induces Cancer Stem Cell Motility by Generating a Chemotactic Gradient towards Blood Vessels. Oncotarget. 2017;8:100339–100352. doi: 10.18632/oncotarget.22225. PubMed DOI PMC

Jinno T., Kawano S., Maruse Y., Matsubara R., Goto Y., Sakamoto T., Hashiguchi Y., Kaneko N., Tanaka H., Kitamura R., et al. Increased Expression of Interleukin-6 Predicts Poor Response to Chemoradiotherapy and Unfavorable Prognosis in Oral Squamous Cell Carcinoma. Oncol. Rep. 2015;33:2161–2168. doi: 10.3892/or.2015.3838. PubMed DOI PMC

Gao J., Zhao S., Halstensen T.S. Increased Interleukin-6 Expression Is Associated with Poor Prognosis and Acquired Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. Oncol. Rep. 2016;35:3265–3274. doi: 10.3892/or.2016.4765. PubMed DOI PMC

Matsuoka Y., Nakayama H., Yoshida R., Hirosue A., Nagata M., Tanaka T., Kawahara K., Sakata J., Arita H., Nakashima H., et al. IL-6 Controls Resistance to Radiation by Suppressing Oxidative Stress via the Nrf2-Antioxidant Pathway in Oral Squamous Cell Carcinoma. Br. J. Cancer. 2016;115:1234–1244. doi: 10.1038/bjc.2016.327. PubMed DOI PMC

De Schutter H., Landuyt W., Verbeken E., Goethals L., Hermans R., Nuyts S. The Prognostic Value of the Hypoxia Markers CA IX and GLUT I and the Cytokines VEGF and IL 6 in Head and Neck Squamous Cell Carcinoma Treated by Radiotherapy ± Chemotherapy. BMC Cancer. 2005;5:42. doi: 10.1186/1471-2407-5-42. PubMed DOI PMC

Ara T., DeClerck Y.A. Interleukin-6 in Bone Metastasis and Cancer Progression. Eur. J. Cancer. 2010;46:1223–1231. doi: 10.1016/j.ejca.2010.02.026. PubMed DOI PMC

Duffy S.A., Taylor J.M.G., Terrell J.E., Islam M., Li Y., Fowler K.E., Wolf G.T., Teknos T.N. Interleukin-6 Predicts Recurrence and Survival among Head and Neck Cancer Patients. Cancer. 2008;113:750–757. doi: 10.1002/cncr.23615. PubMed DOI

Brailo V., Vucicevic-Boras V., Lukac J., Biocina-Lukenda D., Zilic-Alajbeg I., Milenovic A., Balija M. Salivary and Serum Interleukin 1 Beta, Interleukin 6 and Tumor Necrosis Factor Alpha in Patients with Leukoplakia and Oral Cancer. Med. Oral Patol. Oral Cir. Bucal. 2012;17:e10. doi: 10.4317/medoral.17323. PubMed DOI PMC

Zhang S., Zhang X., Yin K.E., Li T., Bao Y., Chen Z. Variation and Significance of Secretory Immunoglobulin A, Interleukin 6 and Dendritic Cells in Oral Cancer. Oncol. Lett. 2017;13:2297–2303. doi: 10.3892/ol.2017.5703. PubMed DOI PMC

Lotfi A., Shahidi N., Bayazian G., Abdollahi Fakhim S., Estakhri R., Esfahani A., Notash R. Serum Level of Interleukin-6 in Patients with Oral Tongue Squamous Cell Carcinoma. Iran. J. Otorhinolaryngol. 2015;27:207–211. doi: 10.22038/ijorl.2015.4250. PubMed DOI PMC

Garbers C., Hermanns H.M., Schaper F., Müller-Newen G., Grötzinger J., Rose-John S., Scheller J. Plasticity and Cross-Talk of Interleukin 6-Type Cytokines. Cytokine Growth Factor Rev. 2012;23:85–97. doi: 10.1016/j.cytogfr.2012.04.001. PubMed DOI

Riedel F., Zaiss I., Herzog D., Götte K., Naim R., Hörmann K. Serum Levels of Interleukin-6 in Patients with Primary Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2005;25:2761–2765. PubMed

Andersson B.-Å., Lewin F., Lundgren J., Nilsson M., Rutqvist L.-E., Löfgren S., Laytragoon-Lewin N. Plasma Tumor Necrosis Factor-α and C-Reactive Protein as Biomarker for Survival in Head and Neck Squamous Cell Carcinoma. J. Cancer Res. Clin. Oncol. 2014;140:515–519. doi: 10.1007/s00432-014-1592-8. PubMed DOI

Chang K.P., Kao H.K., Wu C.C., Fang K.H., Chang Y.L., Huang Y.C., Liu S.C., Cheng M.H. Pretreatment Interleukin-6 Serum Levels Are Associated with Patient Survival for Oral Cavity Squamous Cell Carcinoma. Otolaryngol.-Head Neck Surg. 2013;148:786–791. doi: 10.1177/0194599813478573. PubMed DOI

Chen C.C., Chen W.C., Lu C.H., Wang W.H., Lin P.Y., der Lee K., Chen M.F. Significance of Interleukin-6 Signaling in the Resistance of Pharyngeal Cancer to Irradiation and the Epidermal Growth Factor Receptor Inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:1214–1224. doi: 10.1016/j.ijrobp.2009.09.059. PubMed DOI

Shinagawa K., Yanamoto S., Naruse T., Kawakita A., Morishita K., Sakamoto Y., Rokutanda S., Umeda M. Clinical Roles of Interleukin-6 and STAT3 in Oral Squamous Cell Carcinoma. Pathol. Oncol. Res. 2017;23:425–431. doi: 10.1007/s12253-016-0134-x. PubMed DOI

Chen Z., Yan B., van Waes C. Role of the NF-ΚB Transcriptome and Proteome as Biomarkers Human Head and Neck Squamous Cell Carcinomas. Biomark. Med. 2008;2:409–429. doi: 10.2217/17520363.2.4.409. PubMed DOI PMC

Hao W., Zhu Y., Zhou H. Prognostic Value of Interleukin-6 and Interleukin-8 in Laryngeal Squamous Cell Cancer. Med. Oncol. 2013;30:333. doi: 10.1007/s12032-012-0333-6. PubMed DOI

Chen C.J., Sung W.W., Lin Y.M., Chen M.K., Lee C.H., Lee H., Yeh K.T., Ko J.L. Gender Difference in the Prognostic Role of Interleukin 6 in Oral Squamous Cell Carcinoma. PLoS ONE. 2012;7:e50104. doi: 10.1371/journal.pone.0050104. PubMed DOI PMC

Schiegnitz E., Kämmerer P.W., Schön H., Blatt S., Berres M., Sagheb K., Al-Nawas B. Proinflammatory Cytokines as Serum Biomarker in Oral Carcinoma—A Prospective Multi-Biomarker Approach. J. Oral Pathol. Med. 2018;47:268–274. doi: 10.1111/jop.12670. PubMed DOI

Li C., Zhao Y., Zhang W., Zhang W. Increased Prevalence of TH17 Cells in the Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011;112:81–89. doi: 10.1016/j.tripleo.2010.11.032. PubMed DOI

Sparano A., Lathers D.M., Achille N., Petruzzelli G.J., Young M.R. Modulation of Th1 and Th2 Cytokine Profiles and Their Association with Advanced Head and Neck Squamous Cell Carcinoma. Otolaryngol.-Head Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg. 2004;131:573–576. doi: 10.1016/j.otohns.2004.03.016. PubMed DOI

Kumar B., Brown N.V., Swanson B.J., Schmitt A.C., Old M., Ozer E., Agrawal A., Schuller D.E., Teknos T.N., Kumar P. High Expression of Myoferlin Is Associated with Poor Outcome in Oropharyngeal Squamous Cell Carcinoma Patients and Is Inversely Associated with HPV-Status. Oncotarget. 2016;7:18665. doi: 10.18632/oncotarget.7625. PubMed DOI PMC

Kumar B., Yadav A., Brown N.V., Zhao S., Cipolla M.J., Wakely P.E., Schmitt A.C., Baiocchi R.A., Teknos T.N., Old M., et al. Nuclear PRMT5, Cyclin D1 and IL-6 Are Associated with Poor Outcome in Oropharyngeal Squamous Cell Carcinoma Patients and Is Inversely Associated with P16-Status. Oncotarget. 2017;8:14847. doi: 10.18632/oncotarget.14682. PubMed DOI PMC

St. John M.A.R., Li Y., Zhou X., Denny P., Ho C.M., Montemagno C., Shi W., Qi F., Wu B., Sinha U., et al. Interleukin 6 and Interleukin 8 as Potential Biomarkers for Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Arch. Otolaryngol.-Head Neck Surg. 2004;130:929–935. doi: 10.1001/archotol.130.8.929. PubMed DOI

Duffy S.A., Teknos T., Taylor J.M.G., Fowler K.E., Islam M., Wolf G.T., McLean S., Ghanem T.A., Terrell J.E. Health Behaviors Predict Higher Interleukin-6 Levels Among Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2013;22:374. doi: 10.1158/1055-9965.EPI-12-0987. PubMed DOI PMC

Meleti M., Cassi D., Vescovi P., Setti G., Pertinhez T.A., Pezzi M.E. Salivary Biomarkers for Diagnosis of Systemic Diseases and Malignant Tumors. A Systematic Review. Med. Oral Patol. Oral Cir. Bucal. 2020;25:e299. doi: 10.4317/medoral.23355. PubMed DOI PMC

Setti G., Pezzi M.E., Viani M.V., Pertinhez T.A., Cassi D., Magnoni C., Bellini P., Musolino A., Vescovi P., Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020;21:907. doi: 10.3390/ijms21030907. PubMed DOI PMC

Meleti M., Quartieri E., Antonelli R., Pezzi M.E., Ghezzi B., Viani M.V., Setti G., Casali E., Ferrari E., Ciociola T., et al. Metabolic Profiles of Whole, Parotid and Submandibular/Sublingual Saliva. Metabolites. 2020;10:318. doi: 10.3390/metabo10080318. PubMed DOI PMC

Ferrari E., Pezzi M.E., Cassi D., Pertinhez T.A., Spisni A., Meleti M. Salivary Cytokines as Biomarkers for Oral Squamous Cell Carcinoma: A Systematic Review. Int. J. Mol. Sci. 2021;22:6795. doi: 10.3390/ijms22136795. PubMed DOI PMC

Cristaldi M., Mauceri R., di Fede O., Giuliana G., Campisi G., Panzarella V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front. Physiol. 2019;10:1476. doi: 10.3389/fphys.2019.01476. PubMed DOI PMC

Dineshkumar T., Ashwini B.K., Rameshkumar A., Rajashree P., Ramya R., Rajkumar K. Salivary and Serum Interleukin-6 Levels in Oral Premalignant Disorders and Squamous Cell Carcinoma: Diagnostic Value and Clinicopathologic Correlations. Asian Pac. J. Cancer Prev. APJCP. 2016;17:4899. doi: 10.22034/APJCP.2016.17.11.4899. PubMed DOI PMC

Katakura A., Kamiyama I., Takano N., Shibahara T., Muramatsu T., Ishihara K., Takagi R., Shouno T. Comparison of Salivary Cytokine Levels in Oral Cancer Patients and Healthy Subjects. Bull. Tokyo Dent. Coll. 2007;48:199–203. doi: 10.2209/tdcpublication.48.199. PubMed DOI

Rhodus N.L., Ho V., Miller C.S., Myers S., Ondrey F. NF-ΚB Dependent Cytokine Levels in Saliva of Patients with Oral Preneoplastic Lesions and Oral Squamous Cell Carcinoma. Cancer Detect. Prev. 2005;29:42–45. doi: 10.1016/j.cdp.2004.10.003. PubMed DOI

Juretić M., Cerović R., Belušić-Gobić M., Brekalo Pršo I., Kqiku L., Špalj S., Pezelj-Ribarić S. Salivary Levels of TNF-α and IL-6 in Patients with Oral Premalignant and Malignant Lesions. Folia Biol. 2014;59:99–102. PubMed

Korostoff A., Reder L., Masood R., Sinha U.K. The Role of Salivary Cytokine Biomarkers in Tongue Cancer Invasion and Mortality. Oral Oncol. 2011;47:282–287. doi: 10.1016/j.oraloncology.2011.02.006. PubMed DOI

Hamad A., Gaphor S., Shawagfeh M.T., Al-Talabani N. Study of Serum and Salivary Levels of Proinflammatory Cytokines, Potential Biomarkers in the Diagnosis of Oral Squamous Cell Carcinoma. Acad. J. Cancer Res. 2011;4:47–55.

Sahebjamee M., Eslami M., Atarbashimoghadam F., Sarafnejad A. Salivary Concentration of TNFα, IL1α, IL6, and IL8 in Oral Squamous Cell Carcinoma. Med. Oral Patol. Oral Cir. Bucal. 2008;13:E292–E295. PubMed

Cheng Y.-S.L., Jordan L., Gorugantula L.M., Schneiderman E., Chen H.-S., Rees T. Salivary Interleukin-6 and -8 in Patients With Oral Cancer and Patients With Chronic Oral Inflammatory Diseases. J. Periodontol. 2014;85:956–965. doi: 10.1902/jop.2013.130320. PubMed DOI

Selvam N.P., Sadaksharam J. Salivary Interleukin-6 in the Detection of Oral Cancer and Precancer. Asia-Pac. J. Clin. Oncol. 2015;11:236–241. doi: 10.1111/ajco.12330. PubMed DOI

Dikova V., Jantus-Lewintre E., Bagan J. Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J. Clin. Med. 2021;10:1658. doi: 10.3390/jcm10081658. PubMed DOI PMC

Van der Waal I. Potentially Malignant Disorders of the Oral and Oropharyngeal Mucosa; Terminology, Classification and Present Concepts of Management. Oral Oncol. 2009;45:317–323. doi: 10.1016/j.oraloncology.2008.05.016. PubMed DOI

Sato J., Goto J., Murata T., Kitamori S., Yamazaki Y., Satoh A., Kitagawa Y. Changes in Saliva Interleukin-6 Levels in Patients with Oral Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;110:330–336. doi: 10.1016/j.tripleo.2010.03.040. PubMed DOI

Sato J., Ohuchi M., Abe K., Satoh T., Abe T., Yamazaki Y., Satoh A., Notani K., Kitagawa Y. Correlation between Salivary Interleukin-6 Levels and Early Locoregional Recurrence in Patients with Oral Squamous Cell Carcinoma: Preliminary Study. Head Neck. 2013;35:889–894. doi: 10.1002/hed.23056. PubMed DOI

Sato J., Ohuchi M., Wada M., Ohga N., Asaka T., Yoshikawa K., Miyakoshi M., Hata H., Satoh A., Kitagawa Y. Differences in Sequential Posttreatment Salivary IL-6 Levels between Patients with and Patients without Locoregional Recurrences of Oral Squamous Cell Carcinoma: Part III of a Cohort Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015;120:751–760.e2. doi: 10.1016/j.oooo.2015.08.016. PubMed DOI

Fan N., Luo Y., Ou Y., He H. Altered Serum Levels of TNF-α, IL-6, and IL-18 in Depressive Disorder Patients. Hum. Psychopharmacol. 2017;32:e2588. doi: 10.1002/hup.2588. PubMed DOI

Patel H.J., Patel B.M. TNF-α and Cancer Cachexia: Molecular Insights and Clinical Implications. Life Sci. 2017;170:56–63. doi: 10.1016/j.lfs.2016.11.033. PubMed DOI

Smetana K., Jr., Dvořánková B., Lacina L., Strnad H., Kolář M., Chovanec M., Plzák J., Čada Z., Vlček Č., Szabo P., et al. Combination of Antibodies or Fab Fragments Thereof for Use as Medicament, and Pharmaceutical Composition Containing Said Antibodies or Fab Fragments Thereof. No. B6 303227. Czech Patent. 2012 June 6; (In Czech)

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 Paracrine Signalling Pathway Infers a Strategy to Inhibit Tumour Cell Migration. Nat. Commun. 2017;8:1–12. doi: 10.1038/ncomms15584. PubMed DOI PMC

Wirtz D.G. and Yatilaka H. Cancer Cell Migration Inhibitors and Their Use in Therapeutic Treatments. 2017/0165363 A1. U.S. Patent. 2017 June 15;

Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-Driven Resistance to B-Raf Inhibition in a Melanoma Patient Is Accompanied by Broad Changes of Gene Methylation and Expression in Distal Fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC

Loppnow H., Zhang L., Buerke M., Lautenschläger M., Chen L., Frister A., Schlitt A., Luther T., Song N., Hofmann B., et al. Statins Potently Reduce the Cytokine-Mediated IL-6 Release in SMC/MNC Cocultures. J. Cell. Mol. Med. 2011;15:994. doi: 10.1111/j.1582-4934.2010.01036.x. PubMed DOI PMC

Awasthi S., Wagner T., Venkatakrishnan A.J., Puranik A., Hurchik M., Agarwal V., Conrad I., Kirkup C., Arunachalam R., O’Horo J., et al. Plasma IL-6 Levels Following Corticosteroid Therapy as an Indicator of ICU Length of Stay in Critically Ill COVID-19 Patients. Cell Death Discov. 2021;7:1–15. doi: 10.1038/s41420-021-00429-9. PubMed DOI PMC

Jain M.K., Ridker P.M. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nat. Rev. Drug Discov. 2005;4:977–987. doi: 10.1038/nrd1901. PubMed DOI

Smetana K., Smetana K., Brábek J., Brábek J. Role of Interleukin-6 in Lung Complications in Patients with COVID-19: Therapeutic Implications. In Vivo. 2020;34:1589–1592. doi: 10.21873/invivo.11947. PubMed DOI PMC

Atal S., Fatima Z. IL-6 Inhibitors in the Treatment of Serious COVID-19: A Promising Therapy? Pharm. Med. 2020;34:223–231. doi: 10.1007/s40290-020-00342-z. PubMed DOI PMC

Gould S., Norris S.L. Contested Effects and Chaotic Policies: The 2020 Story of (Hydroxy) Chloroquine for Treating COVID-19. Cochrane Database Syst. Rev. 2021;3:ED000151. doi: 10.1002/14651858.ED000151/EPDF/FULL. PubMed DOI PMC

Wozniacka A., Lesiak A., Narbutt J., McCauliffe D.P., Sysa-Jedrzejowska A. Chloroquine Treatment Influences Proinflammatory Cytokine Levels in Systemic Lupus Erythematosus Patients. Lupus. 2006;15:268–275. doi: 10.1191/0961203306lu2299oa. PubMed DOI

Van den Borne B.E., Dijkmans B.A., de Rooij H.H., le Cessie S., Verweij C.L. Chloroquine and Hydroxychloroquine Equally Affect Tumor Necrosis Factor-Alpha, Interleukin 6, and Interferon-Gamma Production by Peripheral Blood Mononuclear Cells. J. Rheumatol. 1997;24:55–60. PubMed

Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-Related Inflammation. Nature. 2008;454:436–444. doi: 10.1038/NATURE07205. PubMed DOI

Varisli L., Cen O., Vlahopoulos S. Dissecting Pharmacological Effects of Chloroquine in Cancer Treatment: Interference with Inflammatory Signaling Pathways. Immunology. 2020;159:257–278. doi: 10.1111/imm.13160. PubMed DOI PMC

Bryant J., Batis N., Franke A.C., Clancey G., Hartley M., Ryan G., Brooks J., Southam A.D., Barnes N., Parish J., et al. Repurposed Quinacrine Synergizes with Cisplatin, Reducing the Effective Dose Required for Treatment of Head and Neck Squamous Cell Carcinoma. Oncotarget. 2019;10:5229–5244. doi: 10.18632/oncotarget.27156. PubMed DOI PMC

Duarte D., Vale N. New Trends for Antimalarial Drugs: Synergism between Antineoplastics and Antimalarials on Breast Cancer Cells. Biomolecules. 2020;10:1623. doi: 10.3390/biom10121623. PubMed DOI PMC

Muñoz-Cánoves P., Scheele C., Pedersen B.K., Serrano A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-edged Sword? FEBS J. 2013;280:4131. doi: 10.1111/febs.12338. PubMed DOI PMC

Kawano M., Hirano T., Matsuda T., Taga T., Horii Y., Iwato K., Asaoku H., Tang B., Tanabe O., Tanaka H., et al. Autocrine Generation and Requirement of BSF-2/IL-6 for Human Multiple Myelomas. Nature. 1988;332:83–85. doi: 10.1038/332083a0. PubMed DOI

Beck J.T., Hsu S.-M., Wijdenes J., Bataille R., Klein B., Vesole D., Hayden K., Jagannath S., Barlogie B. Alleviation of Systemic Manifestations of Castleman’s Disease by Monoclonal Anti-Interleukin-6 Antibody. N. Engl. J. Med. 2010;330:602–605. doi: 10.1056/NEJM199403033300904. PubMed DOI

Van Rhee F., Fayad L., Voorhees P., Furman R., Lonial S., Borghaei H., Sokol L., Crawford J., Cornfeld M., Qi M., et al. Siltuximab, a Novel Anti-Interleukin-6 Monoclonal Antibody, for Castleman’s Disease. J. Clin. Oncol. 2010;28 doi: 10.1200/JCO.2009.27.2377. PubMed DOI

Choy E.H., de Benedetti F., Takeuchi T., Hashizume M., John M.R., Kishimoto T. Translating IL-6 Biology into Effective Treatments. Nat. Rev. Rheumatol. 2020;16:335–345. doi: 10.1038/s41584-020-0419-z. PubMed DOI PMC

Doberer K., Duerr M., Halloran P.F., Eskandary F., Budde K., Regele H., Reeve J., Borski A., Kozakowski N., Reindl-Schwaighofer R., et al. A Randomized Clinical Trial of Anti⇓IL-6 Antibody Clazakizumab in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2021;32:708–722. doi: 10.1681/ASN.2020071106. PubMed DOI PMC

Shaw S., Bourne T., Meier C., Carrington B., Gelinas R., Henry A., Popplewell A., Adams R., Baker T., Rapecki S., et al. Discovery and Characterization of Olokizumab: A Humanized Antibody Targeting Interleukin-6 and Neutralizing Gp130-Signaling. mAbs. 2014;6:773–781. doi: 10.4161/mabs.28612. PubMed DOI PMC

Burger R., Günther A., Klausz K., Staudinger M., Peipp M., Penas E.M.M., Rose-John S., Wijdenes J., Gramatzki M. Due to Interleukin-6 Type Cytokine Redundancy Only Glycoprotein 130 Receptor Blockade Efficiently Inhibits Myeloma Growth. Haematologica. 2017;102:381. doi: 10.3324/haematol.2016.145060. PubMed DOI PMC

Nishimoto N., Kishimoto T. Humanized Antihuman IL-6 Receptor Antibody, Tocilizumab. Handb. Exp. Pharmacol. 2008;181:151–160. doi: 10.1007/978-3-540-73259-4_7. PubMed DOI

Genovese M.C., McKay J.D., Nasonov E.L., Mysler E.F., da Silva N.A., Alecock E., Woodworth T., Gomez-Reino J.J. Interleukin-6 Receptor Inhibition with Tocilizumab Reduces Disease Activity in Rheumatoid Arthritis with Inadequate Response to Disease-Modifying Antirheumatic Drugs: The Tocilizumab in Combination with Traditional Disease-Modifying Antirheumatic Drug Therapy Study. Arthritis Rheum. 2008;58:2968–2980. doi: 10.1002/ART.23940. PubMed DOI

Kim N., Kim S., Kim D., Zhang D., Park J., Yi H., Kim J., Shin H. Anti-proliferative Action of IL-6R-Targeted Antibody Tocilizumab for Non-Small Cell Lung Cancer Cells. Oncol. Lett. 2015;9:2283–2288. doi: 10.3892/ol.2015.3019. PubMed DOI PMC

Alraouji N.N., Al-Mohanna F.H., Ghebeh H., Arafah M., Almeer R., Al-Tweigeri T., Aboussekhra A. Tocilizumab Potentiates Cisplatin Cytotoxicity and Targets Cancer Stem Cells in Triple-Negative Breast Cancer. Mol. Carcinog. 2020;59:1041–1051. doi: 10.1002/mc.23234. PubMed DOI

Varra V., Smile T.D., Geiger J.L., Koyfman S.A. Recent and Emerging Therapies for Cutaneous Squamous Cell Carcinomas of the Head and Neck. Curr. Treat. Options Oncol. 2020;21:1–12. doi: 10.1007/s11864-020-00739-7. PubMed DOI

Migden M.R., Rischin D., Schmults C.D., Guminski A., Hauschild A., Lewis K.D., Chung C.H., Hernandez-Aya L., Lim A.M., Chang A.L.S., et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018;379:341–351. doi: 10.1056/NEJMoa1805131. PubMed DOI

Tsukamoto H., Fujieda K., Miyashita A., Fukushima S., Ikeda T., Kubo Y., Senju S., Ihn H., Nishimura Y., Oshiumi H. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment. Cancer Res. 2018;78:5011–5022. doi: 10.1158/0008-5472.CAN-18-0118. PubMed DOI

Boyce E.G., Rogan E.L., Vyas D., Prasad N., Mai Y. Sarilumab: Review of a Second IL-6 Receptor Antagonist Indicated for the Treatment of Rheumatoid Arthritis. Ann. Pharmacother. 2018;52:780–791. doi: 10.1177/1060028018761599. PubMed DOI

Heo Y.A. Satralizumab: First Approval. Drugs. 2020;80:1477–1482. doi: 10.1007/s40265-020-01380-2. PubMed DOI PMC

Glicklich A., Grayson P., Blanchetot C., Zhou Q., Kretz-Rommel A. Arthritis & Rheumatology. Volume 68 Wiley; Hoboken, NJ, USA: 2016. The Development of a New Anti–Interleukin 6 Blocker for Rheumatoid Arthritis Patients-ACR Meeting Abstracts.

Rinaldi M., van Bogaert T., van Roy M., Bontinck L., Hohlbaum A., Snoeck V., Dombrecht E., van Beneden K., Schoen P., Ulrichts H. Assessment of Dose Dependent Effects of Vobarilizumab, an Anti-IL6 Receptor (IL-6R) Nanobody®, on Systemic Biomarkers in Patients with Moderate-to-Severe Rheumatoid Arthritis (RA): Results of Two Phase 2b Studies-ACR Meeting Abstracts. Arthritis Rheumatol. 2017;69:2476.

Chevalier S., Fourcin M., Robledo O., Wijdenes J., Pouplard-Barthelaix A., Gascan H. Interleukin-6 Family of Cytokines Induced Activation of Different Functional Sites Expressed by Gp130 Transducing Protein. J. Biol. Chem. 1996;271 doi: 10.1074/jbc.271.25.14764. PubMed DOI

Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, Synthesis, and Biological Activities of Madindoline Analogues. Bioorg. Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI

Xu S., Grande F., Garofalo A., Neamati N. Discovery of a Novel Orally Active Small-Molecule Gp130 Inhibitor for the Treatment of Ovarian Cancer. Mol. Cancer Ther. 2013;12:937–949. doi: 10.1158/1535-7163.MCT-12-1082. PubMed DOI

Hong S.-S., Choi J.H., Lee S.Y., Park Y.-H., Park K.-Y., Lee J.Y., Kim J., Gajulapati V., Goo J.-I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI

Li H., Xiao H., Lin L., Jou D., Kumari V., Lin J., Li C. Drug Design Targeting Protein-Protein Interactions (PPIs) Using Multiple Ligand Simultaneous Docking (MLSD) and Drug Repositioning: Discovery of Raloxifene and Bazedoxifene as Novel Inhibitors of IL-6/GP130 Interface. J. Med. Chem. 2014;57:632–641. doi: 10.1021/jm401144z. PubMed DOI

Thilakasiri P., Huynh J., Poh A.R., Tan C.W., Nero T.L., Tran K., Parslow A.C., Afshar-Sterle S., Baloyan D., Hannan N.J., et al. Repurposing the Selective Estrogen Receptor Modulator Bazedoxifene to Suppress Gastrointestinal Cancer Growth. EMBO Mol. Med. 2019;11:e9539. doi: 10.15252/emmm.201809539. PubMed DOI PMC

Heise D., Derrac Soria A., Hansen S., Dambietz C., Akbarzadeh M., Berg A.F., Waetzig G.H., Jones S.A., Dvorsky R., Ahmadian M.R., et al. Selective Inhibition of IL-6 Trans-Signaling by a Miniaturized, Optimized Chimeric Soluble Gp130 Inhibits T H 17 Cell Expansion. Sci. Signal. 2021;14:eabc3480. doi: 10.1126/scisignal.abc3480. PubMed DOI

Schreiber S., Aden K., Bernardes J.P., Conrad C., Tran F., Höper H., Volk V., Mishra N., Blase J.I., Nikolaus S., et al. Therapeutic Interleukin-6 Trans-Signaling Inhibition by Olamkicept (Sgp130Fc) in Patients With Active Inflammatory Bowel Disease. Gastroenterology. 2021;160:2354–2366.e11. doi: 10.1053/j.gastro.2021.02.062. PubMed DOI

Uz U., Eskiizmir G. Association between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin. Exp. Otorhinolaryngol. 2021;14:50–60. doi: 10.21053/ceo.2019.00906. PubMed DOI PMC

Cui N., Nomura T., Noma H., Yokoo K., Takagi R., Hashimoto S., Okamoto M., Sato M., Yu G., Guo C., et al. Effect of YM529 on a Model of Mandibular Invasion by Oral Squamous Cell Carcinoma in Mice. Clin. Cancer Res. 2005;11:2713–2719. doi: 10.1158/1078-0432.CCR-04-1767. PubMed DOI

Wichmann G., Cedra S., Schlegel D., Kolb M., Wiegand S., Boehm A., Hofer M., Dietz A. Cilengitide and Cetuximab Reduce Cytokine Production and Colony Formation of Head and Neck Squamous Cell Carcinoma Cells Ex Vivo. Anticancer Res. 2017;37:521–527. doi: 10.21873/anticanres.11344. PubMed DOI

Wolf J.S., Li G., Varadhachary A., Petrak K., Schneyer M., Li D., Ongkasuwan J., Zhang X., Taylor R.J., Strome S.E., et al. Oral Lactoferrin Results in T Cell-Dependent Tumor Inhibition of Head and Neck Squamous Cell Carcinoma in Vivo. Clin. Cancer Res. 2007;13:1601–1610. doi: 10.1158/1078-0432.CCR-06-2008. PubMed DOI PMC

Tu D.G., Lin W.T., Yu C.C., Lee S.S., Peng C.Y., Lin T., Yu C.H. Chemotherapeutic Effects of Luteolin on Radio-Sensitivity Enhancement and Interleukin-6/Signal Transducer and Activator of Transcription 3 Signaling Repression of Oral Cancer Stem Cells. J. Formos. Med. Assoc. 2016;115:1032–1038. doi: 10.1016/j.jfma.2016.08.009. PubMed DOI

Tamatani T., Azuma M., Motegi K., Takamaru N., Kawashima Y., Bando T. Cepharanthin-Enhanced Radiosensitivity through the Inhibition of Radiation-Induced Nuclear Factor-ΚB Activity in Human Oral Squamous Cell Carcinoma Cells. Int. J. Oncol. 2007;31:761–768. doi: 10.3892/ijo.31.4.761. PubMed DOI

Macha M.A., Matta A., Chauhan S.S., Michael Siu K.W., Ralhan R. Guggulsterone (GS) Inhibits Smokeless Tobacco and Nicotine-Induced NF-ΚB and STAT3 Pathways in Head and Neck Cancer Cells. Carcinogenesis. 2011;32:368–380. doi: 10.1093/carcin/bgq278. PubMed DOI

Lin H.Y., Hou S.C., Chen S.C., Kao M.C., Yu C.C., Funayama S., Ho C.T., der Way T. (-)-Epigallocatechin Gallate Induces Fas/CD95-Mediated Apoptosis through Inhibiting Constitutive and IL-6-Induced JAK/STAT3 Signaling in Head and Neck Squamous Cell Carcinoma Cells. J. Agric. Food Chem. 2012;60:2480–2489. doi: 10.1021/jf204362n. PubMed DOI

Cohen A.N., Veena M.S., Srivatsan E.S., Wang M.B. Suppression of Interleukin 6 and 8 Production in Head and Neck Cancer Cells with Curcumin via Inhibition of Iκβ Kinase. Arch. Otolaryngol.-Head Neck Surg. 2009;135:190–197. doi: 10.1001/archotol.135.2.190. PubMed DOI

Chakravarti N., Myers J.N., Aggarwal B.B. Targeting Constitutive and Interleukin-6-Inducible Signal Transducers and Activators of Transcription 3 Pathway in Head and Neck Squamous Cell Carcinoma Cells by Curcumin (Diferuloylmethane) Int. J. Cancer. 2006;119:1268–1275. doi: 10.1002/ijc.21967. PubMed DOI

DiNatale B.C., Schroeder J.C., Perdew G.H. Ah Receptor Antagonism Inhibits Constitutive and Cytokine Inducible IL6 Production in Head and Neck Tumor Cell Lines. Mol. Carcinog. 2011;50:173–183. doi: 10.1002/mc.20702. PubMed DOI PMC

DiNatale B.C., Smith K., John K., Krishnegowda G., Amin S.G., Perdew G.H. Ah Receptor Antagonism Represses Head and Neck Tumor Cell Aggressive Phenotype. Mol. Cancer Res. 2012;10:1369–1379. doi: 10.1158/1541-7786.MCR-12-0216. PubMed DOI PMC

Tang C.H., Chuang J.Y., Fong Y.C., Maa M.C., der Way T., Hung C.H. Bone-Derived SDF-1 Stimulates IL-6 Release via CXCR4, ERK and NF-ΚB Pathways and Promotes Osteoclastogenesis in Human Oral Cancer Cells. Carcinogenesis. 2008;29:1483–1492. doi: 10.1093/carcin/bgn045. PubMed DOI PMC

Siavash H., Nikitakis N.G., Sauk J.J. Abrogation of IL-6-Mediated JAK Signalling by the Cyclopentenone Prostaglandin 15d-PGJ2 in Oral Squamous Carcinoma Cells. Br. J. Cancer. 2004;91:1074–1080. doi: 10.1038/sj.bjc.6602055. PubMed DOI PMC

Poth K.J., Guminski A.D., Thomas G.P., Leo P.J., Jabbar I.A., Saunders N.A. Cisplatin Treatment Induces a Transient Increase in Tumorigenic Potential Associated with High Interleukin-6 Expression in Head and Neck Squamous Cell Carcinoma. Mol. Cancer Ther. 2010;9:2430–2439. doi: 10.1158/1535-7163.MCT-10-0258. PubMed DOI

Stanam A., Love-Homan L., Joseph T.S., Espinosa-Cotton M., Simons A.L. Upregulated Interleukin-6 Expression Contributes to Erlotinib Resistance in Head and Neck Squamous Cell Carcinoma. Mol. Oncol. 2015;9:1371–1383. doi: 10.1016/j.molonc.2015.03.008. PubMed DOI PMC

Shinriki S., Jono H., Ueda M., Ota K., Ota T., Sueyoshi T., Oike Y., Ibusuki M., Hiraki A., Nakayama H., et al. Interleukin-6 Signalling Regulates Vascular Endothelial Growth Factor-C Synthesis and Lymphangiogenesis in Human Oral Squamous Cell Carcinoma. J. Pathol. 2011;225:142–150. doi: 10.1002/path.2935. PubMed DOI

Shinriki S., Jono H., Ota K., Ueda M., Kudo M., Ota T., Oike Y., Endo M., Ibusuki M., Hiraki A., et al. Humanized Anti-Interleukin-6 Receptor Antibody Suppresses Tumor Angiogenesis and in Vivo Growth of Human Oral Squamous Cell Carcinoma. Clin. Cancer Res. 2009;15:5426–5434. doi: 10.1158/1078-0432.CCR-09-0287. PubMed DOI

Islam M., Sharma S., Teknos T.N. RhoC Regulates Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma by Overexpressing IL-6 and Phosphorylation of STAT3. PLoS ONE. 2014;9:88527. doi: 10.1371/journal.pone.0088527. PubMed DOI PMC

Hwang Y.S., Ahn S.Y., Moon S., Zheng Z., Cha I.H., Kim J., Zhang X. Insulin-like Growth Factor-II MRNA Binding Protein-3 and Podoplanin Expression Are Associated with Bone Invasion and Prognosis in Oral Squamous Cell Carcinoma. Arch. Oral Biol. 2016;69:25–32. doi: 10.1016/j.archoralbio.2016.05.008. PubMed DOI

Finkel K.A., Warner K.A., Kerk S., Bradford C.R., McLean S.A., Prince M.E., Zhong H., Hurt E.M., Hollingsworth R.E., Wicha M.S., et al. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence. Neoplasia. 2016;18:273–281. doi: 10.1016/j.neo.2016.03.004. PubMed DOI PMC

Ekshyyan O., Khandelwal A.R., Rong X., Moore-Medlin T., Ma X., Alexander J.S., Nathan C.A.O. Rapamycin Targets Interleukin 6 (IL-6) Expression and Suppresses Endothelial Cell Invasion Stimulated by Tumor Cells. Am. J. Transl. Res. 2016;8:4822–4830. PubMed PMC

Riebe C., Pries R., Kemkers A., Wollenberg B. Increased Cytokine Secretion in Head and Neck Cancer upon P38 Mitogen-Activated Protein Kinase Activation. Int. J. Mol. Med. 2007;20:883–887. doi: 10.3892/ijmm.20.6.883. PubMed DOI

Jing Z., Xu H., Chen X., Zhong Q., Huang J., Zhang Y., Guo W., Yang Z., Ding S., Chen P., et al. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS ONE. 2016;11:e0152789. doi: 10.1371/journal.pone.0152789. PubMed DOI PMC

Kross K.W., Heimdal J.H., Olsnes C., Olofson J., Aarstad H.J. Tumour-Associated Macrophages Secrete IL-6 and MCP-1 in Head and Neck Squamous Cell Carcinoma Tissue. Acta Oto-Laryngol. 2007;127:532–539. doi: 10.1080/00016480600951384. PubMed DOI

Mishra P.B., Lobo A.S., Joshi K.S., Rathos M.J., Kumar G.A., Padigaru M. Molecular Mechanisms of Anti-Tumor Properties of P276-00 in Head and Neck Squamous Cell Carcinoma. J. Transl. Med. 2013;11:1–11. doi: 10.1186/1479-5876-11-42. PubMed DOI PMC

Sen M., Johnston P.A., Pollock N.I., DeGrave K., Joyce S.C., Freilino M.L., Hua Y., Camarco D.P., Close D.A., Huryn D.M., et al. Mechanism of Action of Selective Inhibitors of IL-6 Induced STAT3 Pathway in Head and Neck Cancer Cell Lines. J. Chem. Biol. 2017;10:129–141. doi: 10.1007/s12154-017-0169-9. PubMed DOI PMC

Teknos T.N., Islam M., Arenberg D.A., Pan Q., Carskadon S.L., Abarbanell A.M., Marcus B., Paul S., Vandenberg C.D., Carron M., et al. The Effect of Tetrathiomolybdate on Cytokine Expression, Angiogenesis, and Tumor Growth in Squamous Cell Carcinoma of the Head and Neck. Arch. Otolaryngol.-Head Neck Surg. 2005;131:204–211. doi: 10.1001/archotol.131.3.204. PubMed DOI

Van Tubergen E., vander Broek R., Lee J., Wolf G., Carey T., Bradford C., Prince M., Kirkwood K.L., D’Silva N.J. Tristetraprolin Regulates Interleukin-6, Which Is Correlated with Tumor Progression in Patients with Head and Neck Squamous Cell Carcinoma. Cancer. 2011;117:2677–2689. doi: 10.1002/cncr.25859. PubMed DOI PMC

Van Tubergen E.A., Banerjee R., Liu M., vander Broek R., Light E., Kuo S., Feinberg S.E., Willis A.L., Wolf G., Carey T., et al. Inactivation or Loss of TTP Promotes Invasion in Head and Neck Cancer via Transcript Stabilization and Secretion of MMP9, MMP2, and IL-6. Clin. Cancer Res. 2013;19:1169–1179. doi: 10.1158/1078-0432.CCR-12-2927. PubMed DOI PMC

Zhou X., Ren Y., Liu A., Han L., Zhang K., Li S., Li P., Li P., Kang C., Wang X., et al. STAT3 Inhibitor WP1066 Attenuates MiRNA-21 to Suppress Human Oral Squamous Cell Carcinoma Growth in Vitro and in Vivo. Oncol. Rep. 2014;31:2173–2180. doi: 10.3892/or.2014.3114. PubMed DOI

Te Chang M., Lee S.P., Fang C.Y., Hsieh P.L., Liao Y.W., Lu M.Y., Tsai L.L., Yu C.C., Liu C.M. Chemosensitizing Effect of Honokiol in Oral Carcinoma Stem Cells via Regulation of IL-6/Stat3 Signaling. Environ. Toxicol. 2018;33:1105–1112. doi: 10.1002/tox.22587. PubMed DOI

Wang T.H., Fang J.Y., Wu S.J., Liu Y.W., Chan C.W., Chuang S.Y., Chen C.Y. 2-O-Methylmagnolol Induces Apoptosis and Inhibits IL-6/STAT3 Signaling in Oral Squamous Cell Carcinoma. Cell. Physiol. Biochem. 2018;50:883–892. doi: 10.1159/000494474. PubMed DOI

Gehrke T., Scherzad A., Hackenberg S., Ickrath P., Schendzielorz P., Hagen R., Kleinsasser N. Additive Antitumor Effects of Celecoxib and Simvastatin on Head and Neck Squamous Cell Carcinoma in Vitro. Int. J. Oncol. 2017;51:931–938. doi: 10.3892/ijo.2017.4071. PubMed DOI

Yadav A., Kumar B., Teknos T.N., Kumar P. Bazedoxifene Enhances the Anti-Tumor Effects of Cisplatin and Radiation Treatment by Blocking IL-6 Signaling in Head and Neck Cancer. Oncotarget. 2017;8:66912. doi: 10.18632/oncotarget.11464. PubMed DOI PMC

Meyer C., Pries R., Wollenberg B. Established and Novel NF-ΚB Inhibitors Lead to Downregulation of TLR3 and the Proliferation and Cytokine Secretion in HNSCC. Oral Oncol. 2011;47:818–826. doi: 10.1016/j.oraloncology.2011.06.010. PubMed DOI

Ruan M., Thorn K., Liu S., Li S., Yang W., Zhang C., Zhang C. The Secretion of IL-6 by CpG-ODN-Treated Cancer Cells Promotes T-Cell Immune Responses Partly through the TLR-9/AP-1 Pathway in Oral Squamous Cell Carcinoma. Int. J. Oncol. 2014;45:2103–2110. doi: 10.3892/ijo.2014.2356. PubMed DOI

A First-in-Humans Dose Finding Study for an Aryl Hydrocarbon Receptor Inhibitor (AhRi) in Patients With Advanced Cancer-Full Text View-ClinicalTrials.Gov. [(accessed on 12 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/study/NCT04069026?term=IL-6&cond=HNSCC&draw=2&rank=9.

Zafar E., Maqbool M.F., Iqbal A., Maryam A., Shakir H.A., Irfan M., Khan M., Li Y., Ma T. A Comprehensive Review on Anticancer Mechanism of Bazedoxifene. Biotechnol. Appl. Biochem. 2021 doi: 10.1002/bab.2150. PubMed DOI

Erbitux (Cetuximab)-Summary of Product Characteristics. [(accessed on 10 October 2021)]. Available online: https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf.

The Effect of Curcumin for Treatment of Cancer Anorexia-Cachexia Syndrome in Patients with Stage III-IV of Head and Neck Cancer-Full Text View-ClinicalTrials.Gov. [(accessed on 12 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04208334?cond=head+and+neck+cancer+curcumin&draw=2&rank=2.

Kotha R.R., Luthria D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930. PubMed DOI PMC

Celebrex (Celecoxib) Information | FDA. [(accessed on 12 September 2021)]; Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/celebrex-celecoxib-information.

Simvastatin Information | FDA. [(accessed on 12 September 2021)]; Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/simvastatin-information.

Du G.-J., Zhang Z., Wen X.-D., Yu C., Calway T., Yuan C.-S., Wang C.-Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients. 2012;4:1679. doi: 10.3390/nu4111679. PubMed DOI PMC

Leeman-Neill R.J., Wheeler S.E., Singh S.V., Thomas S.M., Seethala R.R., Neill D.B., Panahandeh M.C., Hahm E.-R., Joyce S.C., Sen M., et al. Guggulsterone Enhances Head and Neck Cancer Therapies via Inhibition of Signal Transducer and Activator of Transcription-3. Carcinogenesis. 2009;30:1848. doi: 10.1093/carcin/bgp211. PubMed DOI PMC

Rauf A., Olatunde A., Imran M., Alhumaydhi F.A., Aljohani A.S.M., Khan S.A., Uddin M.S., Mitra S., bin Emran T., Khayrullin M., et al. Honokiol: A Review of Its Pharmacological Potential and Therapeutic Insights. Phytomedicine. 2021;90:153647. doi: 10.1016/j.phymed.2021.153647. PubMed DOI

Lin Y., Shi R., Wang X., Shen H.-M. Luteolin, a Flavonoid with Potentials for Cancer Prevention and Therapy. Curr. Cancer Drug Targets. 2008;8:634. doi: 10.2174/156800908786241050. PubMed DOI PMC

Rapamune-SPC. [(accessed on 19 September 2021)]. Available online: https://www.ema.europa.eu/en/documents/product-information/rapamune-epar-product-information_en.pdf.

Angevin E., Tabernero J., Elez E., Cohen S.J., Bahleda R., van Laethem J.-L., Ottensmeier C., Lopez-Martin J.A., Clive S., Joly F., et al. A Phase I/II, Multiple-Dose, Dose-Escalation Study of Siltuximab, an Anti-Interleukin-6 Monoclonal Antibody, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014;20:2192–2204. doi: 10.1158/1078-0432.CCR-13-2200. PubMed DOI

A Safety, Efficacy and Pharmacokinetic Study of Siltuximab (CNTO 328) in Participants with Solid Tumors-Full Text View-ClinicalTrials.Gov. [(accessed on 13 September 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00841191.

Interleukin-6 Inhibitors | COVID-19 Treatment Guidelines. [(accessed on 12 September 2021)]; Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/interleukin-6-inhibitors/

Actemra-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125276s114lbl.pdf.

Kerschbaumer A., Sepriano A., Smolen J.S., van der Heijde D., Dougados M., van Vollenhoven R., McInnes I.B., Bijlsma J.W.J., Burmester G.R., de Wit M., et al. Efficacy of Pharmacological Treatment in Rheumatoid Arthritis: A Systematic Literature Research Informing the 2019 Update of the EULAR Recommendations for Management of Rheumatoid Arthritis. Ann. Rheum. Dis. 2020;79:744. doi: 10.1136/annrheumdis-2019-216656. PubMed DOI PMC

Fleischmann R., van Adelsberg J., Lin Y., da Castelar-Pinheiro G.R., Brzezicki J., Hrycaj P., Graham N.M.H., van Hoogstraten H., Bauer D., Burmester G.R. Sarilumab and Nonbiologic Disease-Modifying Antirheumatic Drugs in Patients With Active Rheumatoid Arthritis and Inadequate Response or Intolerance to Tumor Necrosis Factor Inhibitors. Arthritis Rheumatol. 2017;69:277–290. doi: 10.1002/art.39944. PubMed DOI PMC

Kevzara-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761037s000lbl.pdf.

Roche-Enspryng (Satralizumab) [(accessed on 16 September 2021)]. Available online: https://www.roche.com/products/product-details.htm?productId=6f4b47a2-7ca9-4768-bf1a-6d813702f5b6.

Eskandary F., Dürr M., Budde K., Doberer K., Reindl-Schwaighofer R., Waiser J., Wahrmann M., Regele H., Spittler A., Lachmann N., et al. Clazakizumab in Late Antibody-Mediated Rejection: Study Protocol of a Randomized Controlled Pilot Trial. Trials. 2019;20:1–13. doi: 10.1186/s13063-018-3158-6. PubMed DOI PMC

Rovin B.H., van Vollenhoven R.F., Aranow C., Wagner C., Gordon R., Zhuang Y., Belkowski S., Hsu B. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Treatment With Sirukumab (CNTO 136) in Patients With Active Lupus Nephritis. Arthritis Rheumatol. 2016;68:2174–2183. doi: 10.1002/art.39722. PubMed DOI PMC

Reeh H., Rudolph N., Billing U., Christen H., Streif S., Bullinger E., Schliemann-Bullinger M., Findeisen R., Schaper F., Huber H.J., et al. Response to IL-6 Trans- and IL-6 Classic Signalling Is Determined by the Ratio of the IL-6 Receptor α to Gp130 Expression: Fusing Experimental Insights and Dynamic Modelling. Cell Commun. Signal. 2019;17:1–21. doi: 10.1186/s12964-019-0356-0. PubMed DOI PMC

Jakafi-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202192s017lbl.pdf.

Xeljanz-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf.

Goel P., Gerriets V. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Chloroquine; pp. 1–7.

Jang C.-H., Choi J.-H., Byun M.-S., Jue D.-M. Chloroquine Inhibits Production of TNF-α, IL-1β and IL-6 from Lipopolysaccharide-Stimulated Human Monocytes/Macrophages by Different Modes. Rheumatology. 2006;45:703–710. doi: 10.1093/rheumatology/kei282. PubMed DOI

Aralen. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/006002s044lbl.pdf.

Bansal P., Goyal A., Cusick A., IV, Lahan S., Dhaliwal H.S., Bhyan P., Bhattad P.B., Aslam F., Ranka S., Dalia T., et al. Hydroxychloroquine: A Comprehensive Review and Its Controversial Role in Coronavirus Disease 2019. Ann. Med. 2021;53:117. doi: 10.1080/07853890.2020.1839959. PubMed DOI PMC

Plaquenil. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf.

Wang Y., Huang Z., Wang L., Meng S., Fan Y., Chen T., Cao J., Jiang R., Wang C. The Anti-Malarial Artemisinin Inhibits pro-Inflammatory Cytokines via the NF-ΚB Canonical Signaling Pathway in PMA-Induced THP-1 Monocytes. Int. J. Mol. Med. 2011;27:233–241. doi: 10.3892/ijmm.2010.580. PubMed DOI

Artesunate-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213036s000lbl.pdf.

Lin L., Benson D.M., DeAngelis S., Bakan C.E., Li P.-K., Li C., Lin J. A Small Molecule, LLL12 Inhibits Constitutive STAT3 and IL-6-Induced STAT3 Signaling and Exhibits Potent Growth Suppressive Activity in Human Multiple Myeloma Cells. Int. J. Cancer. 2012;130:1459–1469. doi: 10.1002/ijc.26152. PubMed DOI PMC

Shi W., Yan D., Zhao C., Xiao M., Wang Y., Ma H., Liu T., Qin H., Zhang C., Li C., et al. Inhibition of IL-6/STAT3 Signaling in Human Cancer Cells Using Evista. Biochem. Biophys. Res. Commun. 2017;491:159–165. doi: 10.1016/j.bbrc.2017.07.067. PubMed DOI

Evista-Highlights of Prescribing Information. [(accessed on 19 September 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020815s018lbl.pdf.

Hayashi M., Rho M.-C., Enomoto A., Fukami A., Kim Y.-P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of Bone Resorption by Madindoline A, a Novel Nonpeptide Antagonist to Gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728. doi: 10.1073/pnas.232562799. PubMed DOI PMC

Singh S., Gajulapati V., Gajulapati K., Goo J., Park Y.H., Jung H.Y., Lee S.Y., Choi J.H., Kim Y.K., Lee K., et al. Structure–Activity Relationship Study of a Series of Novel Oxazolidinone Derivatives as IL-6 Signaling Blockers. Bioorganic Med. Chem. Lett. 2016;26:1282–1286. doi: 10.1016/j.bmcl.2016.01.016. PubMed DOI

Zhang Z., Zhou L., Xie N., Nice E.C., Zhang T., Cui Y., Huang C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020;5:1–25. doi: 10.1038/s41392-020-00213-8. PubMed DOI PMC

Gyebi G.A., Ogunyemi O.M., Ibrahim I.M., Afolabi S.O., Adebayo J.O. Dual Targeting of Cytokine Storm and Viral Replication in COVID-19 by Plant-Derived Steroidal Pregnanes: An in Silico Perspective. Comput. Biol. Med. 2021;134:104406. doi: 10.1016/j.compbiomed.2021.104406. PubMed DOI PMC

Results of a Phase IIb Study of Vobarilizumab, an Anti-Interleukin 6 Receptor Nanobody®, in Patients with Moderate-to-Severe Rheumatoid Arthritis Despite Treatment with Methotrexate. [(accessed on 3 October 2021)]. Available online: https://www.ablynx.com/uploads/data/files/cra2017_alx-0061_abstract%20210_poster_final.pdf.

Genovese M.C., Durez P., Fleischmann R., Tanaka Y., Furst D., Yamanaka H., Korneva E., Vasyutin I., Takeuchi T. Long-Term Safety and Efficacy of Olokizumab in Patients with Rheumatoid Arthritis and Inadequate Response to Tumor Necrosis Factor Inhibitor Therapy in Phase II Studies. Eur. J. Rheumatol. 2021;8:120–129. doi: 10.5152/eurjrheum.2021.19207. PubMed DOI PMC

Baricitinib Letter of Authorization Revised July 28 2021. [(accessed on 3 October 2021)]; Available online: https://www.fda.gov/media/143822/download.

FDA Briefing Document Pharmacy Compounding Advisory Committee (PCAC) Meeting. [(accessed on 3 October 2021)]; Available online: https://www.fda.gov/media/95976/download.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation

. 2024 ; 15 () : 1403570. [epub] 20241129

Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells

. 2024 May 07 ; 22 (1) : 261. [epub] 20240507

Serum concentrations of proinflammatory biomarker interleukin-6 (IL-6) as a predictor of postoperative complications after elective colorectal surgery

. 2023 Dec 14 ; 21 (1) : 384. [epub] 20231214

Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles

. 2023 May 24 ; 21 (1) : 120. [epub] 20230524

Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities

. 2022 Nov 21 ; 11 (22) : . [epub] 20221121

Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation

. 2022 Nov ; 158 (5) : 415-434. [epub] 20220722

New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity

. 2022 Aug 17 ; 14 (8) : . [epub] 20220817

Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace